

Related papers

R. Essig, E. Izaguirre, J. Kaplan, J. G. Wacker, arXiv:1110.6443. Y. Kats, P. Meade, M. Reece, D. Shih, arXiv:1110.6444. C. Brust, A. Katz, S. Lawrence, R. Sundrum, arXiv:1110.6670.

Everything is natural; if it weren't, it wouldn't be. M. Bateson

Avoiding msusy > TeV

- R-parity violation? \rightarrow Csaba's talk
- Stealth susy? → Matt's talk
- Compressed susy? (ISR?)
- bottom-up natural spectrum! \rightarrow this talk

- Bottom-up naturalness reminder
- What are the limits?

h = linear combination of fields whose vev breaks EW symmetry

$$V = m_H^2 |h|^2 + \frac{\lambda}{4} |h|^4 \qquad m_h^2 = \lambda v^2 = -2m_H^2$$
$$\Delta = \frac{2|\delta m_H^2|}{m_h^2}$$

measures fine-tuning

Natural EWSB & MSSM

Natural EWSB & SUSY

$$\frac{m_{Higgs}^2}{2} = -|\mu|^2 + \ldots + \delta m_H^2$$

Natural EWSB & SUSY

$$\frac{m_{Higgs}^2}{2} = -|\mu|^2 + \ldots + \delta m_H^2$$
Higgsinos

Natural EWSB & SUSY

Hoop

$$\delta m_{H}^{2}|_{stop} = -\frac{3}{8\pi^{2}}y_{t}^{2}\left(m_{U_{3}}^{2} + m_{Q_{3}}^{2} + |A_{t}|^{2}\right)\log\left(\frac{\Lambda}{\text{TeV}}\right)$$
stops, sbottom Stops, sbottom

$$\delta m_{H}^{2}|_{gluino} = -\frac{2}{\pi^{2}}y_{t}^{2}\left(\frac{\alpha_{s}}{\pi}\right)|M_{3}|^{2}\log^{2}\left(\frac{\Lambda}{\text{TeV}}\right)$$
gluino

EW-inos:

$$\delta M_H^2|_{bino} = \frac{3}{8\pi^2} \frac{g'^2}{3} M_1^2 \ln \frac{\Lambda}{\text{TeV}}$$
$$\delta M^2|_{M_1^2} = \frac{3}{2\pi^2} \frac{g'^2}{3} M_1^2 \ln \frac{\Lambda}{1}$$

$$\delta M_H^2|_{wino} = \frac{3}{8\pi^2} g^2 M_2^2 \ln \frac{\pi}{\text{TeV}}$$

Bottom-up haturalspectrum

Fig. from L.Hall's talk

Bottom-up haturalspectfum

Fig. from L.Hall's talk

Bottom-up haturalspectfut un

Fig. from L.Hall's talk

bottom up naturalness quantified

$$m_{\tilde{t}}^2 \lesssim \left(400 \text{ GeV}\right)^2 \frac{1}{1 + A_t^2/2m_{\tilde{t}}^2} \left(\frac{20\%}{\Delta^{-1}}\right) \left(\frac{3}{\log\Lambda/m_{\tilde{t}}}\right) \left(\frac{m_{\text{higgs}}}{120 \text{ GeV}}\right)^2$$

Kitano and Nomura 2006.

$$\mu^2 \lesssim (200 \text{ GeV})^2 \left(\frac{20\%}{\Delta^{-1}}\right) \left(\frac{m_{\text{higgs}}}{120 \text{ GeV}}\right)^2$$

$$M_3^2 \lesssim (700 \text{ GeV})^2 \frac{1}{1 - A_t/2M_3} \left(\frac{20\%}{\Delta^{-1}}\right) \left(\frac{3}{\log \Lambda/m_{\tilde{t}}}\right)^2 \left(\frac{m_{\text{higgs}}}{120 \text{ GeV}}\right)^2$$

Kagan, Dine, Leigh '93; Dimopoulos, Giudice '95; Cohen, Kaplan, Nelson '96; ... Perelstein/Spethman '07

