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lakeaway

* Many jet substructure analyses employ trees

* But, more than one tree can plausibly be associated with a jet
+ Typically, we use kr or C/ A to chose the “best” tree

* However, if we force ourselves to only consider a single tree for each
jet, we make ourself more susceptible arbitrary choices of the jet

algorithm

* By looking at many trees for each jet, we can decrease random
fluctuations and create a more powerful analysis



Review of Jets & Jet Substructure




lypes of Algorithms

* There are two main classes of jet algorithm

Focus on these

K

* Sequential recombinations

* Combine four-momenta one by one

* Cone algorithms

* Stamp out jets as with a cookie cutter



Sequential Recombimation

* Define a distance measure between every pair of four-momenta in an
event (jet-jet distances)

* Define a distance measure for each four-momenta individually (jet-

beam distances)
dip



[f smallest distance at any stage in clustering is jet-jet, add together

corresponding four-momenta
Otherwise take jet with smallest jet-beam distance and set it aside
Repeat till all jets are set aside

In this way;, jets are constructed by pairwise recombinations - get a

tree-like sequence at the end.



Coordinate System










dip < d12yp < djy
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Done!




Standard Recombimation

Algorithms

* kt algorithm
| AR\ *
g minlh gt (—) e

* C/A algorithm

* anti-kt algorithm

B A e L _
dz‘j e mln(prz;QapT]Q‘) <—> , ;B :pTz'2



Approximate Jet Behavior:

PTA > PTB

)

anti—

DICO

Hard to Soft Near to Far Soft to Hard






Iwo Basic Approaches to
Substructure

1. Consider only the two-dimensional distribution of energy in a jet

* Examples: Trimming & Filtering, N-Subjettiness, Jet substructure
w /o trees

2. Try to associate a tree structure with a jet

* Allows one to use heuristic pictures of parton shower & decay
chains.

* Examples: Pruning, energy sharing variables, mass drop

+ However, the current procedure for constructing a tree is not ideal.



Mapping Jets to Irees
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But, more than one tree
can correspond to the
same energy distribution

The energy distribution
for a particular tree is
unambiguous
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Unnecessary Choices

* How do we assign a particular tree to an energy distribution?
* Standard answer: Use a well motivated algorithm like C/ A or kT

+ Ideally, since both are well motivated algorithms they’ll give the same
answer:

v g

Sum over Trees

Jet Mass



* However, sometimes the answers are very different.

Sum over Trees

Jet Mass

* Considering only the kT or C/ A tree introduces an element of
randomness into this process, resulting in unnecessary fluctuations in
the final state observable.

+ Intuitively it makes sense that defining an observable in a way which
reflects the ambiguity of this clustering should yield better results.



Solution: Sum over lrees

* We propose that rather than assigning a single number to each event,
instead each event should contribute a distribution obtained by
summing the observable over many trees.

* When we sum these together, the result is much more stable than the
histogram we would have had if we just considered one number per
event.
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Weights

* The only question is: when we add together the result obtained from
different trees, how should we weight each tree’s contribution?

* Surely they should not all count equally. If they did, then why would
we use kT or C/ A to find our trees in the first place?

* In theory, one could weight each tree by the product of splitting
functions and Sudakovs one would obtain from a parton shower.

* Work in progress.



Implementation

* Instead, we find a simpler Monte-Carlo procedure works quite well.

* As in a sequential recombination algorithm, assign every pair of
proto-jets a distance measure dj;.

* However, unlike a normal sequential algorithm (where the pair
with the smallest measure is selected clustered), here we suggest
that a given pair be randomly selected for merging with probability

1 d; i e
e Q exp ( Oédf.ﬂ?ﬂ) , « = rigidity parameter

¥

* Thus, paths which deviate from the CA or kT behavior are less
likely to occur

* Repeat many (~100) times, till the distribution stabilizes



The result is that you get many trees

The probability of finding a given tree decreases as it

becomes less kt or C/ A like



Fxample: Boosted W-Jets with

Pruning
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Pruning

* Pruning was introduced to look for boosted heavy objects (e.g., tops,
higgses, W’s, etc) by cleaning up their mass.

* Intuition: QCD has soft/ collinear singularities. Wide-angle emissions
should come from hard decays.

* Remove all parts of the jet which are both soft and wide angle.
* Two main advantages:
* Boosted objects see their mass reconstruction improved

* Massive QCD jets (a large background) see their mass substantially
decreased -> lower backgrounds

Pruning (Ellis, Vermilion, Walsh - 0903.5081, 0912.0033)



A Pruned Tree




jet mass for jets with pT > 200
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Figure source: http:/ / www.phys.washington.edu /users/ellis / USATLAS.pdf



http://www.phys.washington.edu/users/ellis/USATLAS.pdf
http://www.phys.washington.edu/users/ellis/USATLAS.pdf

Let’s see what happens when we modify pruning so

that it runs over trees generated via the Qjet procedure.



Signal Discovery & Exclusion

* Signal = boosted W-jets, pT > 500 Relative
Algorithm ' S/delta(B) Lumi

* BG = light QCD jets, pT > 500 Required

* Measure the signal size in a bin T 40 100

(here 70-90 GeV) and compare it
to the size of the BG fluctuations

(Poisson stats included)
Flat (o =0) 6.0 0.83

* Need only ~70% the luminosity
to have the same significance

S/6B o« VN Q:jito‘c’_l()“ 63 0.69
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Signal vs. Background

Discrimimmant

* When there’s a “right answer” for a jet’s mass, most of the trees tend
to center around that value.

* There’s a “right answer” for the pruned mass of a boosted
particle’s jet, but not for a background QCD jet

* The width of a mass distribution serves as a good signal to
background discriminant!
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Generalize to a Jet Algorithm




Qanti-k'I’

* Work in progress
* Take anti-kT and perturb around it as with Qjets
* Final state is now different

* Different jet four-momenta

* Different jet multiplicities



eta, phi vs frequency, pT, 1TeV scalar, alpha= 0.001 akt m12= 794.047
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eta, phi vs frequency, pT, 1TeV scalar, alpha= 0.01 akt m12= 794.047
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eta, phi vs frequency, pT, 1TeV scalar, alpha= 0.1 akt m12= 794.047
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eta, phi vs frequency, pT, 1TeV scalar, alpha= 1 akt m12= 794.047
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eta, phi vs frequency, pT, 1TeV scalar, alpha= 10 akt m12= 794.047
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eta, phi vs frequency, pT, 1TeV scalar, alpha= 100 akt m12= 794.047
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Conclusion

* When we use C/ A or kr to associate a tree with a jet this is really just
our “best guess” for the showering history:.

* Sometimes these two algorithms return very different answers for the
event at hand.

* By choosing, e.g. the kr answer over the C/ A one, we introduce
randomness into the picture, and the statistics are degraded.

* We propose that all trees be considered, each with a set weight, and a
distribution obtained for each event (rather than a single number).

+ The results obtained from this are much less susceptible to
unwanted fluctuations: equivalent to a ~2x increase in luminosity.



