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Takeaway 

✤ Many jet substructure analyses employ trees

✤ But, more than one tree can plausibly be associated with a jet

✤ Typically, we use kT or C/A to chose the “best” tree

✤ However, if we force ourselves to only consider a single tree for each 
jet, we make ourself more susceptible arbitrary choices of the jet 
algorithm

✤ By looking at many trees for each jet, we can decrease random 
fluctuations and create a more powerful analysis



Review of Jets & Jet Substructure



Types of Algorithms

✤ There are two main classes of jet algorithm

✤ Sequential recombinations

✤ Combine four-momenta one by one

✤ Cone algorithms

✤ Stamp out jets as with a cookie cutter

Focus on these



Sequential Recombination

✤ Define a distance measure between every pair of four-momenta in an 
event (jet-jet distances)

✤ Define a distance measure for each four-momenta individually (jet-
beam distances)

dij

diB



✤ If smallest distance at any stage in clustering is jet-jet, add together 
corresponding four-momenta

✤ Otherwise take jet with smallest jet-beam distance and set it aside

✤ Repeat till all jets are set aside

✤ In this way, jets are constructed by pairwise recombinations - get a 
tree-like sequence at the end.
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Standard Recombination 
Algorithms

✤ kT algorithm

✤ C/A algorithm

✤ anti-kT algorithm
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Approximate Jet Behavior:
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Qjets



Two Basic Approaches to 
Substructure

1. Consider only the two-dimensional distribution of energy in a jet

✤ Examples: Trimming & Filtering, N-Subjettiness, Jet substructure 
w/o trees

2. Try to associate a tree structure with a jet

✤ Allows one to use heuristic pictures of parton shower & decay 
chains.

✤ Examples: Pruning, energy sharing variables, mass drop

✤ However, the current procedure for constructing a tree is not ideal.



The energy distribution 
for a particular tree is 
unambiguous
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Figure 4: Comparison of a jet formed from the decay of a boosted heavy particle (left) with one
from the showering of light flavor/gluons (right). Specifically, the left hand panel shows the jet
formed from h � bb̄ while the right is a gluon jet. The (x, y)-axes are (y, ⇥)-distances as measured
from the jet center and the area of each calorimeter cell is proportional to its pT .

comparable pT s) we are limited to Rsub . R0/2 under the assumption that the initial jet

was chosen to be just large enough to encompass the entire decay of the heavy particle.

The situation changes when we consider jets from light quarks or gluons (compare

the two panels in Fig. 4). The first di�erence is that there is only one hard final state at

lowest order in �s. Softness is therefore more naturally established directly via a cut on

subjet pT rather than by restricting to a fixed number of subjets. Later we will establish

di�erent subjet pT cuts for di�erent kinematic regimes. The second di�erence is that there

is no natural size for the subjets as this depends upon the the pT cut for the subjets; a

larger/smaller subjet size will necessitate a harder/softer subjet pT cut. With these two

di�erences in mind, we can now define our jet trimming procedure.

3. Implementation

In this section, we present an explicit algorithm implementing the jet trimming technique

outlined above.10 Our choice of algorithm is motivated primarily by simplicity and the

ability to re-use existing jet finding procedures. Many more sophisticated choices could

easily be imagined, but these are beyond the scope of the present work.

Since our jet trimming procedure will make use of well-known sequential recombination

jet algorithms, we will briefly review how these work. Recall that in a recursive jet algorithm

one begins with an initial set of four-momenta (these could be tracks, calorimeter cells, etc.),

assigning every pair a “jet-jet distance measure” dij and every individual four-momenta a

10Our implementation is available as a plug-in to the FastJet package [20, 21], which is available from

the authors upon request.
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Mapping Jets to Trees
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But, more than one tree 
can correspond to the 
same energy distribution

{
}



Unnecessary Choices

✤ How do we assign a particular tree to an energy distribution?

✤ Standard answer: Use a well motivated algorithm like C/A or kT

✤ Ideally, since both are well motivated algorithms they’ll give the same 
answer:
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✤ However, sometimes the answers are very different.

✤ Considering only the kT or C/A tree introduces an element of 
randomness into this process, resulting in unnecessary fluctuations in 
the final state observable.

✤ Intuitively it makes sense that defining an observable in a way which 
reflects the  ambiguity of this clustering should yield better results.
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Solution: Sum over Trees

✤ We propose that rather than assigning a single number to each event, 
instead each event should contribute a distribution obtained by 
summing the observable over many trees.