Current status

CMS Preliminary

Ranges of exclusion limits for gluinos and squarks, varying $m(\tilde{\chi}^0)$ T1: $\tilde{g} \rightarrow qq\tilde{\chi}^0$ |1.1 fb⁻¹, gluino T2: $\tilde{q} \rightarrow q \tilde{\chi}^0$ |1.1 fb⁻¹, squark T1bbbb: $\tilde{g} \rightarrow bb \tilde{\chi}^0$ 1.1 fb^{-1} , gluino T1lnu: $\tilde{g} \rightarrow qq \tilde{\chi}^{\pm}$ 0.98 fb⁻¹, gluino T1Lh: $\tilde{g} \rightarrow qq \tilde{\chi}_2^0 | \tilde{\chi}^0 |$ 0.98 fb⁻¹, gluino T5zz: $\tilde{g}
ightarrow qq ilde{\chi}_2^0$ 0.98 - 2.1 fb $^{-1}$, gluino T1tttt: $\tilde{g} \rightarrow tt \tilde{\chi}_1^0$ |1.1 fb⁻¹, gluino 400 600 0 200 800 1000 Mass scales (${
m GeV}/c^2$)

For limits on $m(\tilde{g}), m(\tilde{q}) > > m(\tilde{g})$ (and vice versa). $\sigma^{\text{prod}} = \sigma^{\text{NLO-QCD}}$.

 $m(\tilde{\chi}^{\pm}), m(\tilde{\chi}_2^0) \equiv \frac{m(\tilde{g}) + m(\tilde{\chi}^0)}{2}.$

 $m(ilde{\chi}^0)$ is varied from 0 ${
m GeV}/c^2$ (dark blue) to $m(ilde{g}){-}200~{
m GeV}/c^2$ (light blue).

 $Gluino \gtrsim 0.7\text{-}0.9\,\text{TeV}$

$Squarks_{1,2} \gtrsim 0.8$ - I TeV

Current status

CMS Preliminary

Ranges of exclusion limits for gluinos and squarks, varying $m(\tilde{\chi}^0)$ T1: $\tilde{g} \rightarrow qq\tilde{\chi}^0$ 1.1 fb⁻¹, gluinoT2: $\tilde{q} \rightarrow q\tilde{\chi}^0$ 1.1 fb⁻¹, squarkT1bbbb: $\tilde{g} \rightarrow bb\tilde{\chi}^0$ 1.1 fb⁻¹, gluino

 T1lnu: $\tilde{g} \rightarrow qq\tilde{\chi}^{\pm}$ 0.98 fb⁻¹, gluino

 T1Lh: $\tilde{g} \rightarrow qq\tilde{\chi}_{2}^{0} | \tilde{\chi}^{0}$ 0.98 fb⁻¹, gluino

 T5zz: $\tilde{g} \rightarrow qq\tilde{\chi}_{2}^{0}$ 0.98 - 2.1 fb⁻¹, gluino

 T1tttt: $\tilde{g} \rightarrow tt\tilde{\chi}_{1}^{0}$ 1.1 fb⁻¹, gluino

 0
 200
 400
 600
 800
 1000

 Mass scales (GeV/c²)
 0
 0
 0
 0
 0

For limits on $m(\tilde{g}), m(\tilde{q}) > > m(\tilde{g})$ (and vice versa). $\sigma^{\rm prod} = \sigma^{\rm NLO-QCD}$.

$$m(\tilde{\chi}^{\pm}), m(\tilde{\chi}_2^0) \equiv \frac{m(\tilde{g}) + m(\tilde{\chi}^0)}{2}.$$

 $m(ilde{\chi}^0)$ is varied from 0 ${
m GeV}/c^2$ (dark blue) to $m(ilde{g}){-}200~{
m GeV}/c^2$ (light blue).

 $Gluino \gtrsim 0.7\text{-}0.9\,\text{TeV}$

$Squarks_{1,2} \gtrsim 0.8 - 1 \text{ TeV}$

For natural spectrum need to split 1,2 vs. 3rd generation squarks

100

tion of bottom squarks for september 201 FOM (The Nether

Latest on direct sbottoms

→ Tommaso's talk

Latest limits on stops

?? σ excess in stop search

Direct stop prod. with 1/fb ?

Direct stop prod. with 1/fb ?

"The experiments haven't covered my favorite model"

Relax & Wait?

VS.

* not his real attitude.

"The experiments haven't covered my favorite model"

Relax & Wait?

VS.

Let's check!

