

CPV and rare B decays at LHCb Implications of LHC results for $\,\mathrm{TeV}\xspace$ -scale physics

 $\underline{\mathsf{T. Blake}}$ on behalf of the LHCb collaboration

March 2012

- Flavour changing neutral currents ($\Delta F = 1$ or $\Delta F = 2$) which are suppressed in the SM (only occur at loop-order) are a promising place to search for NP:
 - B_d and B_s mixing $(\Delta m_d, \Delta m_s, S_{J/\psi K_s^0} \text{ and } S_{J/\psi \phi}).$ - Rare $b \to s\ell^+\ell^-$ and $b \to s\gamma$ processes $(B_d \to K^{*0}\gamma, B_d \to K^{*0}\mu^+\mu^-, B_s \to \mu^+\mu^-).$

• Can also explore the CKM picture at loop and tree-order (more later).

▲圖▶ ▲屋▶ ▲屋▶ ---

Sensitivity to NP through rare decays

In the SM:

- $C_{S,P} \propto m_\ell m_b/m_W^2 \sim 0.$
- Helicity flipped operators $(\mathcal{C}'_i\mathcal{O}'_i)$ suppressed by m_s/m_b .

· < @ > < 글 > < 글 > · · 글

 $B^0_{(d,s)} \rightarrow \mu^+ \mu^-$

- Sensitive to contributions from scalar + pseudo-scalar sector.
 - \rightarrow Interesting to probe NP models with extended Higgs sector, e.g. MSSM, 2HDM, \ldots
- e.g. in MSSM, branching fraction scales approximately as $\tan^6 \beta/M_A^4$
 - More generally:

$$\mathcal{B}(B_q^0 \to \mu^+ \mu^-) \simeq \frac{G_F \alpha^2 M_{B_q^0}^3 f_{B_q^0}^{2} T_{B_q^0}}{64\pi^3 \sin^4 \theta_W} |V_{tb} V_{tq}^*|^2 \left(1 - \frac{4m_\mu^2}{M_{B_q^0}^2}\right)^{1/2} \times \left[M_{B_q^0}^2 \left(1 - \frac{4m_\mu^2}{M_{B_q^0}^2}\right) |\mathcal{C}_S|^2 + \left(M_{B_q^0} \mathcal{C}_P + \frac{2m_\mu}{M_{B_q^0}} \mathcal{C}_{10} + \frac{2m_\mu}{M_{B_q^0}} \mathcal{C}_{10}'\right)^2\right]$$

 $B^0_{(d,s)} \rightarrow \mu^+ \mu^-$

- Set limit on the branching fraction using the CLs technique, dividing data into bins of BDT response and mass.
- BDT response and mass line-shape of the signal calibrated from data using $B \to hh'$ and $J/\psi/\psi(2S)/\Upsilon(1S) \to \mu^+\mu^-$ decays.
- Expected limit $\mathcal{B}(B_s \to \mu^+ \mu^-) < 7.2 \times 10^{-9} \text{ (bkg + SM at 95\% C.L.)}$

c.f. $\mathcal{B}(B_s \to \mu^+ \mu^-) < 22 \times 10^{-9}$ [ATLAS-CONF-2012-010] $\mathcal{B}(B_s \to \mu^+ \mu^-) < 7.7 \times 10^{-9}$ [CMS-BPH-11-020]

 $\underline{B^0_{(d,s)}} \rightarrow \mu^+ \mu^-$

- LHCb sets a limit for $\mathcal{B}(B_s \to \mu^+\mu^-) < 4.5 \times 10^{-9}$ (95% C.L.)
- c.f. SM expectation of $(3.2 \pm 0.2) \times 10^{-9}$.
 - Best fit branching fraction estimated to be:

$${\cal B}(B_s o \mu^+ \mu^-) = (0.8 \ ^{+1.8}_{-1.3}) imes 10^{-9}$$

using a simultaneous maximumum likelihood fit to the $\mu^+\mu^-$ mass distribution in the 8 BDT bins.

