

Implications of LHC results for TeV-scale physics CERN – 26 March 2012

** the flavor landscape at the time of SuperB
** SuperB confronts other flavor experiments
** the impact of SuperB: illustrative examples
** conclusions and outlook

The SuperB physics case in 1 slide

- 75 ab⁻¹ data sample collected at Y(4S) in 5 years
- can be operated at lower energies (e.g. $\Psi(3770)$)
- the electron beam can be polarized (~80%)
- several NP-sensitive observables in B, D and τ physics not limited by systematic or th. errors
- enough NP-insensitive observables to pin down the SM contribution with the required precision
- access the NP flavor structure at the TeV scale
- unique probe of NP in the multi-TeV region up to hundreds TeV (with caveats of indirect searches)

Marco Ciuchini

F.A.Q. on SuperB "physics"

- * Which are the SuperB competitors (besides the obvious one)? What do they compete on?
- * What will be the landscape of flavor physics and the status of NP at the SuperB starting time ?
- * What will remain of the SuperB physics program after the completion of today's experiments, both at the energy and intensity fronteers?

and so on...

Answering these FAQs involves several delicate issues,

yet it can be attempted once rules are clearly spelled out:

- official schedules are used when available
- preliminary sensitivity studies are trusted (unless they are patently unreasonable)
- some guesswork is inevitably involved
- open issues are present and sometimes crucial

INFN/AE_11/1, LAL-11-200, SLAC-R-14548, MZ-TH/11-25

The impact of SuperB on flavour physics July 1, 2011

Abstract

This report provides a succinct summary of the physics programme of SuperB, and describes that potential in the context of experiments making measurements in flavour physics over the next 10 to 20 years. Detailed comparisons are made with Belle II and LHCb, the other B physics experiments that will run in this decade. SuperB will play a crucial role in defining the landscape of flavour physics over the next 20 years.

The timeline of flavor physics

Dates that matter are when full samples are collected

Marco Ciuchini

What SuperB can<u>not</u> do*

Golden modes of other flavor experiments

Observable	Current value	Experiment	Precision
$BR(B_s \to \mu\mu) \ (\times 10^{-9})$	$< \mathbf{X}^{a}$	LHCb	± 1
	4.5	LHCb upgrade	± 0.3
$2\beta_s \text{ from } B_s^0 \to J/\psi\phi \text{ (rad)}$	$0 \times 3 \pm 0. \times 9^{b}$	LHCb	0.019
	0.002 0.038	LHCb upgrade	0.006
$S \text{ in } B_s \to \phi \gamma ^*$		LHCb	0.07
		LHCb upgrade	0.02
$K^+ \to \pi^+ \nu \overline{\nu} \; (\% \; \text{BR measurement})$	7 events	NA62	100 events $(10%)$
$K_L^0 o \pi^0 u \overline{ u}$		KOTO	3 events (observe)
$BR(\mu \to e\gamma) \ (\times 10^{-13})$	< 2 240	MEG	< 1
$R_{\mu e}$	$< 7 \times 10^{-12}$	COMET/Mu2E	$< 6 \times 10^{-17}$

* with competitive performances

Marco Ciuchini

SuperB physics arXiv:0709.0451,08

B_d physics @Y(45) in tables

Observable I	$3 \text{ factories} (2 \text{ ab}^{-1})$	$\operatorname{Super} B$ (75 ab^{-1})
$sin(2\beta) (J/\psi K^0)$	0.018	0.005 (†)
$cos(2\beta) (J/\psi K^{*0})$	0.30	0.05
$sin(2\beta)$ (Dh ⁰)	0.10	0.02
$cos(2\beta)$ (Dh ⁰)	0.20	0.04
$S(J/\psi \pi^0)$	0.10	0.02
$S(D^+D^-)$	0.20	0.03
$S(\phi K^0)$	0.13	0.02 (*)
$S(\eta' K^0)$	0.05	0.01 (*)
$S(K_{s}^{0}K_{s}^{0}K_{s}^{0})$	0.15	0.02 (*)
$S(K_{s}^{0}\pi^{0})$	0.15	0.02 (*)
$S(\omega K_{r}^{0})$	0.17	0.03 (*)
$S(f_0 \vec{K}_S^0)$	0.12	0.02 (*)
$\gamma (B \rightarrow DK, D \rightarrow CP \text{ eigenstates})$	$) \sim 15^{\circ}$	2.5°
$\gamma (B \rightarrow DK, D \rightarrow \text{suppressed stat})$	es) $\sim 12^{\circ}$	2.0°
$\gamma (B \rightarrow DK, D \rightarrow \text{multibody state})$	$\sim 9^{\circ}$	1.5°
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°
$\alpha (B \rightarrow \pi \pi)$	$\sim 16^{\circ}$	3°
$\alpha (B \rightarrow \rho \rho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)
$\alpha (B \rightarrow \rho \pi)$	$\sim 12^{\circ}$	2°
α (combined)	$\sim 6^{\circ}$	1-2° (*)
$2\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K^{0}_{S}\pi^{\mp})$	20°	5°
V _{cb} (exclusive)	4% (*)	1.0% (*)
V _{cb} (inclusive)	1% (*)	0.5% (*)
$ V_{ub} $ (exclusive)	8% (+)	3.0% (*)
$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)
$BR(B \rightarrow \tau \nu)$	20%	4% (†)
$BR(B \rightarrow \mu\nu)$	visible	5%
$BR(B \rightarrow D\tau\nu)$	10%	2%
$BR(B \rightarrow \rho \gamma)$	15%	3% (†)
$BR(B \rightarrow \omega \gamma)$	30%	5%
$A_{CP}(B \rightarrow K^*\gamma)$	0.007 (†)	0.004 († *)
$A_{CP}(B \rightarrow \rho \gamma)$	~ 0.20	0.05
$A_{CP}(b \rightarrow s\gamma)$	0.012 (†)	0.004 (†)
$A_{CP}(b \rightarrow (s + d)\gamma)$	0.03	0.006 (†)
$S(K_e^0 \pi^0 \gamma)$	0.15	0.02 (*)
$S(\rho^0 \gamma)$	possible	0.10
$A_{CP}(B \rightarrow K^*\ell\ell)$	7%	1%
$A^{FB}(B \rightarrow K^*\ell\ell)s_0$	25%	9%
$A^{FB}(B \rightarrow X_s \ell \ell) s_0$	35%	5%
$BR(B \rightarrow K\nu\overline{\nu})$	visible	20%
$BR(B \rightarrow \pi \nu \bar{\nu})$	-	possible

