Spotting an Invisible Higgs at 7 TeV

Jessie Shelton

Yale University

Y. Bai, P. Draper, JS, arXiv:1112.4496

NPKI workshop Seoul February 24, 2012

Hints for a light Higgs

Have had indirect evidence for some time that a light SM-like Higgs may be the most likely scenario...

Best fit m_h from precision electroweak (GFitter, 1107.0975)

Hints for a light Higgs

...now echoed by recent direct results from Atlas and CMS:

Atlas and CMS limits on the Standard Model Higgs

Hints for a light Higgs

...now echoed by recent direct results from Atlas and CMS:

Atlas and CMS limits on the Standard Model Higgs

A light Higgs is narrow

For $m_h \lesssim 2m_W$: SM width is tiny...

SM Higgs branching ratios

SM Higgs total width

...which makes a SM-like Higgs particularly sensitive to existence of new light degrees of freedom

A narrow Higgs and physics beyond the SM

- Light SM Higgs means
 even weak couplings to new light degrees of freedom can
 disrupt branching fractions by O(1)
- For instance, a new scalar a coupled through $\Delta \mathcal{L} = -\lambda |H|^2 a^2 \text{ can easily dominate over SM decays}$
- Signatures depend on further couplings of a

solid, $m_h = 120 \text{ GeV}$; dotted, $m_h = 160 \text{ GeV}$

New physics and the Higgs portal

- h → aa simple example of Higgs portal:
 |H|² super-renormalizable ⇒ leading terms in effective £ coupling other sectors to SM
 - E.g.: NMSSM ⇒ a mixes with h and reduces tuning
 - E.g.: dark matter ⇒ a is DM or decays to DM
- If new physics is only weakly coupled to SM it may easily be invisible at colliders
 - dark matter
 - gravitinos
 - collider-stable hidden sector matter

 \Rightarrow $h \rightarrow$ invisible decay mode highly sensitive to existence of new physics and probes broad class of BSM scenarios.

Three ways to spot non-standard Higgs decays

indirect; total width; direct

Indirect: assuming SM production, SM searches give a lower bound on Γ_{BSM}

Current indirect limits from Atlas and CMS

Three ways to spot non-standard Higgs decays

indirect; total width; direct

 Total width: measure total width from lineshape (like Z)

Low, Schwaller, Shaughnessy, Wagner

- statistically expensive
- Only feasible for $m_H \gtrsim 200$ GeV: experimental resolution

Three ways to spot non-standard Higgs decays

indirect; total width; direct

- Direct: directly measure
 σ × BR(h → BSM)
 - usually better at low mass: larger σ (BR)
 - will show: can directly constrain $\sigma \times BR(h \rightarrow \text{inv}) \ge 0.4$ in the low-energy LHC run

Making an invisible Higgs

- as always, best channel determined by channel-dependent backgrounds as well as rate
- $gg \rightarrow hj$, $pp \rightarrow Vh$, $qq \rightarrow qqh$

Gluon fusion with ISR

 To make final state observable, require recoil against hard ISR jet

Monojet $+\not\!\!E_T$:

- irreducible background: $pp \rightarrow Zj$, $Z \rightarrow \nu\nu$
- largest rate, but m_h not greatly separated from m_Z
- poor S/B makes this channel comparatively insensitive
- however: currently best direct limits on σ × BR(h → inv)

Gluon fusion with ISR

Current (ATLAS 1 fb⁻¹, solid) and projected (20 fb⁻¹) limits on $\sigma \times BR(h \to inv)$ from monojet $+ \not\!\!E_T$

Importance of systematic errors: no improvement in relative systematic error (dotted) and $\sqrt{\mathcal{L}}$ improvements (dashed)

Associated Higgs Production

$$Z + h, Z \rightarrow \ell\ell$$

- Cleaner final state with more kinematic variables to separate h from dominant backgrounds VV, tt
- comparatively strong mass dependence of production cross-section helps constrain m_H
- small production cross-sections limit reach
- current constraints from CMS heavy Higgs searches H → ZZ → ννℓℓ: not optimized for light invisible Higgs