• CDF Preliminary (9.6 fb⁻¹), $\mathcal{B}(B_s \to \mu^+ \mu^-) = (13 \ ^{+9}_{-7}) \times 10^{-9}$.

$B_s \rightarrow \mu^+ \mu^-$ examples: CMSSM

- Strong constraints from $\mathcal{B}(B_s \to \mu^+ \mu^-)$ at high-tan β .
- TeV-scale CMSSM at high-tan β largely excluded.

Mastercode [arXiv:1112.3564]

B(B_s → μ⁺μ⁻) is one of a number of strong constraints on NP models. Expect large impact from updated limit from LHCb.

イロト イポト イヨト イヨト 三国

$B_s \rightarrow \mu^+ \mu^-$, $B_d \rightarrow \mu^+ \mu^-$ and $S_{J/\psi\phi}$

D. Straub [arXiv:1107.0266v1] (at the end of 2010)

• Ratio of $B_s \to \mu^+ \mu^-$ to $B_d \to \mu^+ \mu^-$ is a test of MFV. $\mathcal{B}(B_d \to \mu^+ \mu^-)/\mathcal{B}(B_s \to \mu^+ \mu^-) \neq SM$ implies FCNC independent of CKM structure.

イロン イヨン イヨン イヨン

æ

$B_s ightarrow \mu^+ \mu^-$, $B_d ightarrow \mu^+ \mu^-$ and $S_{J\!/\!\psi\,\phi}$

D. Straub [arXiv:1107.0266v1] (at the end of 2010)

LHCb 95% C.L. on $B_s \rightarrow \mu^+\mu^-$ and $B_d \rightarrow \mu^+\mu^-$ (1 fb⁻¹)

Ratio of B_s → μ⁺μ⁻ to B_d → μ⁺μ⁻ is a test of MFV.
 B(B_d → μ⁺μ⁻)/B(B_s → μ⁺μ⁻) ≠ SM implies FCNC independent of CKM structure.

・ロト ・回ト ・ヨト

< 注→

 $B_d \to K^{*0} \gamma$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

 $A_{\mathcal{CP}}(B_d \to K^{*0}\gamma)$

• SM prediction for CP asymmetry:

 $A_{CP} = -0.006 \pm 0.004$ [arXiv:0406055]

• Previous best measurement from BABAR:

 $A_{CP} = -0.016 \pm 0.022 \pm 0.007$ [PRL 103 (2009)]

• Also collecting large samples of B_s decays. Observe 240 $B_s \rightarrow \phi \gamma$ candidates in 0.37 fb⁻¹ [LHCb-PAPER-2011-042].

[LHCb-CONF-2012-004]

(同) (三) (三)

W

Angular analysis of $B_d \to K^{*0} \mu^+ \mu^-$

向下 イヨト イヨト

- Gives access to $\mathcal{C}_7^{(\prime)}$, $\mathcal{C}_9^{(\prime)}$ and $\mathcal{C}_{10}^{(\prime)}$.
- Sensitivity through branching fraction measurements and angular observables. Angular analysis can be sensitive to the chiral structure of the NP (e.g. S_3/A_T^2).
- Decay described by three angles and dimuon invariant mass squared (θ_ℓ, θ_K, φ, q²).
- Analysis based on $1 \, \text{fb}^{-1}$. Observe 900 candidates (c.f. *BABAR* + Belle + CDF ~ 600).

→ 同 → → 三 →

- ∢ ≣ >

$B_d \rightarrow K^{*0} \mu^+ \mu^-$ angular distribution after folding

 Take advantage of a symmetry of the system, by folding the distribution in φ, to reduce the number of free parameters.