* not his real attitude.

decoupled SUSY

B

 $\tilde{\mathbf{x}}$

Our Limits

today:<u>*arXiv:1110.6926*</u> M. Papucci, J. Ruderman, AW

decoupled SUSY

Large signature space

	A	ATLAS		CMS		
	channel	$\mathcal{L} [\mathrm{fb}^{-1}]$	ref.	channel	$\mathcal{L} [\mathrm{fb}^{-1}]$	ref.
iota – II	2-4 jets	1.04	[1]	α_T	1.14	[11]
$\text{Jets} + \not\!$	6-8 jets	1.34	[2]	$H_T, \not\!\!H_T$	1.1	[12]
	1b, 2b	0.83	[3]	$m_{T2} (+b)$	1.1	[13]
	b+1l	1.03	[4]	1b, 2b	1.1	[14]
$0 \text{-jets} (+ \Gamma S + \not\!$				$b'b' \rightarrow b + l^{\pm}l^{\pm}, 3l$	1.14	[15]
				$t't' \to 2b + l^+l^-$	1.14	[16]
	1l	1.04	[5]	1l	1.1	[17]
	$\mu^{\pm}\mu^{\pm}$	1.6	[6]	SS dilepton	0.98	[18]
	$t\bar{t} \rightarrow 2l$	1.04	[7]	OS dilepton	0.98	[19]
multilepton $(+ \not\!\!\!E_T)$	$t\bar{t} ightarrow 1l$	1.04	[8]	$Z \to l^+ l^-$	0.98	[20]
	4l	1.02	[9]	$3l, 4l + \not\!\!E_T$	2.1	[21]
	2l	1.04	[10]	3l,4l	2.1	[22]

non susy analyses

Large signature space

	A	ATLAS		CMS			
	channel	$\mathcal{L} [\mathrm{fb}^{-1}]$	ref.	channel	$\mathcal{L} [\mathrm{fb}^{-1}]$	ref.	
	2-4 jets	1.04	[1]	α_T	1.14	[11]	
$jets + \not\!$	6-8 jets	1.34	[2]	H_T, H_T	1.1	[12]	
	1b, 2b	0.83	[3]	$m_{T2} (+b)$	1.1	[13]	
$h_{iota} \left(+ \frac{1}{2} + \frac{\pi}{2} \right)$	b+1l	1.03	[4]	-1b, 2b	1.1	[14]	
b -jets (+ l's + E_T)				$b'b' \rightarrow b + l^{\pm}l^{\pm}, 3l$	1.14	[15]	
				$t't' \to 2b + l^+l^-$	1.14	[16]	
	1l	1.04	[5]	1l	1.1	[17]	
	$\mu^{\pm}\mu^{\pm}$	1.6	[6]	SS dilepton	0.98	[18]	
	$\left t \bar{t} \rightarrow 2 l \right $	1.04	[7]	OS dilepton	0.98	[19]	
multilepton $(+ \not\!$	$t\bar{t} \rightarrow 1l$	1.04	[8]	$Z \to l^+ l^-$	0.98	[20]	
	4 l	1.02	[9]	$3l, 4l + I\!\!\!/_T$	2.1	[21]	
		1.04	[10]	-3l,4l	2.1	[22]	

non susy analyses

too recent

arXiv:1110.6926

DYI limits?

CERN-PH-EP-2011-145

Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in $\sqrt{s} = 7$ TeV proton-proton collisions

The ATLAS Collaboration

Example: jets+ MET 1.041/fb

DYI limits?

CERN-PH-EP-2011-145

Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in $\sqrt{s} = 7$ TeV proton-proton collisions

The ATLAS Collaboration

Example: jets+ MET 1.041/fb

Signal Region	\geq 2-jet	\geq 3-jet	≥ 4-jet	High mass
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 130	> 130	> 130	> 130
Leading jet $p_{\rm T}$	> 130	> 130	> 130	> 130
Second jet $p_{\rm T}$	> 40	> 40	> 40	> 80
Third jet $p_{\rm T}$	_	> 40	> 40	> 80
Fourth jet $p_{\rm T}$	_	_	> 40	> 80
$\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.3	> 0.25	> 0.25	> 0.2
$m_{\rm eff}$	> 1000	> 1000	> 500/1000	> 1100