0810 1312	Mode	Observable	$B \ Fe$	actories	(2 ab^{-1})	Super B (75 ab ⁻¹	·)
1000 1E 11	$D^0 \rightarrow K^+ K^-$	y_{CP}		$2-3 \times 1$	0^{-3}	5×10^{-4}	
1008.1541	$D^0 \rightarrow K^+ \pi^-$	y_D'		$2-3 \times 1$	0^{-3}	7×10^{-4}	
		$x_{D}^{\prime 2}$		$1-2 \times 1$	0^{-4}	3×10^{-5}	
charm	$D^0 \rightarrow K^0_s \pi^+ \pi^-$	y_D		$2-3 \times 1$	0^{-3}	5×10^{-4}	
		x_D		23×1	0^{-3}	5×10^{-4}	
physics	Average	y_D		$1-2 \times 1$	0^{-3}	3×10^{-4}	_
		x_D		$2-3 \times 1$	0-3	5×10^{-4}	
Channel		Sensitivity			•	•	
$D^0 \rightarrow e^+e^-, D^0$	$\rightarrow \mu^{+}\mu^{-}$	1×10^{-8}		٦	r phy	/SICS	
$D^0 \rightarrow \pi^0 e^+ e^-, I$	$D^0 \rightarrow \pi^0 \mu^+ \mu^-$	2×10^{-8}		Proc		Sensitivity	-
$D^0 \rightarrow \eta e^+ e^-, D^0$	$^{D} \rightarrow \eta \mu^{+} \mu^{-}$	3×10^{-8}		- 11000)	0 v 10-9	-
$D^0 \rightarrow K_s^0 e^+ e^-,$	$D^0 \rightarrow K_s^0 \mu^+ \mu^-$	3×10^{-8}		$B(\tau -$	$\rightarrow \mu \gamma$)	2×10^{-5}	
$D^+ \rightarrow \pi^+ e^+ e^-,$	$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	1×10^{-8}		$\mathcal{B}(\tau -$	$\rightarrow e \gamma)$	2×10^{-9}	
				$\mathcal{B}(\tau -$	$\rightarrow \mu \mu \mu$)	2×10^{-10}	
$D^0 \rightarrow e^{\pm} \mu^{\mp}$		1×10^{-8}		$\mathcal{B}(\tau -$	$\rightarrow eee)$	2×10^{-10}	
$D^+ \rightarrow \pi^+ e^{\pm} \mu^{\mp}$		1×10^{-8}		$\mathcal{B}(\tau -$	$\rightarrow \mu n$)	4×10^{-10}	
$D^0 \rightarrow \pi^0 e^{\pm} \mu^{\mp}$		2×10^{-8}		$\mathcal{B}(\tau)$	$\rightarrow en$	6×10^{-10}	
$D^0 \rightarrow \eta e^{\pm} \mu^{\mp}$		3×10^{-8}		$\mathcal{D}(r)$	· · · · · · · · · · · · · · · · · · ·	0 × 10=10	
$D^0 \rightarrow K_s^0 e^{\pm} \mu^{\mp}$		3×10^{-8}		$B(\tau -$	$\rightarrow \ell K_s^\circ)$	2 × 10	
			+	·τFC	physi	<u>cs (CPV,</u>)
$D^+ \rightarrow \pi^- e^+ e^+,$	$D^+ \rightarrow K^- e^+ e^+$	1×10^{-8}	+	EW	phys	ics	
$D^+ \rightarrow \pi^- \mu^+ \mu^+,$	$D^+ \rightarrow K^- \mu^+ \mu^+$	1×10^{-8}		. Re n	hysics	@V(5S)	
$D^+ \rightarrow \pi^- e^\pm \mu^\mp,$	$D^+ \to K^- e^{\pm} \mu^{\mp}$	1×10^{-8}		D5 p	Trystee	Ser(33)	
Mode O	bservable $\Upsilon(4S)$	$\psi(3770)$]	LHCb			
	(75 ab ⁻	¹) (300 fb ⁻¹) (1	0 fb^{-1}	C		
$D^0 \rightarrow K^+ \pi^-$	$x'^2 3 \times 10^{-1}$	4	6	$\times 10^{-5}$	Su	pers: c	1
$D^0 \rightarrow K^+ K^-$	y 7×10	4	9 5	$\times 10$ × 10 ⁻⁴	"trea	sura chas	+"
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	x $4.9 \times 10^{\circ}$	- 4	0	× 10	IT eu)
	$y = 3.5 \times 10^{-10}$	- 4		-	Seller a	🔊 of ne	2W
	q/p 3 × 10 ⁻	2	6		and a	K nhugia	C
$+(2770)$ $D^{0}\overline{D}^{0}$	$\phi 2^{\circ}$	(1 0) 10	- 8			physic	3 -
$\psi(3770) \rightarrow D^- D$	x 11	$(1-2) \times 10$ $(1-2) \times 10$	-3			🖤 sensiti	ve
	$\cos \delta$	(0.01 - 0.0)	2)	N NO	8	beanyahl	~~
	· ODDI						5
tiev-scale phy	$s_{1}c_{5} - CERN,$	26 March	201	4		Page /	