•
$$\hat{\phi} = \phi + \pi$$
 if $\phi < 0$ and $\hat{\phi} = \phi$ if $\phi > 0$, leading to:

$$\frac{1}{\Gamma} \frac{\mathrm{d}^4 \Gamma}{\mathrm{d} \cos \theta_\ell \,\mathrm{d} \cos \theta_K \,\mathrm{d}\hat{\phi} \,\mathrm{d}q^2} = \frac{9}{16\pi} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right. + \\ \left. F_L \cos^2 \theta_K (2 \cos^2 \theta_\ell - 1) \right. + \\ \left. \frac{1}{4} (1 - F_L) (1 - \cos^2 \theta_K) (2 \cos^2 \theta_\ell - 1) \right. + \\ \left. S_3 (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \cos 2\hat{\phi} \right. + \\ \left. \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) \cos \theta_\ell \right. + \\ \left. A_{Im} (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \sin 2\hat{\phi} \right] \right]$$

イロン イヨン イヨン イヨン

New physics sensitivity to $C_7^{(\prime)}$

- C_7 and C'_7 are constrained by $b \to s\gamma$ processes. Even in the SM-like allowed region can still have large sensitivity to C'_7 through A^2_T .
- Where S_3 is related to theoretically clean observable A_T^2 through $S_3 = \frac{1}{2}(1 F_L)A_T^2$.

S. Descotes-Genon et. al. [arXiv:1104.334]

SM-like region

回 と く ヨ と く ヨ と

Sensitivity to NP through A_{FB} and S_3

• Can be highly sensitive to NP contributions to $C_7^{(\prime)}$, $C_9^{(\prime)}$ and $C_{10}^{(\prime)}$. e.g. W. Almannshofer et. al. [arXiv:0801.1214v5], where $S_6 = -\frac{4}{3}A_{FB}$.

$B_d \rightarrow K^{*0} \mu^+ \mu^-$ forward-backward asymmetry

Theory prediction from C. Bobeth et al. [arXiv:1105.0376] (and references therein)

Image: A math a math

$B_d \rightarrow K^{*0} \mu^+ \mu^-$ forward-backward asymmetry

CDF, PRL 108 (2012) Belle, PRL 103 (2009) BaBar prelim., Lake Louise 2012

<- ↓ ↓ < ≥ >

< ≣⇒

æ

・ロン ・回と ・ヨン・

2

 A_{Im} expected to be $\mathcal{O}(10^{-3})$ in the SM

æ

<ロ> <同> <同> <同> < 同>

æ

Zero-crossing point of the forward-backward asymmetry

- In the SM, A_{FB} varies with q² and changes sign at a well defined point where leading uncertainties from the B → K^{*0} form-factors cancel.
- Estimate zero-crossing point by fitting forward- and backward-going events separately.

• Gives:
$$q_0^2 = 4.9 + 1.3 \ {\rm GeV}^2/c^4$$

(LHCb preliminary)

c.f. SM predictions in the range $3.9 - 4.3 \,\mathrm{GeV}^2/c^4$.

Constraints on NP contributions to operators

D. Straub et al. [arXiv:1111.1257] using previous LHCb result with 0.37 fb⁻¹.

・ロト ・回ト ・ヨト

$\phi_s \text{ from } B_s \to J/\psi \phi$ and $B_s \to J/\psi \pi^+\pi^-$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

• Interference between mixing and decay gives rise to a \mathcal{CP} phase: $\phi_s = \phi_m - 2\phi_d$.

$$\phi_s^{\mathsf{SM}} = -2 \text{arg}\left(\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = 0.036 \pm 0.002 \, \mathrm{rad}$$

Charles et al. [Phys. Rev. D84 (2011) 033005]

< ∃ >

Measuring ϕ_s with $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow J/\psi f_0$

 $B_s \rightarrow J/\psi \phi$:

- Mixture of *CP*-odd and *CP*-even final state.
- Need to perform a time dependent angular analysis to separate CP states and measure ϕ_s .

 $B_s \rightarrow J/\psi \pi^+ \pi^-$:

• Region of $\pi^+ \pi^-$ mass around the f_0 gives a CP-odd final state. Can measure ϕ_s from fits to the B_s and \overline{B}_s lifetime.