signal bins

Process		Signal Region							
1100035	> 2-iet	> 3-iet	\geq 4-jet,	\geq 4-jet,	High mass				
	<u> </u>	$m_{\rm eff} > 500 {\rm GeV}$		$m_{\rm eff} > 1000 \; {\rm GeV}$	riigii illass				
Z/γ +jets	$32.3 \pm 2.6 \pm 6.9$	$25.5 \pm 2.6 \pm 4.9$	$209 \pm 9 \pm 38$	$16.2 \pm 2.2 \pm 3.7$	$3.3 \pm 1.0 \pm 1.3$				
W+jets	$26.4 \pm 4.0 \pm 6.7$	$22.6 \pm 3.5 \pm 5.6$	$349 \pm 30 \pm 122$	$13.0 \pm 2.2 \pm 4.7$	$2.1 \pm 0.8 \pm 1.1$				
<i>tt</i> + single top	$3.4 \pm 1.6 \pm 1.6$	$5.9 \pm 2.0 \pm 2.2$	$425 \pm 39 \pm 84$	$4.0 \pm 1.3 \pm 2.0$	$5.7 \pm 1.8 \pm 1.9$				
QCD multi-jet	$0.22 \pm 0.06 \pm 0.24$	$0.92 \pm 0.12 \pm 0.46$	$34 \pm 2 \pm 29$	$0.73 \pm 0.14 \pm 0.50$	$2.10 \pm 0.37 \pm 0.82$				
Total	$62.4 \pm 4.4 \pm 9.3$	$54.9 \pm 3.9 \pm 7.1$	$1015 \pm 41 \pm 144$	$33.9 \pm 2.9 \pm 6.2$	$13.1 \pm 1.9 \pm 2.5$				
Data	58	59	1118	40	18				

Table 2: Fitted background components in each SR, compared with the number of events observed in data. The Z/γ +jets background is constrained with corregions CR1a and CR1b, the QCD multi-jet, W and top quark backgrounds by control regions CR2, CR3 and CR4, respectively. In each case the first (see quoted uncertainty is statistical (systematic). Background components are partially correlated and hence the uncertainties (statistical and systematic) on the background estimates do not equal the quadrature sums of the uncertainties on the components.

Process		Signal Region						
1100055	$> 2_{\text{iet}}$	> 3_iet	\geq 4-jet,	\geq 4-jet,	High mass			
	<u>></u> 2-jet	2 5-jet	$m_{\rm eff} > 500~{ m GeV}$	$m_{\rm eff} > 1000 \; {\rm GeV}$	111gii 111855			
Z/γ +jets	$32.3 \pm 2.6 \pm 6.9$	$25.5 \pm 2.6 \pm 4.9$	$209 \pm 9 \pm 38$	$16.2 \pm 2.2 \pm 3.7$	$3.3 \pm 1.0 \pm 1.3$			
W+jets	$26.4 \pm 4.0 \pm 6.7$	$22.6 \pm 3.5 \pm 5.6$	$349 \pm 30 \pm 122$	$13.0 \pm 2.2 \pm 4.7$	$2.1 \pm 0.8 \pm 1.1$			
<i>tt</i> + single top	$3.4 \pm 1.6 \pm 1.6$	$5.9 \pm 2.0 \pm 2.2$	$425 \pm 39 \pm 84$	$4.0 \pm 1.3 \pm 2.0$	$5.7 \pm 1.8 \pm 1.9$			
QCD multi-jet	$0.22 \pm 0.06 \pm 0.24$	$0.92 \pm 0.12 \pm 0.46$	$34 \pm 2 \pm 29$	$0.73 \pm 0.14 \pm 0.50$	$2.10 \pm 0.37 \pm 0.82$			
Total	$62.4 \pm 4.4 \pm 9.3$	$54.9 \pm 3.9 \pm 7.1$	$1015\pm41\pm144$	$33.9 \pm 2.9 \pm 6.2$	$13.1 \pm 1.9 \pm 2.5$			
Data	58	59	1118	40	18			

Table 2: Fitted background components in each SR, compared with the number of events observed in data. The Z/γ +jets background is constrained with corregions CR1a and CR1b, the QCD multi-jet, W and top quark backgrounds by control regions CR2, CR3 and CR4, respectively. In each case the first (see quoted uncertainty is statistical (systematic). Background components are partially correlated and hence the uncertainties (statistical and systematic) on the background estimates do not equal the quadrature sums of the uncertainties on the components.