Marco Ciuchini

SuperB "golden channels"

Observable/mode	Current	LHCb	Super B	Belle II	LHCb upgrade	theory
	now	(2017)	(2021)	(2021)	(10 years of	now
		$5{\rm fb}^{-1}$	$75{ m ab}^{-1}$	$50\mathrm{ab}^{-1}$	running) $50 \mathrm{fb}^{-1}$	
		1	τ Decays			
$\tau \to \mu \gamma \; (\times 10^{-9})$	< 44		< 2.4	< 5.0		
$\tau \to e\gamma \; (\times 10^{-9})$	< 33		< 3.0	< 3.7 (est.)		
$\tau \to \ell \ell \ell \; (\times 10^{-10})$	< 150 - 270	<244 a	<2.3-8.2	< 10	$< 24^{\ b}$	
		B_{i}	$_{u,d}$ Decays			
$BR(B \to \tau \nu) \ (\times 10^{-4})$	1.64 ± 0.34		0.05	0.04		1.1 ± 0.2
$BR(B \to \mu\nu) \ (\times 10^{-6})$	< 1.0		0.02	0.03		0.47 ± 0.08
$BR(B \to K^{*+} \nu \overline{\nu}) \ (\times 10^{-6})$	< 80		1.1	2.0		6.8 ± 1.1
$BR(B \to K^+ \nu \overline{\nu}) \ (\times 10^{-6})$	< 160		0.7	1.6		3.6 ± 0.5
$BR(B \to X_s \gamma) \ (\times 10^{-4})$	3.55 ± 0.26		0.11	0.13	0.23	3.15 ± 0.23
$A_{CP}(B \to X_{(s+d)}\gamma)$	0.060 ± 0.060		0.02	0.02		$\sim 10^{-9}$
$B \to K^* \mu^+ \mu^-$ (events)	250^{c}	8000	$10-15 k^d$	7-10k	100,000	-
BR $(B \to K^* \mu^+ \mu^-) (\times 10^{-6})$	1.15 ± 0.16		0.06	0.07		1.19 ± 0.39
$B \to K^* e^+ e^-$ (events)	165	400	10-15k	7-10k	5,000	-
$BR(B \to K^* e^+ e^-) (\times 10^{-6})$	1.09 ± 0.17		0.05	0.07		1.19 ± 0.39
$A_{FB}(B \to K^* \ell^+ \ell^-)$	0.27 ± 0.14^{e}	f	0.040	0.03		-0.089 ± 0.020
$B \to X_s \ell^+ \ell^-$ (events)	280		8,600	7,000		-
$BR(B \to X_s \ell^+ \ell^-) \ (\times 10^{-6})^g$	3.66 ± 0.77^h		0.08	0.10		1.59 ± 0.11
$S \text{ in } B \to K^0_{\scriptscriptstyle S} \pi^0 \gamma$	-0.15 ± 0.20		0.03	0.03		-0.1 to 0.1
$S \text{ in } B \to \eta' K^0$	0.59 ± 0.07		0.01	0.02		± 0.015
$S \text{ in } B \to \phi K^0$	0.56 ± 0.17	0.15	0.02	0.03	0.03	± 0.02
		Ε	B_s^0 Decays			
$BR(B_s^0 \to \gamma \gamma) \ (\times 10^{-6})$	< 8.7		0.3	0.2 - 0.3		0.4 - 1.0
A_{SL}^{s} (×10 ⁻³)	-7.87 ± 1.96^{-i}	j	4.	5. (est.)		0.02 ± 0.01
		1	D Decays			
x	$(0.63 \pm 0.20\%$	0.06%	0.02%	0.04%	0.02%	$\sim 10^{-2 \ k}$
<i>y</i>	$(0.75 \pm 0.12)\%$	0.03%	0.01%	0.03%	0.01%	$\sim 10^{-2}$ (see above).
y_{CP}	$(1.11 \pm 0.22)\%$	0.05%	0.03%	0.05%	0.01%	$\sim 10^{-2}$ (see above).
q/p	$(0.91 \pm 0.17)\%$	10%	2.7%	3.0%	3%	$\sim 10^{-3}$ (see above).
$\arg\{q/p\}$ (°)	-10.2 ± 9.2	5.6	1.4	1.4	2.0	$\sim~10^{-3}$ (see above).
		Other p	rocesses Dec	cays		
$\sin^2 \theta_W$ at $\sqrt{s} = 10.58 \mathrm{GeV}/c^2$			0.0002	l		clean