Associated Higgs Production

Current (CMS 4.6 fb⁻¹, solid) and projected (20 fb⁻¹) limits on $\sigma \times BR(h \to inv)$ from monojet $+ \not \! E_T$

no improvement in relative systematic error (dotted) and $\sqrt{\mathcal{L}}$ improvements (dashed)

Higgs Production through Weak Boson Fusion

Most sensitive channel for $h \rightarrow \text{invisibles}$ at 14 TeV Eboli, Zeppenfeld, '00

- Electroweak process, but accesses valence PDFs
- Final state: 2j + ₽_T

 - Kinematics of jets set by EW process and distinctive
- Jets should be energetic: $p_{T_i} \gtrsim 30$ GeV, $M_{i_1i_2} \gtrsim 1$ TeV
- Jets should be widely separated: $\Delta \eta_{j_1 j_2} \gtrsim 4$
- Dominant scattering does not involve QCD ⇒ relatively little other jet activity

- Large rate of gg → h + 2 jets: contributes to reach despite small acceptance
- Main backgrounds:
 - Z+ jets, $Z \rightarrow \nu \nu$. Both usual ("QCD") and WBF production are important
 - W+ jets, $W \to \ell \nu$ can also contribute when the lepton is lost
 - Contribution from mismeasured QCD
- Estimate regime where mismeasured QCD can be neglected: study 3 jet events using PGS
 - Suppression by 2 orders of magnitude: $Min(\Delta \phi_{i,E_T}) > 0.5$
 - With ₱_T ≥ 100 GeV, negligible
 - only Gaussian response, but dominance of single jet mismeasurement encouraging

Modelling

- Signal and background are generated in MadGraph and showered in Pythia.
- All processes are normalized to N(N)LO cross-sections
 - Processes where jets are generated by QCD (Z+jets, W+jets, h+jets), we generate matched samples to better approximate true kinematics and normalize to inclusive cross-sections (Black Hat '10, '11)
 - WBF processes where jets originate from EW (hqq, Zqq, Wqq) are normalized using K-factors: (Figy, Palmer, Weiglein '10) for Vqq, obtained from VBFNLO.
- Detector simulation performed with PGS.
 - Approximate losing a lepton: veto central leptons with
 p_T > 20 GeV for electrons and visible hadronic taus and p_T > 15 GeV for muons.

Cross-sections (fb) for cuts; $m_h = 120 \text{ GeV}$

Cuts	qqh	hjj	qqZ	Zjj	qqW	Wjj
Reference cuts	310	650	400	3300	470	3200
WBF selection	14	1.9	6.8	25	7.3	18
$\Delta \phi$	8.9	1.4	2.0	11	2.5	8.9
jet veto	3.9	0.41	0.77	3.1	1.1	2.6

Reference cuts: initial event selection,

- ≥ 2 jets with p_T > 20 GeV
- lepton veto
- $\not\!\!E_T > 90$ GeV, $Min(\Delta \phi_{j, \not\!\!E_T}) > 0.5$

Cross-sections (fb) for cuts; $m_h = 120 \text{ GeV}$

Cuts	qqh	hjj	qqZ	Zjj	qqW	Wjj
Reference cuts	310	650	400	3300	470	3200
WBF selection	14	1.9	6.8	25	7.3	18
$\Delta \phi$	8.9	1.4	2.0	11	2.5	8.9
jet veto	3.9	0.41	0.77	3.1	1.1	2.6

WBF selection cuts: $E_T > 120$ GeV, 2 leading jets satisfying

- $p_T > 30 \text{ GeV}$
- $M_{12} > 1200 \text{ GeV}$
- $|\Delta \eta_{12}| > 4.5$

Cross-sections (fb) for cuts; $m_h = 120 \text{ GeV}$

Cuts	qqh	hjj	qqZ	Zjj	qqW	Wjj
Reference cuts	310	650	400	3300	470	3200
WBF selection	14	1.9	6.8	25	7.3	18
$\Delta \phi$	8.9	1.4	2.0	11	2.5	8.9
jet veto	3.9	0.41	0.77	3.1	1.1	2.6