[5] has improved the ATLAS reach at large m_0 . The five signal regions are used to set limits on $\sigma_{new} = \sigma A \epsilon$, for non-SM cross-sections (σ) for which ATLAS has an acceptance A and a detection efficiency of ϵ [44]. The excluded values of σ_{new} are 22 fb, 25 fb, 429 fb, 27 fb and 17 fb, respectively, at the 95% confidence level.

upper bound on signal xsec

Process		Signal Region						
1100055	$> 2_{\text{iet}}$	> 3_iet	\geq 4-jet,	\geq 4-jet,	High mass			
	<u>></u> 2-jet	2 5-jet	$m_{\rm eff} > 500~{ m GeV}$	$m_{\rm eff} > 1000 \; {\rm GeV}$	111gii 111855			
Z/γ +jets	$32.3 \pm 2.6 \pm 6.9$	$25.5 \pm 2.6 \pm 4.9$	$209 \pm 9 \pm 38$	$16.2 \pm 2.2 \pm 3.7$	$3.3 \pm 1.0 \pm 1.3$			
W+jets	$26.4 \pm 4.0 \pm 6.7$	$22.6 \pm 3.5 \pm 5.6$	$349 \pm 30 \pm 122$	$13.0 \pm 2.2 \pm 4.7$	$2.1 \pm 0.8 \pm 1.1$			
<i>tt</i> + single top	$3.4 \pm 1.6 \pm 1.6$	$5.9 \pm 2.0 \pm 2.2$	$425 \pm 39 \pm 84$	$4.0 \pm 1.3 \pm 2.0$	$5.7 \pm 1.8 \pm 1.9$			
QCD multi-jet	$0.22 \pm 0.06 \pm 0.24$	$0.92 \pm 0.12 \pm 0.46$	$34 \pm 2 \pm 29$	$0.73 \pm 0.14 \pm 0.50$	$2.10 \pm 0.37 \pm 0.82$			
Total	$62.4 \pm 4.4 \pm 9.3$	$54.9 \pm 3.9 \pm 7.1$	$1015\pm41\pm144$	$33.9 \pm 2.9 \pm 6.2$	$13.1 \pm 1.9 \pm 2.5$			
Data	58	59	1118	40	18			

Table 2: Fitted background components in each SR, compared with the number of events observed in data. The Z/γ +jets background is constrained with corregions CR1a and CR1b, the QCD multi-jet, W and top quark backgrounds by control regions CR2, CR3 and CR4, respectively. In each case the first (see quoted uncertainty is statistical (systematic). Background components are partially correlated and hence the uncertainties (statistical and systematic) on the background estimates do not equal the quadrature sums of the uncertainties on the components.

[5] has improved the ATLAS reach at large m_0 . The five signal regions are used to set limits on $\sigma_{new} = \sigma A \epsilon$, for non-SM cross-sections (σ) for which ATLAS has an acceptance A and a detection efficiency of ϵ [44]. The excluded values of σ_{new} are 22 fb, 25 fb, 429 fb, 27 fb and 17 fb, respectively, at the 95% confidence level.

upper bound on signal xsec

"Only" need efficiency x Acceptance of the signal bins for your model...

Process		Signal Region							
1100055	$> 2_{-iet}$	> 3_iet	\geq 4-jet,	\geq 4-jet,	High mass				
	<u>></u> 2-jet	$m_{\rm eff} > 500 {\rm GeV}$		$m_{\rm eff} > 1000~{ m GeV}$	ingn mass				
Z/γ +jets	$32.3 \pm 2.6 \pm 6.9$	$25.5 \pm 2.6 \pm 4.9$	$209 \pm 9 \pm 38$	$16.2 \pm 2.2 \pm 3.7$	$3.3 \pm 1.0 \pm 1.3$				
W+jets	$26.4 \pm 4.0 \pm 6.7$	$22.6 \pm 3.5 \pm 5.6$	$349 \pm 30 \pm 122$	$13.0 \pm 2.2 \pm 4.7$	$2.1 \pm 0.8 \pm 1.1$				
<i>tt</i> + single top	$3.4 \pm 1.6 \pm 1.6$	$5.9 \pm 2.0 \pm 2.2$	$425 \pm 39 \pm 84$	$4.0 \pm 1.3 \pm 2.0$	$5.7 \pm 1.8 \pm 1.9$				
QCD multi-jet	$0.22 \pm 0.06 \pm 0.24$	$0.92 \pm 0.12 \pm 0.46$	$34 \pm 2 \pm 29$	$0.73 \pm 0.14 \pm 0.50$	$2.10 \pm 0.37 \pm 0.82$				
Total	$62.4 \pm 4.4 \pm 9.3$	$54.9 \pm 3.9 \pm 7.1$	$1015\pm41\pm144$	$33.9 \pm 2.9 \pm 6.2$	$13.1 \pm 1.9 \pm 2.5$				
Data	58	59	1118	40	18				

Table 2: Fitted background components in each SR, compared with the number of events observed in data. The Z/γ +jets background is constrained with corregions CR1a and CR1b, the QCD multi-jet, W and top quark backgrounds by control regions CR2, CR3 and CR4, respectively. In each case the first (see quoted uncertainty is statistical (systematic). Background components are partially correlated and hence the uncertainties (statistical and systematic) on the background estimates do not equal the quadrature sums of the uncertainties on the components.