Marco Ciuchini

S	uperB	go	lden	ch	anne	els	
		τρ	hysi	ICS ICS			
$ \frac{\tau \to \mu \gamma \; (\times 10^{-9})}{\tau \to e \gamma \; (\times 10^{-9})} \\ \frac{\tau \to \ell \ell \ell \; (\times 10^{-10})}{\tau \to \ell \ell \ell \; (\times 10^{-10})} $	< 44 < 33 < 150 -	270 < 244 ^a	$\tau \text{ Decays}$ < 2.4 < 3.0 $< 2.3 - 8.2$	< 5.0 < 3.7 (est.) < 10	< 24 ^b		
Observable/mode	Current now	LHCb (2017) 5 fb^{-1}	Super B (2021) 75 ab ⁻¹	Belle (202 50 ab	II LHC 1) (10 ⁻¹ runnir	b upgrade years of ng) 50fb^{-1}	theory now
$\tau \to \mu \gamma \ (\times 10^{-9})$ $\tau \to e \gamma \ (\times 10^{-9})$ $\tau \to \ell \ell \ell \ (\times 10^{-10})$	< 44 < 33 < 150 - 270	τ < 244 a	Decays < 2.4 < 3.0 < 2.3 - 8.	< 5. < 3.7 (2 < 1	0 est.) 0 <	< 24 ^b	
$BR(B \to X_s \ell^+ \ell^-)$ $S \text{ in } B \to K_s^0 \pi^0 \gamma$ $S \text{ in } B \to \eta' K^0$ $S \text{ in } B \to \phi K^0$	$\begin{array}{c c} (\times 10^{-6})^g & 3.66 \pm 0 \\ & -0.15 \pm \\ & 0.59 \pm 0 \\ & 0.56 \pm 0 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.08 0.03 0.01 0.02	$\begin{array}{c} 0.10 \\ 0.03 \\ 0.02 \\ 0.03 \end{array}$	0.03	$\begin{array}{c} 1.59 \pm 0.11 \\ -0.1 \text{ to } 0.1 \\ \pm 0.015 \\ \pm 0.02 \end{array}$	
$\frac{\text{BR}(B_s^0 \to \gamma \gamma) (\times 10^{-3})}{A_{SL}^s (\times 10^{-3})}$	(0^{-6}) < 8.7 -7.87 ± 1	96 ⁱ ^j	$ \begin{array}{c c} 3_s^0 \text{ Decays} \\ \hline 0.3 \\ 4. \\ D \text{ Decays} \\ \hline \end{array} $	0.2 - 0.3 5. (est.)		$\begin{array}{c} 0.4 - 1.0 \\ 0.02 \pm 0.01 \end{array}$	
$egin{array}{c} x \ y \ y_{CP} \ q/p \ rg\{q/p\} \ (^\circ) \end{array}$	$ \begin{array}{c} (0.63 \pm 0. \\ (0.75 \pm 0. \\ (1.11 \pm 0. \\ (0.91 \pm 0. \\ -10.2 \pm \end{array} \end{array} $	$\begin{array}{c ccccc} 20\% & 0.06\% \\ 12)\% & 0.03\% \\ 22)\% & 0.05\% \\ 17)\% & 10\% \\ 9.2 & 5.6 \end{array}$	$\begin{array}{c} 0.02\% \\ 0.01\% \\ 0.03\% \\ 2.7\% \\ 1.4 \end{array}$	0.04% 0.03% 0.05% 3.0% 1.4	0.02% 0.01% 0.01% 3% 2.0	$\sim 10^{-2} \text{ k}$ $\sim 10^{-2} \text{ (see abo}$ $\sim 10^{-2} \text{ (see abo}$ $\sim 10^{-3} \text{ (see abo}$ $\sim 10^{-3} \text{ (see abo}$	ove). ove). ove).
$\sin^2 \theta_W$ at $\sqrt{s} = 10$	$1.58 \mathrm{GeV}/c^2$	Other p	orocesses Deca	ays l		clean	

τ flavor violation

 BSM can be substantially enhanced

LFV from PMNS

 $B(\tau \rightarrow \mu \gamma):B(\tau \rightarrow e \gamma):B(\mu \rightarrow e \gamma) \sim [500-10]:1:1$

Marco Ciuchini

Implications of LHC results for TeV-scale physics - CERN, 26 March 2012

Page 10

τFV in the Littlest Higgs model with T-parity

 $Br(\tau \rightarrow \mu \gamma)$

SuperB golden channels Bd/Bu physics

Observable/mode	Current	LHCb	Super B	Belle II	LHCb upgrade	theory
	now	(2017)	(2021)	(2021)	(10 years of	now
		$5{\rm fb}^{-1}$	$75 \mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$	running) 50fb^{-1}	
		B_i	$_{i,d}$ Decays			
$BR(B \to \tau \nu) \ (\times 10^{-4})$	1.64 ± 0.34		0.05	0.04		1.1 ± 0.2
${\rm BR}(B \to \mu \nu) \ (\times 10^{-6})$	< 1.0		0.02	0.03		0.47 ± 0.08
$BR(B \to K^{*+} \nu \overline{\nu}) \ (\times 10^{-6})$	< 80		1.1	2.0		6.8 ± 1.1
$BR(B \to K^+ \nu \overline{\nu}) \ (\times 10^{-6})$	< 160		0.7	1.6		3.6 ± 0.5
$BR(B \to X_s \gamma) \ (\times 10^{-4})$	3.55 ± 0.26		0.11	0.13	0.23	3.15 ± 0.23
$A_{CP}(B \to X_{(s+d)}\gamma)$	0.060 ± 0.060		0.02	0.02		$\sim 10^{-6}$
$B \to K^* \mu^+ \mu^-$ (events)	2 X 0 ^c 900	8000	$10-15k^d$	7-10k	100,000	-
${\rm BR}(B\to K^*\mu^+\mu^-)~(\times 10^{-6})$	$1 \times 15 \pm 0 \times 6$		0.06	0.07		1.19 ± 0.39
$B \rightarrow K^* e^+ e^-$ (events)	165	400	10-15k	7-10k	5,000	-
$BR(B \to K^* e^+ e^-) \ (\times 10^{-6})$	1.09 ± 0.17		0.05	0.07		1.19 ± 0.39
$A_{FB}(B \to K^* \ell^+ \ell^-)$	$0 \times 7 \pm 0. \times 4^{e}$	f	0.040	0.03		-0.089 ± 0.020
$B \to X_s \ell^+ \ell^-$ (events)	280		8,600	7,000		-
$BR(B \rightarrow X_s \ell^+ \ell^-) \ (\times 10^{-6})^g$	3.66 ± 0.77^{h}		0.08	0.10		1.59 ± 0.11
S in $B \to K^0_s \pi^0 \gamma$	-0.15 ± 0.20		0.03	0.03		-0.1 to 0.1
S in $B \rightarrow \eta' K^0$	0.59 ± 0.07		0.01	0.02		± 0.015
$S \text{ in } B \rightarrow \phi K^0$	0.56 ± 0.17	0.15	0.02	0.03	0.03	± 0.02
		Other	nagaga Deserv			
$\sin^2 \theta_W$ at $\sqrt{s} = 10$	$.58 \mathrm{GeV}/c^2$	Other	0.0002		clean	

