125 and susy naturalness

Josh Ruderman February 27, 2012

Lawrence Hall, David Pinner, JTR 1112.2703

Cheomseongdae, ~640 AD

Taking these excesses seriously already allows a precise determination of the Higgs mass!

all data

Jens Erler 1201.0695

• my view on the Higgs is: guilty until proven innocent

• for the rest of this talk: $m_h \approx 124 - 126 \text{ GeV}$

not technicolor!

• let's explore implications for SUSY

SUSY

• 125 sits in the battleground between natural and not

the plan:

I. MSSM $\lambda \lesssim 0.7$ 2. NMSSM $\lambda SH_u H_d$ $\lambda SUSY$ $\lambda > 0.7$

fine tuning in the MSSM

tree-level:

$$-\frac{m_Z^2}{2} = |\mu^2| + m_{H_u}^2 + \mathcal{O}\left(\frac{1}{\tan^2\beta}\right)$$

one-loop:

$$\delta m_{H_u}^2 \approx -\frac{3y_t^2}{8\pi^2} \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2 \right) \log\left(\frac{\Lambda}{m_{\tilde{t}}}\right)$$

$$m_{\tilde{t}}^2 \lesssim (500 \text{ GeV})^2 \frac{1}{1 + A_t^2/2m_{\tilde{t}}^2} \left(\frac{10\%}{\Delta^{-1}}\right) \left(\frac{3}{\log\Lambda/m_{\tilde{t}}}\right)$$

maximal mixing has the same fine tuning cost as doubling the stop masses

$$A_t^2 \approx 6 \, m_{\tilde{t}}^2$$

general bottom-up fine tuning

 write the potential in the direction of EWSB,

$$V = m_H^2 |h|^2 + \frac{\lambda_h}{4} |h|^4$$

• extremizing,

$$\frac{\delta m_H^2}{m_{h^0}^2/2} \gg 1$$

$$m_{h^0}^2 = \lambda_h v^2 = -2m_H^2$$

signals fine tuning

Kitano and Nomura 0602096

$$m_{h^0}$$
 is the contribution to the Higgs mass from the direction that breaks EW

the MSSM

λSH_uH_d

 $m_h^2 \le m_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta$

- fine tuning highly prefers large λ (and small mixing)
- the NMSSM is pushed to the edge of its parameter space

what about larger λ ?

$W \supset \lambda SH_u H_d$

• top-down: fat higgs

Harnik, Kribs, Larson, Murayama 0311349

• bottom-up: $\lambda SUSY$

Barbieri, Hall, Nomura, Rychkov 0607332

 $\Lambda \lesssim \text{few} \times 10 \text{ TeV}$

- we restrict to $\ \lambda \lesssim 2$

so the theory is perturbative until

• naively, very large λ leads to too heavy of a Higgs mass

$$\Delta_{m_h} = \max_i \left| \frac{\partial \log m_h^2}{\partial \log p_i} \right|$$

125 natural across a big chunk of a parameter space

non-decoupling of H

$$\xi_{bb} \equiv \frac{y_b^2}{\left(y_b^2\right)_{SM}}$$

$$\xi_{bb} = 1 + |\sin 4\beta| \tan \beta \left(\frac{m_Z}{m_{H^{\pm}}}\right)^2 \qquad \xi_{bb} = 1 - |\sin 4\beta| \tan \beta \left(\frac{\lambda v}{m_{H^{\pm}}}\right)^2$$

non-decoupling of H

$$R_{\gamma\gamma} = \frac{(\sigma_{gg \to h} \times \operatorname{Br}_{h \to \gamma\gamma})_{\lambda SUSY}}{(\sigma_{gg \to h} \times \operatorname{Br}_{h \to \gamma\gamma})_{SM}}$$

non-decoupling of H?

ATLAS

CMS

non-decoupling of H?

ATLAS

CMS

VBF can tell apart an enhanced g-g-h from a depleted b-b-h coupling

• too early to tell, but watch for deviations!

large λ protects against fine tuning

$$V = m_H^2 |h|^2 + \frac{\lambda_h}{4} |h|^4$$

this means that the stops can be $\sim\lambda/g~$ times heavier than the MSSM with the same tuning

A Natural SUSY Spectrum

flavor degen squarks above current LHC limits are natural!

take away points

- the MSSM requires maximal stop mixing and is ~1% tuned or worse
- the NSSM can be ~10% tuned at the edge of its parameter space, $\lambda \approx 0.7$, $\tan \beta \lesssim 3$
- mh = 125 GeV is natural in λ SUSY with large λ because of singlet-doublet mixing
- •in λ SUSY, $R_{\gamma\gamma}$ can be enhanced and flavor degen squarks are naturally accommodated

backup

higgs mass in MSSM

I-loop:

$$m_h^2 \approx m_Z^2 \cos^2 2\beta + \frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2} \right) \right]$$

 $\begin{pmatrix} m_{Q_3}^2 + m_t^2 + t_L m_Z & m_t X_t \\ m_t X_t & m_{U_3}^2 + m_t^2 + t_R m_Z^2 \end{pmatrix} \qquad X_t = A_t - \frac{\mu}{\tan\beta}$

maximal mixing: $|X_t| = \sqrt{6} m_{\tilde{t}}$

NSSM

• consider the superpotential:

 $W \supset \lambda \, SH_u H_d + \mu \, H_u H_d + M_S \, S^2$

which generates: $|F_S|^2 \supset \lambda^2 |H_u H_d|^2$

and soft terms:

 $V_{\text{soft}} \supset m_S |S|^2 + (\lambda A_\lambda S H_u H_d + \text{h.c.})$

• the lightest CP even eigenvalue satisfies the bound:

$$m_h^2 \le m_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta$$

saturated when $m_s \gg M_S$

precision electroweak

large λ protects against fine tuning