✤ When we sum these together, the result is much more stable than the 
histogram we would have had if we just considered one number per 
event.
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Weights

✤ The only question is: when we add together the result obtained from 
different trees, how should we weight each tree’s contribution?

✤ Surely they should not all count equally.  If they did, then why would 
we use kT or C/A to find our trees in the first place?

✤ In theory, one could weight each tree by the product of splitting 
functions and Sudakovs one would obtain from a parton shower.

✤ Work in progress.



Implementation

✤ Instead, we find a simpler Monte-Carlo procedure works quite well.
✤ As in a sequential recombination algorithm, assign every pair of 

proto-jets a distance measure dij.
✤ However, unlike a normal sequential algorithm (where the pair 

with the smallest measure is selected clustered), here we suggest 
that a given pair be randomly selected for merging with probability 

✤ Thus, paths which deviate from the CA or kT behavior are less 
likely to occur

✤ Repeat many (~100) times, till the distribution stabilizes

⌦ij ⌘
1

⌦

exp

 
�↵

dij
dmin
ij

!
, ↵ = rigidity parameter



✤ The result is that you get many trees

✤ The probability of finding a given tree decreases as it 
becomes less kT or C/A like



Example: Boosted W-Jets with 
Pruning



Pruning

✤ Pruning was introduced to look for boosted heavy objects (e.g., tops, 
higgses, W’s, etc) by cleaning up their mass.

✤ Intuition: QCD has soft/collinear singularities.  Wide-angle emissions 
should come from hard decays.

✤ Remove all parts of the jet which are both soft and wide angle.

✤ Two main advantages:

✤ Boosted objects see their mass reconstruction improved

✤ Massive QCD jets (a large background) see their mass substantially 
decreased -> lower backgrounds

Pruning (Ellis, Vermilion, Walsh - 0903.5081, 0912.0033)



A Pruned Tree



Defining Reconstructed Tops – Search Mode
 A jet reconstructing a top will have a mass within the top mass window, and a 

primary subjet mass within the W mass window - call these jets top jets

 Defining the top, W mass windows:
• Fit the jet mass and subjet mass distributions with (asymmetric) Breit-Wigner 

plus continuum  widths of the peaks

• The top and W windows are defined separately for pruned and not pruned -
test whether pruning is narrowing the mass distribution

pruned
unpruned

sample
mass fit

25US ATLAS Hadronic Final State Forum     
S.D. Ellis 4/09/09Figure source: http://www.phys.washington.edu/users/ellis/USATLAS.pdf

Top 
jets

http://www.phys.washington.edu/users/ellis/USATLAS.pdf
http://www.phys.washington.edu/users/ellis/USATLAS.pdf


✤ Let’s see what happens when we modify pruning so 
that it runs over trees generated via the Qjet procedure.  



Signal Discovery & Exclusion

✤ Signal = boosted W-jets, pT > 500

✤ BG = light QCD jets, pT > 500

✤ Measure the signal size in a bin 
(here 70-90 GeV) and compare it 
to the size of the BG fluctuations 
(Poisson stats included)

✤ Need only ~70% the luminosity 
to have the same significance

Algorithm S/delta(B)
Relative 

Lumi 
Required

kT 4.9 1.00

Flat (! =0) 6.0 0.83

Qjets (! 
=10-1) 6.3 0.69S/�B /

p
N
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FIG. 1. Typical jet mass distribution obtained for a jets clus-
tered using pruning operating on a single tree (left), and with
path-integral jets (right) with ↵ = 0.1, for boosted W jets
(top) and QCD jets (bottom). The distribution obtained
using path-integral jets is noticeably smoother, with smaller
fluctuations.

light partons for our background. We will consider mea-
surements sensitive to the accuracy of a measured mean
jet mass, �hmi, and typical of signal discovery/exclusion
analyses:4 S/�B, for S and B the signal and background
rates, respectively. Here � denotes the RMS fluctuation
of a given quantity. Now, �hmi scales with the number of
events considered as �hmi / 1/

p
N , while S/�B scales as

S/�B /
p
N . For a given observable, we will quantify the

improvement obtained by employing path-integral jets by
fitting our results to these parametric scalings, and de-
termining the equivalent decrease in luminosity.