B physics: Rare decays

Bphysics: FCNC

- Example: $B \to K^{(*)} \nu \overline{\nu}$
 - need 75ab⁻¹ to observe pseudoscalar and vector modes
 - with more than 75ab⁻¹ we could measure polarisation

Marco Ciuchini

Implications of LHC results for TeV-scale physics – CERN, 26 March 2012

Model-independent parametrisation

- affected by models with Z', RH currents and light scalar particles
- together with $b \rightarrow s \gamma$ and $b \rightarrow s \ell \ell$, allow to disentangle NP effects in magnetic dipole & Z penguin/box transitions

Marco Ciuchini

MSSM: flavour violation in the squark sector

and similarly for $M^2_{\tilde{u}}$

NP scale: $m_{\tilde{q}}^{2}$ FV & CPV couplings: $(\delta^{d}_{ij})_{AB} = (\Delta^{d}_{ij})_{AB} / m_{\tilde{q}}^{2}$

Marco Ciuchini

reconstruction of

$$(\delta^{d}_{23})_{LR}=0.028 \ e^{i\pi/4}$$
 for
 $\Lambda = m_{\widetilde{g}} = m_{\widetilde{q}} = 1 \ TeV$

Determination of (δ^d₂₃)_{LR} using SuperB data

i) sensitive to $m_{\tilde{q}} < 20 \text{ TeV}$ ii) sensitive to $|(\delta^{d}_{23})_{LR}| > 10^{-2}$ for $m_{\tilde{q}} < 1 \text{ TeV}$

Marco Ciuchini

OVERALL SUSY ASSESSMENT

Studying correlations in flavour observables,

together with high-p_t info, we can learn about:

- * the SUSY-breaking mechanism
- * the flavour breaking mechanism
- * the underlying presence of a GUT structure

* the origin of lepton flavour violation

Observable/mode	charged Higgs	M FV NP	non-MFV NP	NP in	Right-handed	LHT				SU	SY	
	high $\tan \beta$	low $\tan\beta$	2-3 sector	Z penguins	currents		\mathbf{AC}	RVV2	AKM	δLL	FBMSSM	GUT-CMM
$\rightarrow \mu\gamma$							* * *	* * *	*	* * *	* * *	* * *
$\rightarrow \ell \ell \ell$						* * *						?
$B \rightarrow \tau \nu, \mu \nu$	$\star \star \star (\rm CKM)$											
$B \rightarrow K^{(*)+} \nu \overline{\nu}$			*	* * *			*	*	*	*	*	?
\bar{s} in $B \rightarrow K_S^0 \pi^0 \gamma$			**		* * *							
\vec{s} in other penguin modes			$\star\star\star(\mathrm{CKM})$		* * *		* * *	**	*	* * *	***	?
$4_{CP}(B \rightarrow X_s \gamma)$			* * *		**		*	\star	*	* * *	* * *	?
$BR(\mathscr{B} \to X_s \gamma)$		*	**		*							**
$BR(B \rightarrow X_s \ell \ell)$			**	*	*							?
$B \rightarrow K^{(*)}\ell\ell$ (FB Asym)							*	*	*	***	***	?
i si			***			***						***
Charm mixing							***	*	*	*	*	
CPV in Charm	**									* * *		

more information in arXiv:1008.1541, arXiv:0909.1333, and arXiv:0810.1312

Marco Ciuchini

Precision CKM measurement at SuperB

Observable/mode	Current	LHCb	$\operatorname{Super} B$	Belle II	LHCb upgrade	theory
	now	(2017)	(2021)	(2021)	(10 years of running)	now
		$5{\rm fb}^{-1}$	$75\mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$	$50{\rm fb}^{-1}$	
α from $u\overline{u}d$	6.1°	$5^{\circ a}$	1°	1°	Ь	$1 - 2^{\circ}$
β from $c\overline{c}s$ (S)	$0.9^{\circ} (0.024)$	$0.5^{\circ} (0.008)$	$0.1^{\circ} (0.002)$	$0.3^{\circ} (0.007)$	$0.2^{\circ} \ (0.003)$	clean
S from $B_d \to J/\psi \pi^0$	0.21		0.014	0.021 (est.)		clean
S from $B_s \to J/\psi K_s^0$?			?	clean
γ from $B \to DK$	11°	$\sim 4^{\circ}$	1°	1.5°	0.9°	clean
$ V_{cb} $ (inclusive) %	1.7		0.5%	0.6 (est.)		dominant
$ V_{cb} $ (exclusive) %	2.2		1.0%	$1.2 \; (est.)$		dominant
$ V_{ub} $ (inclusive) %	4.4		2.0%	3.0		dominant
$ V_{ub} $ (exclusive) %	7.0		3.0%	5.0		dominant

