

Qjets

David Krohn (Harvard)

NPKI 2/28/12

Based on work with S. Ellis, A. Hornig, T. Roy, and M. Schwartz: arXiv:1201.1914, accepted by PRL and work in progress with above plus D. Kahawala, A. Thalapillil, and L.-T. Wang

Outline

- * Quick Review of Jet Algorithms
- * Introduction to Qjets
- * Implementation
- * Example: Jet Pruning
- * Future Directions & Conclusions

Takeaway

- Many jet substructure analyses employ trees
- * But, more than one tree can plausibly be associated with a jet
 - * Typically, we use k_T or C/A to chose the "best" tree
- However, if we force ourselves to only consider a single tree for each jet, we make ourself more susceptible arbitrary choices of the jet algorithm
- By looking at many trees for each jet, we can decrease random fluctuations and create a more powerful analysis

Review of Jets & Jet Substructure

Types of Algorithms

- * There are two main classes of jet algorithm
- Sequential recombinations
 - Combine four-momenta one by one

Focus on these

- Cone algorithms
 - Stamp out jets as with a cookie cutter

Sequential Recombination

 Define a distance measure between every pair of four-momenta in an event (jet-jet distances)

 d_{ij}

 Define a distance measure for each four-momenta individually (jetbeam distances)

 d_{iB}

- If smallest distance at any stage in clustering is jet-jet, add together corresponding four-momenta
 - * Otherwise take jet with smallest jet-beam distance and set it aside
- * Repeat till all jets are set aside
- In this way, jets are constructed by pairwise recombinations get a tree-like sequence at the end.

Coordinate System

NY GOLDEN AND

 η d_{12} d_{23} d_{13} $d_{12} < d_{13} < d_{23} < d_{(1,2,3)B} < d_{i4}$ 4

Done!

Standard Recombination Algorithms

k_T algorithm

$$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = p_{Ti}^2$$

C/A algorithm

$$d_{ij} = \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = 1$$

* anti-k_T algorithm

$$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2}) \left(\frac{\Delta R}{R_0}\right)^2, \ d_{iB} = p_{Ti}^{-2}$$

Approximate Jet Behavior:

$p_{TA} > p_{TB}$

Hard to Soft

Near to Far

Soft to Hard

Qjets

Two Basic Approaches to Substructure

- 1. Consider only the two-dimensional distribution of energy in a jet
 - Examples: Trimming & Filtering, N-Subjettiness, Jet substructure w/o trees
- 2. Try to associate a tree structure with a jet
 - Allows one to use heuristic pictures of parton shower & decay chains.
 - Examples: Pruning, energy sharing variables, mass drop
 - * However, the current procedure for constructing a tree is not ideal.

Mapping Jets to Trees

The energy distribution for a particular tree is unambiguous

Unnecessary Choices

- * How do we assign a particular tree to an energy distribution?
- * Standard answer: Use a well motivated algorithm like C/A or kT
- Ideally, since both are well motivated algorithms they'll give the same answer:

However, sometimes the answers are very different.

Jet Mass

- Considering only the kT or C/A tree introduces an element of randomness into this process, resulting in unnecessary fluctuations in the final state observable.
- Intuitively it makes sense that defining an observable in a way which reflects the ambiguity of this clustering should yield better results.

Solution: Sum over Trees

- We propose that rather than assigning a single number to each event, instead each event should contribute a distribution obtained by summing the observable over many trees.
- When we sum these together, the result is much more stable than the histogram we would have had if we just considered one number per event.

Weights

- The only question is: when we add together the result obtained from different trees, how should we weight each tree's contribution?
- Surely they should not all count equally. If they did, then why would we use kT or C/A to find our trees in the first place?
- * In theory, one could weight each tree by the product of splitting functions and Sudakovs one would obtain from a parton shower.
 - Work in progress.

Implementation

- Instead, we find a simpler Monte-Carlo procedure works quite well.
 - As in a sequential recombination algorithm, assign every pair of proto-jets a distance measure d_{ij}.
 - However, unlike a normal sequential algorithm (where the pair with the smallest measure is selected clustered), here we suggest that a given pair be randomly selected for merging with probability

$$\Omega_{ij} \equiv \frac{1}{\Omega} \exp\left(-\alpha \frac{d_{ij}}{d_{ij}^{\min}}\right), \ \alpha = \text{rigidity parameter}$$

- Thus, paths which deviate from the CA or kT behavior are less likely to occur
- * Repeat many (~100) times, till the distribution stabilizes

- * The result is that you get many trees
- The probability of finding a given tree decreases as it becomes less k_T or C/A like

Pruning

- Pruning was introduced to look for boosted heavy objects (e.g., tops, higgses, W's, etc) by cleaning up their mass.
- Intuition: QCD has soft/collinear singularities. Wide-angle emissions should come from hard decays.
 - * Remove all parts of the jet which are *both* soft and wide angle.
- Two main advantages:
 - Boosted objects see their mass reconstruction improved
 - Massive QCD jets (a large background) see their mass substantially decreased -> lower backgrounds

Pruning (Ellis, Vermilion, Walsh - 0903.5081, 0912.0033)

A Pruned Tree

Figure source: <u>http://www.phys.washington.edu/users/ellis/USATLAS.pdf</u>

 Let's see what happens when we modify pruning so that it runs over trees generated via the Qjet procedure.

Signal Discovery & Exclusion

 Signal = boosted W-jets, pT > 500 * BG = light QCD jets, pT > 500 Measure the signal size in a bin (here 70-90 GeV) and compare it to the size of the BG fluctuations (Poisson stats included) Need only ~70% the luminosity to have the same significance $S/\delta B \propto \sqrt{N}$

Algorithm	S/delta(B)	Relative Lumi Required
kT	4.9	1.00
Flat ($\alpha = 0$)	6.0	0.83
Qjets (α =10 ⁻¹)	6.3	0.69

Signal vs. Background Discriminant

- When there's a "right answer" for a jet's mass, most of the trees tend to center around that value.
 - There's a "right answer" for the pruned mass of a boosted particle's jet, but not for a background QCD jet
- * The width of a mass distribution serves as a good signal to background discriminant!

Generalize to a Jet Algorithm

Qanti-kT

- Work in progress
- * Take anti-kT and perturb around it as with Qjets
- Final state is now different
 - Different jet four-momenta
 - Different jet multiplicities

Conclusion

- When we use C/A or k_T to associate a tree with a jet this is really just our "best guess" for the showering history.
- Sometimes these two algorithms return very different answers for the event at hand.
 - By choosing, e.g. the k_T answer over the C/A one, we introduce randomness into the picture, and the statistics are degraded.
- * We propose that all trees be considered, each with a set weight, and a distribution obtained for each event (rather than a single number).
 - The results obtained from this are much less susceptible to unwanted fluctuations: equivalent to a ~2x increase in luminosity.