Measuring ϕ_s with $B_s \rightarrow J/\psi \phi$

[LHCb-CONF-2012-002]

T. Blake C

CPV and rare B decays at LHCb

Combination $\phi_s = 0.00 \pm 0.08 \pm 0.03 \,\mathrm{rad}$ (LHCb Preliminary)

• Two-fold ambiguity $\Delta\Gamma_s \rightarrow -\Delta\Gamma_s$ and $\phi_s \rightarrow \phi_s + \pi$ resolved using $B_s \rightarrow J/\psi \, K^+ K^-$ and S-wave interference. [LHCb-PAPER-2011-028]

イロン イヨン イヨン イヨン

 $B_s
ightarrow \mu^+ \mu^-$, $B_d
ightarrow \mu^+ \mu^-$ and $S_{J/\psi \phi}$

▲ □ ► < □ ►</p>

< ≣ >

æ

Towards a measurement of γ

同 と く ヨ と く ヨ と

- CKM picture seems to describe nature remarkably well.
- But Have just been discussing the possible effects from NP to loop-order processes. The picture from tree-level is much less complete . . .

- Access CKM phase γ through interference of b → u and b → c transitions in decays with a common final state.
- One way is through $B^{\pm} \rightarrow DK^{\pm}$ decays, where the D^0 and \overline{D}^0 decay to common final states:
 - $D^0, \overline{D}^0 \to \pi^+\pi^- \text{ or } K^+K^- \text{ (GLW)}$ see e.g. [PLB 265 (1991)] - $D^0, \overline{D}^0 \to K^+\pi^- \text{ (ADS)}$ [PRL 78 (1997)]

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

35 / 40

- ADS mode is experimentally challenging:
 - It's a fully hadronic B decay with an effective branching fraction of $2\times 10^{-7}!$

CP mode with $D \rightarrow \pi^+ \pi^-$

・ロト ・回ト ・ヨト ・ヨト

Э

First observation of the ADS mode

• What do A_{ADS} and A_{CP+} tell us about γ ?

• Combine with GGSZ modes $(B^- \rightarrow DK^-, D \rightarrow K_s^0 \pi^+ \pi^-)$ to estimate γ .

(ロ) (同) (E) (E) (E)

38 / 40

- The LHCb physics programme is very broad. I've only had time to cover some of the recent results from our benchmark channels.
- For more details on *B* CPV and rare decay measurements at LHCb, please go to see the talks on:
 - "Rare decays at LHCb" by G. Ciezarek
 - "CP violation at LHCb" by C. Linn.

in Friday's parallel session.

• Next up "Charm physics at LHCb" .

Summary

Excellent performance from LHC and LHCb in 2011.

Flavour physics can provide strong constraints on NP physics at the ${\rm TeV}$ -scale.

Large number of new heavy flavour results presented this year. More to come at the Spring & Summer conferences.

・ロト ・回ト ・ヨト

T. BlakeCPV and rare B decays at LHCb41 / 40

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Backup

< 🗗 >

→ Ξ → < Ξ →</p>

æ

[from an experimentalists perspective]

- \bullet New physics on the $\,{\rm TeV}$ scale
 - $\rightarrow\,$ contributions from new virtual particles to loop-order processes
 - $\rightarrow\,$ we should expect to see deviations from SM predictions in flavour obsevables.
- But we don't see large deviations:
 - 1. Masses of particles are large $\mathcal{O}(10-100\,\mathrm{TeV})$. . .
 - 2. Couplings are small . . .