[5] has improved the ATLAS reach at large m_0 . The five signal regions are used to set limits on $\sigma_{new} = \sigma A \epsilon$, for non-SM cross-sections (σ) for which ATLAS has an acceptance A and a detection efficiency of ϵ [44]. The excluded values of σ_{new} are 22 fb, 25 fb, 429 fb, 27 fb and 17 fb, respectively, at the 95% confidence level.

upper bound on signal xsec

"Only" need efficiency x Acceptance of the signal bins for your model...

Process	Signal Region						
1100033	> 2-iet	> 3-iet	\geq 4-jet,	\geq 4-jet,	High mass		
	<u> 2</u> -jot	$m_{\rm eff} > 500 {\rm GeV}$		$m_{\rm eff} > 1000 \; {\rm GeV}$	Tingii mass		
Z/γ +jets	$32.3 \pm 2.6 \pm 6.9$	$25.5 \pm 2.6 \pm 4.9$	$209 \pm 9 \pm 38$	$16.2 \pm 2.2 \pm 3.7$	$3.3 \pm 1.0 \pm 1.3$		
W+jets	$26.4 \pm 4.0 \pm 6.7$	$22.6 \pm 3.5 \pm 5.6$	$349 \pm 30 \pm 122$	$13.0 \pm 2.2 \pm 4.7$	$2.1 \pm 0.8 \pm 1.1$		
<i>tt</i> + single top	$3.4 \pm 1.6 \pm 1.6$	$5.9 \pm 2.0 \pm 2.2$	$425 \pm 39 \pm 84$	$4.0 \pm 1.3 \pm 2.0$	$5.7 \pm 1.8 \pm 1.9$		
QCD multi-jet	$0.22 \pm 0.06 \pm 0.24$	$0.92 \pm 0.12 \pm 0.46$	$34 \pm 2 \pm 29$	$0.73 \pm 0.14 \pm 0.50$	$2.10 \pm 0.37 \pm 0.82$		
Total	$62.4 \pm 4.4 \pm 9.3$	$54.9 \pm 3.9 \pm 7.1$	$1015\pm41\pm144$	$33.9 \pm 2.9 \pm 6.2$	$13.1 \pm 1.9 \pm 2.5$		
Data	58	59	1118	40	18		

Table 2: Fitted background components in each SR, compared with the number of events observed in data. The Z/γ +jets background is constrained with corregions CR1a and CR1b, the QCD multi-jet, W and top quark backgrounds by control regions CR2, CR3 and CR4, respectively. In each case the first (see quoted uncertainty is statistical (systematic). Background components are partially correlated and hence the uncertainties (statistical and systematic) on the background estimates do not equal the quadrature sums of the uncertainties on the components.

[5] has improved the ATLAS reach at large m_0 . The five signal regions are used to set limits on $\sigma_{new} = \sigma A \epsilon$, for non-SM cross-sections (σ) for which ATLAS has an acceptance A and a detection efficiency of ϵ [44]. The excluded values of σ_{new} are 22 fb, 25 fb, 429 fb, 27 fb and 17 fb, respectively, at the 95% confidence level.

upper bound on signal xsec

"Only" need efficiency x Acceptance of the signal bins for your model...