 $\Delta \phi_{12} < 1.5$: main cut discriminating WBF h from Z, W

Cross-sections (fb) for cuts; $m_h = 120 \text{ GeV}$

Cuts	qqh	hjj	qqZ	Zjj	qqW	Wjj
Reference cuts	310	650	400	3300	470	3200
WBF selection	14	1.9	6.8	25	7.3	18
$\Delta \phi$	8.9	1.4	2.0	11	2.5	8.9
jet veto	3.9	0.41	0.77	3.1	1.1	2.6

central jet veto: any additional jets with $|\eta| <$ 2.5 soft: $p_T <$ 40 GeV

Setting limits

- Can't reconstruct mass feature: purely a counting experiment. ⇒ systematic uncertainties critical for setting limits
- Theoretical prediction of WBF backgrounds under good quantitative control
- Systematic uncertainties on Z → ν̄ν+ jets still uncomfortably large even with state-of-the-art computations
- Modelling from control regions in data offers better precision
 - Natural control sample $Z \rightarrow \ell^+\ell^-$ statistics limited
 - New idea pioneered by SUSY jets + \(\mathbb{E}_T \) searches at CMS:
 use reweighted γ + jets (CMS PAS SUS-08-002, CMS PAS SUS-10-005)

Reweighting photons for Z+ jets

- Ratio
 Z + jets + X/γ + jets + X
 is stable Remetal '11
- Expect we are in a kinematic regime where this works
 - \varphi_\tau\$ requirement similar to existing studies
 - $\Delta \phi$ cut removes collinear regions
- Achieve ~ 10% precision

From Bern et al, '11: p_T of leading jet in $2j + \not\not\equiv_T$ search (I)

Reweighting photons for Z+ jets

- Ratio
 Z + jets + X/γ + jets + X
 is stable Remetal '11
- Expect we are in a kinematic regime where this works
 - \varphi_\tau\$ requirement similar to existing studies
 - $\Delta \phi$ cut removes collinear regions
- Achieve ~ 10% precision

From Bern et al, '11: p_T of leading jet in $2j + \not\!\!E_T$ search (II)

Reweighting photons for Z+ jets

- Ratio
 Z + jets + X/γ + jets + X
 is stable Remetal '11
- Expect we are in a kinematic regime where this works
 - \varphi_\tau\$ requirement similar to existing studies
 - Δφ cut removes collinear regions
- Achieve ~ 10% precision

From Bern et al, '11: event H_T in $2i + \not\equiv_T$ search (I)

Projected limits from E_T + forward jets

Projected 95% CL limits on $\sigma \times BR(h \to inv)$ at 20 fb⁻¹ including 5% uncertainty on WBF processes and 10% on Drell-Yan

Projected limits from E_T + forward jets

Projected 95% CL limits on $\sigma \times BR(h \to inv)$ at 20 fb⁻¹ as a function of systematic error

Conclusions

- Entering a new era in Higgs physics: detailed measurements of Higgs properties
 - Decays of a light SM-like Higgs a natural and generic place to expect BSM physics
 - Rare decays important for constraints on dark matter, non-minimal SUSY, ...
 - Direct measurements of BSM widths: cross check production mechanisms

Conclusions

- Performed comprehensive update of $h \rightarrow$ invisibles in the WBF channel
 - First study at low LHC √s
 - utilize advances in signal and background cross-section calculations
 - With 10 fb⁻¹/experiment, probe BR(h → invisible) > 0.4
 - Enough to be interesting? Yes!
 - Reach can be extended by including Z + h
 - Keys: systematics, triggers

Backup: Combination with visible modes

Visible and invisible limits probe complementary parts of parameter space:

Backup: Combination with visible modes

Invisible branching fractions dilute signal significance:

Combination in quadrature with visible modes (used CMS): reasonable approximation to careful results