Overture: CKM matrix at 1%

Marco Ciuchini

Implications of LHC results for TeV-scale physics – CERN, 26 March 2012

Page 20

	S	upe	erB	go	lder	ı cł	nar	nne	els	
			Currie		ohys	sics				
	$\begin{aligned} \tau &\to \mu \gamma \; (\times 10^{-9}) \\ \tau &\to e \gamma \; (\times 10^{-9}) \\ \tau &\to \ell \ell \ell \; (\times 10^{-10}) \end{aligned}$		< 44 < 33 < 150 - 2	70 < 244	$\begin{array}{c c} \tau \text{ Decays} \\ \hline < 2.4 \\ < 3.0 \\ < 2.3 - 8.2 \\ \hline B_{u,d} \text{ Decays} \end{array}$	< 5.0 < 3.7 (est.) < 10	< 2	24 ^b		
	$BR(B \to \tau\nu) \ (\times 10^{-1})$	-4) -6)	1.64 ± 0.3	34	0.05	0.04			1.1 ± 0.2	
Observable/mo	de	Cur	rent ow	LHCb (2017) 5 fb^{-1}	Super B (2021) 75 ab ⁻¹	Bell (20) 50 a	e II 21) b ⁻¹	LHCt (10 runnin	years of g) 50fb^{-1}	theory now
B_s^0 Decays										
$\frac{\mathrm{BR}(B_s^0 \to \gamma \gamma)}{A_{SL}^s} (\times 10^{-3})$	$(\times 10^{-6})$	< 8 -7.87 ±	8.7 ± 1.96 ⁱ	j	0.3 4.	0.2 – 5. (e	• 0.3 est.)			0.4 - 1.0 0.02 ± 0.01
	$BR(B \to X_s \ell^+ \ell^-)$ $S \text{ in } B \to K_s^0 \pi^0 \gamma$ $S \text{ in } B \to \eta' K^0$ $S \text{ in } B \to \phi K^0$	$(\times 10^{-6})^{g}$	3.66 ± 0.7 -0.15 ± 0 0.59 ± 0.0 0.56 ± 0.7	7 ^{<i>h</i>} .20 07 17 0.15	$ \begin{array}{c c} 0.08 \\ 0.03 \\ 0.01 \\ 0.02 \end{array} $	0.10 0.03 0.02 0.03	0.	03	$\begin{array}{c} 1.59 \pm 0.11 \\ -0.1 \text{ to } 0.1 \\ \pm 0.015 \\ \pm 0.02 \end{array}$	
	$\frac{\mathrm{BR}(B_s^0 \to \gamma \gamma) \ (\times 10^{-3})}{A_{SL}^s \ (\times 10^{-3})}$) ⁻⁶)	< 8.7 -7.87 ± 1.9	96 ⁱ ^j	$ \begin{array}{c c} D_s & \text{Decays} \\ \hline 0.3 \\ 4. \\ D & \text{Decays} \end{array} $	0.2 - 0.3 5. (est.)			$\begin{array}{c c} 0.4 - 1.0 \\ 0.02 \pm 0.01 \end{array}$	
	$ \begin{array}{c} x \\ y \\ y_{CP} \\ q/p \\ \arg\{q/p\} \ (^{\circ}) \end{array} $		$\begin{array}{c} (0.63 \pm 0.2 \\ (0.75 \pm 0.1) \\ (1.11 \pm 0.2) \\ (0.91 \pm 0.1) \\ -10.2 \pm 9 \end{array}$	$\begin{array}{c c c} 0\% & 0.06\% \\ 2)\% & 0.03\% \\ 2)\% & 0.05\% \\ 7)\% & 10\% \\ 0.2 & 5.6 \end{array}$	$\begin{array}{c} 0.02\% \\ 0.01\% \\ 0.03\% \\ 2.7\% \\ 1.4 \end{array}$	0.04% 0.03% 0.05% 3.0% 1.4	0.0 0.0 0.0 3 2)2%)1%)1% %	$\sim 10^{-2} k$ $\sim 10^{-2} (see above ab$	ove). ove). ove).
	$\sin^2 \theta_W$ at $\sqrt{s} = 10$	$58 \mathrm{GeV}/c^2$		Other	0.0002	l ays			clean	

B_s physics

• can cleanly measure A_{SL}^s using 55 data

$$A_{SL}^{s} = \frac{\mathcal{B}(B_s \to \overline{B}_s \to X^- \ell^+ \nu_\ell) - \mathcal{B}(\overline{B}_s \to B_s \to X^- \ell^+ \nu_\ell)}{\mathcal{B}(B_s \to \overline{B}_s \to X^- \ell^+ \nu_\ell) + \mathcal{B}(\overline{B}_s \to B_s \to X^- \ell^+ \nu_\ell)} = \frac{1 - |q/p|^4}{1 - |q/p|^4}$$

 $\sigma(A_{SL}^s) \sim 0.004$ with a few ab^{-1}

- SuperB can also study rare decays with many neutral particles, such as Bs $\rightarrow \gamma\gamma$, which can be enhanced by NP
- Normalization for absolute BRs at LHCb(-upgrade)?