Before we proceed, a note on our simulation tools.
All events are generated using Pythia v6.422 [13] as-
suming a 14 TeV LHC. We employ the “DW” tune for
ISR and multiple interactions. While we do not present
results with pileup, we have investigated its e↵ect and
find that its presence does not e↵ect the improvement
found using the path integral procedure. Fully showered
and hadronized events are grouped into 0.1 ⇥ 0.1 cells
(⌘,�) cells between �5 < ⌘ < 5, which are clustered
in Fastjet v2.4.2 [14] using the anti-kT algorithm [15]
with R = 0.7. The constituents of these jets are then

4 The correct quantity relevant for signal exclusion is technically
S/�(S + B), but the improvement we obtain for this is so close
to that which we obtain using S/�B that we only discuss S/�B.
The interested reader can compute S/�(S+B) using the data in
Table I.

used to compute the substructure observables below. The
path-integral jets are constructed according to the pro-
cedure outlined in Sec. II via a Fastjet plugin5. To com-
pute the RMS size of the fluctuations in each measure-
ment we employ a brute force approach, considering the
RMS distribution of an observable obtained from many
(104) pseudo-experiments. Note that the sample size for
each pseudo-experiment is chosen according to a pois-
son distribution centered upon some mean value (e.g.
hNi = 10, 20, 40). Thus, one should not expect further
broadening of the reported RMS from Poisson fluctua-
tions in the production rate.
First, let us consider a measurement of S/�B. We

will define our signal/background rate to be the sum of
pruned jet masses which fall in a window around the true
W mass: 70 GeV < mJ < 90 GeV, and �B to be the vari-
ance of this distribution for background events. A typi-
cal distribution of the signal and background processes is
shown in Fig. 1. There one can see the e↵ect of the path-
integral procedure – both the signal and background dis-
tributions (right) have become noticeably smoother than
they were using the standard pruning procedure (left).
Numerical results are presented in Table I, where one
can see that the decrease found in �B implies that an
analysis performed using path-integral jets can achieve
similar discriminating power to a standard one while us-
ing only ⇠ 70% of the luminosity. Finally, it should be
noted that the improvement is not greatly sensitive to
the choice of rigidity parameter ↵.
Finally, let us consider a measurement of jet mass,

where we look to see how precisely a given algorithm can
find the mean mass using only a limited set of events.
Here we consider only signal events and look at the av-
erage pruned mass within the range 70 GeV < mJ <
90 GeV. The results for this can again be seen in Ta-
ble I. As before we see that the typical size of the fluctu-
ation in hmi is much smaller when one employs the path
integral approach, here allowing an analysis performed
using path integral jets to perform equivalently to one
with twice the luminosity.

IV. CONCLUSION

The parton shower provides a very useful heuristic,
allowing one to construct substructure observables by
thinking of jets as tree-like structures. However, while
a given tree yields a fixed distribution of radiation in a
detector, the reverse is not true: a given distribution of
radiation does not map onto a single tree, not even clas-
sically.
Typically one partially overcomes this ambiguity by

selecting one of the candidate trees based upon the prob-
ability that the QCD parton shower would produce it.

5 The plugin can be downloaded at XXX

BG, kT BG, PI

Signal, 
kT

Signal,  
PI

Same 
events

Same 
events



✤ When there’s a “right answer” for a jet’s mass, most of the trees tend 
to center around that value.

✤ There’s a “right answer” for the pruned mass of a boosted 
particle’s jet, but not for a background QCD jet

✤ The width of a mass distribution serves as a good signal to 
background discriminant!

Signal vs. Background 
Discriminant





Generalize to a Jet Algorithm



Qanti-kT

✤ Work in progress

✤ Take anti-kT and perturb around it as with Qjets

✤ Final state is now different

✤ Different jet four-momenta

✤ Different jet multiplicities
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Conclusion

✤ When we use C/A or kT to associate a tree with a jet this is really just 
our “best guess” for the showering history.

✤ Sometimes these two algorithms return very different answers for the 
event at hand.  

✤ By choosing, e.g. the kT answer over the C/A one, we introduce 
randomness into the picture, and the statistics are degraded.

✤ We propose that all trees be considered, each with a set weight, and a 
distribution obtained for each event (rather than a single number).

✤ The results obtained from this are much less susceptible to 
unwanted fluctuations: equivalent to a ~2x increase in luminosity.