・日・ ・ ヨ・ ・ ヨ・

$$\begin{array}{c|c} \mathcal{C}_{7}^{(\prime)} & \mathcal{B}(B \to X_{s}\gamma), \ \mathcal{B}(B \to X_{s}\mu^{+}\mu^{-}), \\ F_{L}, \ A_{FB}, \ S_{3} \end{array} \\ \mathcal{C}_{9}^{(\prime)}, \ \mathcal{C}_{10}^{(\prime)} & \mathcal{B}(B \to X_{s}\mu^{+}\mu^{-}), \\ F_{L}, \ A_{FB}, \ S_{3} \end{array} \\ \begin{array}{c} \mathcal{C}_{5}^{(\prime)} \\ \mathcal{C}_{F}^{(\prime)} \end{array} & \mathcal{B}(B_{s} \to \mu^{+}\mu^{-}) \text{ and some sensitivity from } A_{FB} \\ \mathcal{C}_{P}^{(\prime)} & \mathcal{B}(B_{s} \to \mu^{+}\mu^{-}) \text{ and some sensitivity from } F_{L} \end{array}$$

æ -

44 / 40

Signal selection

Backgrounds:

- Predominantly combinatorial $b\overline{b} \rightarrow \mu^+\mu^- + X.$
- Peaking contributions from $B \rightarrow hh'$ with $h \rightarrow \mu$, $\varepsilon_{hh' \rightarrow \mu^+ \mu^-} \sim 1.5 \times 10^{-5}$
- Elastic $\gamma \gamma \rightarrow \mu^+ \mu^-$ (reduced by $p_T(B) > 500 \text{ MeV}/c$).

MVA classifier:

- Use a multivariate discriminant (BDT) to separate S+B.
- Trained on MC, but signal and background shapes are taken from data.

Normalisation

• Branching fraction normalised to: $B^+ \rightarrow J/\psi K^+$, $B_s \rightarrow J/\psi \phi$ and $B \rightarrow hh'$

$$\begin{split} \mathcal{B}(B^0_q \to \mu^+ \mu^-) &= \mathcal{B}_{\text{norm.}} \times \\ \frac{\varepsilon_{\text{norm.}}}{\varepsilon_{B^0_q \to \mu^+ \mu^-}} \times \frac{f_{\text{norm.}}}{f_q} \times \frac{N_{B^0_q \to \mu^+ \mu^-}}{N_{\text{norm.}}} \end{split}$$

- Accounting for production ratios of B_s to B_d (B⁺):
 f_s/f_d = 0.267 ^{+0.021}_{-0.020}
 PRL 107 (2011) [arXiv:1106.4435]
- Gives single event sensitivities:

$$\begin{array}{l} \alpha_{B_s \to \mu^+ \mu^-} = (3.2 \pm 0.3) \times 10^{-10} \\ \alpha_{B_d \to \mu^+ \mu^-} = (8.4 \pm 0.4) \times 10^{-11} \end{array}$$

→ 注→ 注

<ロ> <同> <同> <同> < 同>

• Looking further ahead, what could a measurement of $\mathcal{B}(B_s \to \mu^+ \mu^-)$ mean?

Scenario	Points to ?
${\cal B}(B_s o \mu^+ \mu^-) \gg SM$	Large enhancement from NP in scalar sector,
	e.g. SUSY at high-tan eta
$\mathcal{B}(B_s ightarrow \mu^+ \mu^-) eq SM$	SUSY (to C_S / C_P), UED, LHT,
	TC2 (C_{10})
${\cal B}(B_s o \mu^+ \mu^-) \sim SM$	Almost any NP model, but can rule out
	large regions of parameter space
${\cal B}(B_s o \mu^+ \mu^-) \ll SM$	NP in scalar sector. NSSM a good candidate.

• Ratio of B_d to B_s decay is also interesting as a probe of MFV:

Scenario	Points to ?
$\mathcal{B}(B_s \to \mu^+ \mu^-)/\mathcal{B}(B_d \to \mu^+ \mu^-) \neq SM$	CMFV ruled out. Need new source of FCNC independent of CKM matrix.

- q^2 Invariant mass squared of the dimuon system $q^2 = m_{\mu^+\mu^-}^2$.
- θ_{ℓ} Angle between the direction of the μ^- in the $\mu^+\mu^-$ rest frame and the direction of the $\mu^+\mu^$ in the \overline{B}_d rest frame.
- θ_K Angle between the kaon in the \overline{K}^{*0} rest frame and the \overline{K}^{*0} in the \overline{B}_d rest frame.
 - $\phi\,$ Angle between planes defined by $\mu^ \mu^+$ and the $K\pi$ in the \overline{B}_d frame.