Calibration

"theorist limits"

To calibrate compare: 1) key kinematical distributions 2) limits

Check:

- kinematic distortions (shape)
- signal $\epsilon \times \mathcal{A}$ (normalization)
- + compare to all available limit plots...
 - ~ 50 GeV accuracy (usually better)

Compare limits

Example: Same-Sign dilepton by CMS

Figure 4: Observed and expected

Validation using Limits

Les Houches recommendations

Searches for New Physics: Les Houches Recommendations for the Presentation of LHC Results

Coordinators: <u>S. Kraml¹</u>, <u>S. Sekmen^{2,3}</u>;

<u>B.C. Allanach</u>⁴, P. Bechtle⁵, G. Belanger⁶, K. Benslama⁷, C. Balazs⁸, A. Belyaev^{9,10}, M. Dolan¹¹, B. Fuks¹², M. Campanelli¹³, K. Cranmer¹⁴, J. Ellis^{3,15}, M. Felcini¹⁶, D. Guadagnoli¹⁷, J.F. Gunion¹⁸, S. Heinemeyer¹⁶, M. Kadastik¹⁹, M. Krämer²⁰, J. Lykken²¹ F. Mahmoudi^{3,22}, M. Mangano³, S.P. Martin^{23,24,25}, <u>H. Prosper²</u>, T. Rizzo²⁶, T. Robens²⁷, M. Tytgat²⁸, A. Weiler⁵ underlined: editors

Abstract

We present a draft set of recommendations for the presentation of LHC results on searches for new physics, which are aimed at providing a more efficient flow of scientific information between the experimental collaborations and the rest of the high energy physics community, and facilitating the interpretation of the results in a wide class of models. Implementing these recommendations would aid the full exploitation of the physics potential of the LHC. Please comment and consider signing the document.

<u>https://indico.cern.ch/conferenceOtherViews.py?</u> <u>view=standard&confld=173341</u>

Large signature space

	A	ATLAS		CMS		
	channel	$\mathcal{L} [\mathrm{fb}^{-1}]$	ref.	channel	$\mathcal{L} [\mathrm{fb}^{-1}]$	ref.
iota – II	2-4 jets	1.04	[1]	α_T	1.14	[11]
$\text{Jets} + \not\!$	6-8 jets	1.34	[2]	$H_T, \not\!\!H_T$	1.1	[12]
	1b, 2b	0.83	[3]	$m_{T2} (+b)$	1.1	[13]
	b+1l	1.03	[4]	1b, 2b	1.1	[14]
$0 \text{-jets} (+ \Gamma S + \not\!$				$b'b' \rightarrow b + l^{\pm}l^{\pm}, 3l$	1.14	[15]
				$t't' \to 2b + l^+l^-$	1.14	[16]
	1l	1.04	[5]	1l	1.1	[17]
	$\mu^{\pm}\mu^{\pm}$	1.6	[6]	SS dilepton	0.98	[18]
	$t\bar{t} \rightarrow 2l$	1.04	[7]	OS dilepton	0.98	[19]
multilepton $(+ \not\!\!\!E_T)$	$t\bar{t} ightarrow 1l$	1.04	[8]	$Z \to l^+ l^-$	0.98	[20]
	4l	1.02	[9]	$3l, 4l + \not\!\!E_T$	2.1	[21]
	2l	1.04	[10]	3l,4l	2.1	[22]

non susy analyses

Large signature space

	A	ATLAS		CMS			
	channel	$\mathcal{L} [\mathrm{fb}^{-1}]$	ref.	channel	$\mathcal{L} [\mathrm{fb}^{-1}]$	ref.	
	2-4 jets	1.04	[1]	α_T	1.14	[11]	
$jets + \not\!$	6-8 jets	1.34	[2]	H_T, H_T	1.1	[12]	
	1b, 2b	0.83	[3]	$m_{T2} (+b)$	1.1	[13]	
$h_{iota} \left(+ \frac{1}{2} + \frac{\pi}{2} \right)$	b+1l	1.03	[4]	-1b, 2b	1.1	[14]	
b -jets (+ l's + E_T)				$b'b' \rightarrow b + l^{\pm}l^{\pm}, 3l$	1.14	[15]	
				$t't' \to 2b + l^+l^-$	1.14	[16]	
	1l	1.04	[5]	1l	1.1	[17]	
	$\mu^{\pm}\mu^{\pm}$	1.6	[6]	SS dilepton	0.98	[18]	
	$\left t \bar{t} \rightarrow 2 l \right $	1.04	[7]	OS dilepton	0.98	[19]	
multilepton $(+ \not\!$	$t\bar{t} \rightarrow 1l$	1.04	[8]	$Z \to l^+ l^-$	0.98	[20]	
	4 l	1.02	[9]	$3l, 4l + I\!\!\!/_T$	2.1	[21]	
		1.04	[10]	- 3l, 4l	2.1	[22]	

non susy analyses

too recent

arXiv:1110.6926

Stops (sbottom) + Higgsinos

Stops can act as "sbottom" (bjet+ χ) !