	S	upe	erB	go	lder	n cł	nar	nne	ls			
Observable Curvent LHCh Superification Helle II LHCb upgrade Corresponde row (200)												
	$ \frac{\tau \to \mu \gamma \ (\times 10^{-9})}{\tau \to e \gamma \ (\times 10^{-9})} \\ \frac{\tau \to \ell \ell \ell \ (\times 10^{-10})}{\tau \to \ell \ell \ell \ (\times 10^{-10})} $ BB(B \to \tau \nu) \(\x10^{-10})	-4)	< 44 < 33 < 150 - 2 1.64 ± 0.5	270 < 244	$ \begin{array}{c c} \tau \text{ Decays} \\ \hline < 2.4 \\ < 3.0 \\ a \\ < 2.3 - 8.2 \\ \hline B_{u,d} \text{ Decays} \\ \hline 0.05 \\ \hline \end{array} $	< 5.0 < 3.7 (est.) < 10 0.04	< 2	24 ^b	1.1 + 0.2			
Observable/mo	ode	Cur	rent	LHCb	Super B	Bell	e II	LHCb	upgrade		theory	
		no	w	(2017) 5 fb ⁻¹	(2021) 75 ab ⁻¹	(20 50 a	$^{21)}_{b^{-1}}$	(10 runnin	years of g) 50fb^{-1}		now	
D Decays												
x		$(0.63 \pm$	0.20%	0.06%	0.02%	0.04	4%	0.	02%		$\sim 10^{-2 \ k}$	
y		$(0.75 \pm$	0.12)%	0.03%	0.01%	0.03	3%	0.	01%	~ 10	$^{-2}$ (see above).	
y_{CP}		$(1.11 \pm$	0.22)%	0.02%	0.03%	0.0	5%	0.	01%	~ 10	$^{-2}$ (see above).	
q/p		$(0.91 \pm$	0.17)%	8.5%	2.7%	3.0	%		3%	~ 10	$^{-3}$ (see above).	
$\arg\{q/p\}$ (°)		-10.2	± 9.2	4.4	1.4	1.	4		2.0	~ 10	$^{-3}$ (see above).	
			1	п	B^0_{\circ} Decays		1	1				
	$BR(B_s^0 \to \gamma \gamma) \ (\times 10^{-3})$	$()^{-6})$	< 8.7		0.3	0.2 - 0.3			0.4 - 1.0			
	A_{SL}^{s} (×10 ⁻³)		-7.87 ± 1.9	96 ⁱ ^j	4.	5. (est.)			0.02 ± 0.0	1		
	<u>-</u>		(0.63 ± 0.2)	20% 0.06%	D Decays $0.02%$	0.04%	0.0	2%	$\sim 10^{-2}$	k		
	y		(0.75 ± 0.12)	2)% 0.03%	0.01%	0.03%	0.0	1%	$\sim 10^{-2}$ (see a	bove).		
	y_{CP}		(1.11 ± 0.2)	2)% 0.05%	0.03%	0.05%	0.0	1%	$\sim 10^{-2}$ (see a	bove).		
	q/p arg $\{q/p\}$ (°)	(0.91 ± 0.1) -10.2 + 9	10% 10% $10%$ 5.6	2.7%	$\frac{3.0\%}{1.4}$		⁷⁰ .0	$\sim 10^{-3}$ (see a $\sim 10^{-3}$ (see a	bove). bove).			
			10.2 1 0	Other	processes Dec	cays			20 (000 a			
	$\sin^2 \theta_W$ at $\sqrt{s} = 10$	$.58{ m GeV}/c^2$			0.0002	l			clean			

Charm mixing

Marco Ciuchini

SuperB golden channels

				: V		pny	SIC	S (10.) consing				
						τ Decays						
$\tau \to \mu \gamma ~(\times 10^{-1})$	⁹)		< 44			< 2.4	< 5.0					
$\tau \to e\gamma \; (\times 10^{-1})$	^э)		< 33			< 3.0	< 3.7 (est.)					
$\tau \to \ell \ell \ell \ (\times 10^{-1})^{-1}$	$^{10})$		< 150 - 2	270	<244 a	<2.3-8.2	< 10	<	$24^{\ b}$			
			-		B_{i}	$_{u,d}$ Decays						
$BR(B \to \tau \nu)$ ($\times 10^{-4}$	⁴)	1.64 ± 0.5	34		0.05	0.04			1.1 ± 0.2	2	
$BR(B \to \mu \nu)$ ($\times 10^{-1}$	⁶)	< 1.0			0.02	0.03			0.47 ± 0.0)8	
$BR(B \to K^{*+})$	$\nu\overline{\nu}) (\times$	(10^{-6})	< 80			1.1	2.0			6.8 ± 1.1		
$BR(B \to K^+ \nu$	$\overline{\nu}$) (×	10^{-6})	< 160			0.7	1.6			3.6 ± 0.5	5	
${ m BR}(B o X_s \gamma)$	$(\times 10)$	$^{-4})$	3.55 ± 0.1	26		0.11	0.13	0	.23	3.15 ± 0.2	23	
$A_{CP}(B \to X_{(s)})$	$_{+d)}\gamma)$		0.060 ± 0.00	060		0.02	0.02			$\sim 10^{-9}$		
$B \to K^* \mu^+ \mu^-$	(even	ts)	250^{c}		8000	$10-15k^d$	7-10k	100	0,000	-		
${ m BR}(B o K^* \mu)$	$^{+}\mu^{-})$	$(\times 10^{-6})$	1.15 ± 0.1	16		0.06	0.07			1.19 ± 0.3	39	
$B \to K^* e^+ e^-$	(event	cs)	165		400	10-15k	7-10k	5,	000	-		
$BR(B \to K^*e^+$	$e^{-})$ ($(\times 10^{-6})$	1.09 ± 0.1	17		0.05	0.07			1.19 ± 0.3	39	
$A_{FB}(B o K^*)$	$\ell^+\ell^-)$		0.27 ± 0.1	14^e	f	0.040	0.03			$-0.089 \pm 0.$	020	
$B \to X_s \ell^+ \ell^-$ (events	s)	280			8,600	7,000			-		
$DD/D \to V \ell^+$	<u>/-) (</u> ,	~10-6\a	9.0010	h		0.00	0.10			1 1 1 1 1 1 1 1	1	
bservable/mode		Cur	rent	LH	ICb	Super B	Bel	le II	LHC	b upgrade		theory
-		ne	w	(20	17	(2021)	(20	21)	(10	vears of		now
				(20	_1	(2021)	(20	· -1	(10	> = = 1		11010
				51	b -	75 ab -	50 a	ıb -	runnii	ng) 50fb -		
				Otl	her pr	ocesses I	Decays					
$1^2 \theta_W$ at $\sqrt{s} = 10.58 \text{GeV}$	c^2					0.0002		l				clean
······,			1	1	1				1			
 <i>y_{CP</i>			(1.11 ± 0.2)	2)%	0.05%	0.03%	0.05%	0.	01%	$\sim 10^{-2}$ (see a	bove).	
			$(0.91 \pm 0.1$	7)%	10%	2.7%	3.0%	3	3%	$\sim 10^{-3}$ (see a	bove).	/
$\arg\{q/p\}$ (°)			-10.2 ± 9	9.2	5.6	1.4	1.4		2.0	$\sim 10^{-3}$ (see a	bove).	