 $\overline{B}_d
ightarrow \overline{K}^{*0} \ell^+ \ell^-$ angular definition

• Folding the ϕ angle such that $\phi \rightarrow \phi + \pi$ if $\phi < 0$:

$$\begin{split} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} &\propto \left[J_1^s + J_1^c + (J_2^s + J_2^c)\cos2\theta_\ell + J_3\sin^2\theta_\ell\cos2\phi + \right.\\ \left. \underbrace{J_4\sin2\theta_\ell\cos\phi}_{J_6} + \underbrace{J_5\sin\theta_\ell\cos\phi}_{J_6} + \right.\\ \left. \underbrace{J_6\cos\theta_\ell + J_7\sin\theta_\ell\sin\phi}_{J_9} + \underbrace{J_8\sin2\theta_\ell\sin\phi}_{J_9} + \right.\\ \left. \underbrace{J_9\sin^2\theta_\ell\sin2\phi}_{J_6} \right] \end{split}$$

cancels terms in the angular expression with a $\sin\phi$ or $\cos\phi$ dependence.

$$ightarrow$$
 Leaving $J_1^{s,c}$, $J_2^{s,c}$, J_3 , J_6 and J_9 .

(4回) (注) (注) (注) (注)

$B_d ightarrow K^{*0} \mu^+ \mu^-$ fraction of longitudinal polarisation of the K^{*0}

A ■

3

$B_d \to K^{*0} \mu^+ \mu^-$ fraction of longitudinal polarisation of the K^{*0}

A (10) > (10)

$B_d \rightarrow K^{*0} \mu^+ \mu^-$ differential branching fraction

A (10) > (10)

$B_d \rightarrow K^{*0} \mu^+ \mu^-$ differential branching fraction

- Rate average of theory prediction over the q²-bin.
 Ref. [arXiv:1105.0376] and references therein.
 Calculations use a factorisation approach at low-q² and operator product expansion at high-q².
- LHCb data, LHCb-CONF-2012-008
- CDF data, PRL 108 (2012) [arXiv:1108.0695]
- Belle data, PRL 103 (2009) [arXiv:0904.0770]
- BaBar prelim., Lake Louise 2012.

ϕ_s from $B_s \to J\!/\psi\,\pi^+\pi^-$

- Region around the f_0 gives a CP-odd final state. No need to perform an angular analysis.
- Can extract ϕ_s from a tagged analysis, fitting the B_s/\overline{B}_s decay rate as a function of the $B_s\overline{B}_s$ lifetime.

$$\Gamma \propto e^{-\Gamma_s} \left[e^{\Gamma_s t/2} (1 + \cos \phi_s) + e^{-\Gamma_s t/2} (1 - \cos \phi_s) \pm \sin \phi_s \sin(\Delta m_s t) \right]$$

In practice measure:

$$\varepsilon(t)(1-2\omega)\sin\phi_s\sin(\Delta m_s t)\otimes R(t)$$

LHCb-PAPER-2012-006. 7400 signal candidates.

55 / 40

- Can also constrain $\Delta \Gamma_s$ and ϕ_s using effective lifetime measurements of:
 - $B_s \rightarrow J/\psi f_0$ (CP-odd)
 - $B_s \rightarrow K^+ K^-$ (CP-even)

with an untagged analysis.

$$au_{K^+K^-} = 1.44 \pm 0.10 \pm 0.01 \,\mathrm{ps}$$

LHCb, PLB 707 (2012)
 $au_{J/\psi f_0} = 1.70 \, {}^{+0.12}_{-0.11} \pm 0.03 \,\mathrm{ps}$
CDF, PRD 84 (2011)

• LHCb update with 1 fb⁻¹, using a lifetime unbiassed trigger and offline selection:

$$1.468 \pm 0.046 (stat) \, \mathrm{ps}$$
 LHCb-CONF-2012-001

Image: A math a math