Chargino-neutralino splitting irrelevant for present searches

Stops (sbottom) + Higgsinos

LHC surpasses Tevatron: Strongest bounds from jets + MET

Stops (sbottom) + Bino

 RH stop→Bino: top-like final state. Weak bound around 200GeV, but we don't trust it too much. Further (exp') study needed...

Un-Splitting the spectrum

Un-Splitting the spectrum

stronger bound on the left due to light sbottom

TeVatron bounds not shown b/c they have no sensitivity for m_{LSP} > 110GeV

Adding gluinos

quasi-degenerate 3-rd gen'

Adding the gluinos

Gluino bounded (again) by jets+MET, and Ilep searches

Gluino mostly bounded by Same Sign searches

Adding the squarks, too

- Bounds similar to the ATLAS/CMS plots (800GeV-ITeV)
- Decoupling not effective until I.2-I.4 TeV

Squashed spectrum

MSSM little hierarchy problem

- Higgs mass lifted by large A-terms → split stop spectrum,
 I stop may be light and constrained by searches
- Compare to constraints from the Higgs mass bound?
- CAVEAT: only for higgsinos (higgsinos+binos) lighter than stops...

MSSM higgs: LEP2 tuning vs. direct stop

$$\delta m_H^2|_{stop} = -\frac{3}{8\pi^2} y_t^2 \left(m_{U_3}^2 + m_{Q_3}^2 + |A_t|^2 \right) \log\left(\frac{\Lambda}{\text{TeV}}\right)$$

MSSM higgs: LEP2 tuning vs. direct stop

Maximal mixing (for light Higgsino case) probed by the LHC... interesting interplay with Higgs searches.

Tuning to get maximal mixing required

"angle" not RGE stable →

Comment on max. mixing in MSSM

$$m_h^2 \simeq M_Z^2 \cos^2 2\beta \, + \, \frac{3G_F m_t^4}{\sqrt{2}\pi^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{A_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{A_t^2}{12m_{\tilde{t}}^2} \right) \right]$$

RGE focussing

 $m_{\tilde{t}}^2(M_Z) \simeq 5.0 M_3^2(M_G) + 0.6 m_{\tilde{t}}^2(M_G)$ $A_t(M_Z) \simeq -2.3 M_3(M_G) + 0.2 A_t(M_G)$

Dermisek/H. D. Kim '06

Comment on max. mixing in MSSM

$$m_h^2 \simeq M_Z^2 \cos^2 2\beta + \frac{3G_F m_t^4}{\sqrt{2}\pi^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{A_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{A_t^2}{12m_{\tilde{t}}^2} \right) \right]$$

RGE focussing

 $m_{\tilde{t}}^2(M_Z) \simeq 5.0 M_3^2(M_G) + 0.6 m_{\tilde{t}}^2(M_G)$ $A_t(M_Z) \simeq -2.3 M_3(M_G) + 0.2 A_t(M_G)$

max. mixing requires engineering, usually: $|A_t/m_{\tilde{t}}| \lesssim 1$ \rightarrow Dermisek/H. D. Kim '06

Summary

production	LSP	\tilde{t} limit [GeV]	figure
$\tilde{t}_L + \tilde{b}_L$	\tilde{H}	~ 250	3
${ ilde t}_R$	\tilde{H}	~ 180	3
$\tilde{t}_L + \tilde{b}_L$	\tilde{B}	$\sim 250 - 350$	5

scenario	$\left \tilde{g} \text{ limit [GeV]} \right $	\tilde{t} limit [GeV]	figure
$ ilde{H}$ – LSP	$\sim 650 - 700$	~ 280	10
$ ilde{B}$ - LSP	~ 700	~ 270	10
somewhat squashed	$\sim 600 - 700$	_	11
split \tilde{t}	$\sim 550-650$		11
flavor degen.	1200 (fixed)	600 - 900	16
gaugino unify	$\sim 750-800$	~ 260	16

arXiv:1110.6926

Projections?

dashed - perfect bgd's

solid - statistics
improves, systematics
same fraction

* Large uncertainty
 * Targeted searches
 do likely better.

Backup

Projections?

dashed - perfect bgd's

solid - statistics
improves, systematics
same fraction

* Large uncertainty
 * Targeted searches
 do likely better.

Back to the flavor degenerate case

Hard to investigate more squashed spectra (+ additional tuning due to squashing...)