Other processes Decays 0.0002

 $\sin^2 \theta_W$ at $\sqrt{s} = 10.58 \,\text{GeV}/c^2$

Marco Ciuchini

 $\sin^2\theta_W$ at

Implications of LHC results for TeV-scale physics - CERN, 26 March 2012

1

clean

Precision ElectroWeak Test

 $sin^2\Theta_w$ can be measured with polarised e⁻ beam

beam polarization has to be controlled at the percent level

 measure LR asymmetry in

at the $\Upsilon(4S)$ to same precision as SLC at the Z-pole

Similar measurements planned/underway at lower energies (QWeak/MESA)

 $B_s \to \gamma \gamma$ a_{sl} D Decays Mixing parameters **CP** Violation clean NP search Precision Electroweak $\sin^2 \theta_W$ at $\Upsilon(4S)$ $\sin^2 \theta_W$ at Z-Pole LHCb (2017) Observable/mode SuperB (2022) LHCb upgrade Theory Current $\sim 1 \, \text{fb}^{-1}$ $5 \, {\rm fb}^{-1}$ 75 ab-1 $50 \, {\rm fb}^{-1}$ Luminosity α

Effort to identify golden modes and compare with other experiments

b fragmentation limits interpretation at Z pole LHCb can only use $\rho\pi$ β from $b \rightarrow c\bar{c}s$ βtheory error Bd $B_d \rightarrow J/\psi \pi^0$ βtheory error Bs $B_s \rightarrow J/\psi K_s^0$ Y need an e+e- $|V_{ub}|$ inclusive environment to do a $|V_{ub}|$ exclusive precision measurement $|V_{cb}|$ inclusive using semi-leptonic B Vcb exclusive decays.

Marco Ciuchini

Conclusions

SuperB will redefine the flavor physics landscape by ~2022, having the best performances on all its golden modes, thanks to its superior luminosity and operation flexibility. The LHCb upgrade will be able to improve only few SuperB results by ~2030

Yet SuperB & LHCb(-upgrade) physics programs are largely complementary. Together with K and μ FV experiments, they allow to substantially advance the search for NP FV & CPV in all flavor sectors

Outlook (from Frascati)

The Cabibbo Lab now exists

http://www.cabibbolab.it

Marco Ciuchini

Implications of LHC results for TeV-scale physics – CERN, 26 March 2012

Page 29

Theor	ry err	ors		500 [®] Projec	ted Performance Deve	elopment
ke	ep up		10 PF 1 PF 1 00 TF	lops -	23 00.78 JF	#1 #500 Sum
lattice QCl O(1%) preci V. Lubicz, Super	D can re sion goo B CDR, arX	each th al on tir iv:0709.04	e 0 10 TF ne 1 TF ne 1 00 GF 10 GF 1 0G F 10 GF 1 0G F 51 1 00 MF	lops	1645 GP a ⁰⁰⁰⁰⁰⁰⁰⁰⁰	- #1 Trend Line - #500 Trend Line - Sum Trend Line
ar	Xiv:1008.15	41	09/11/2005	; 5 7 7 7 8 7 7 7 7 7 7	R R R R R R	R ର http://www.top500.org/
Messurement	Hadronic	Status	6 TFlops	Status	60 TFlops	1-10 PFlops
Weasurement	Parameter	End 2006	(Year 2009)	End 2009	(Year 2011)	(Year 2015)
$K \to \pi l v$	$f_+^{K\pi}(0)$	0.9%	0.7~%	0.5 %	0.4 %	< 0.1%
ε_K	\hat{B}_K	11 %	5 %	5%	3 %	1 %
B ightarrow l u	f_B	14~%	3.5-4.5 %	5%	2.5-4.0%	1.0-1.5 %
Δm_d	$f_{Bs}\sqrt{B_{B_s}}$	13 %	4-5 %	5%	3-4 %	1-1.5 %
$\Delta m_d / \Delta m_s$	ξ	5%	3 %	2%	1.5-2 %	0.5-0.8 %
$B ightarrow D/D^{st} l u$	$\mathscr{F}_{B ightarrow D/D^*}$	4%	2 %	2%	1.2 %	0.5~%
$B ightarrow \pi / ho l v$	$f_+^{B\pi},\ldots$	11 %	5.5-6.5 %	11 %	4-5 %	2-3 %
$B ightarrow K^* / ho \left(\gamma, l^+ l^- ight)$	$T_1^{B o K^* / ho}$	13 %		13 %		3-4 %

Implications of LHC results for TeV-scale physics – CERN, 26 March 2012

Page 31

no theory improvements needed	β(J/ψ K), γ(DK), α(ππ)*, lepton FV and UV, S(ρ ^o γ) CPV in B->Xγ, D and τ decays zero of FB asymmetry B->X _s ⁺ ⁻	NP insensitive or null tests of the SM or SM already known with the required accuracy
improved lattice QCD	meson mixing, B->D(*)Iv, B->π(ρ)Iv B->K*γ, B->ργ,B->Iv, B₅->μμ	target error: ~1-2% Feasible (see below)
improved OPE+HQE	B->X _{u,c} Ιν, Β->Χγ	target error: ~1-2% Possibly feasible with SuperB data getting rid of the shape function. Detailed studies required
improved QCDF/SCET or flavour symmetries	S's from TD A _{CP} in b -> s transitions	target error: ~2-3% large and hard to improve uncertainties on small corrections. FS+data can bound the th. error

An explicit example: hierarchical soft terms

Nardecchia, Giudice, Romanino, arXiv:0812.3610 Cohen, Kaplan, Nelson, hep-ph/9607394 Dine, Kagan, Samuel, PLB243 (1990)

but for 1st and 2nd generation squarks and sleptons

- no "unnatural" correction to the Higgs mass
- alleviate the flavour problem
- indicate "natural" values for the δ 's:

$$\hat{\delta}_{db}^{LL} \approx V_{td}^* \sim 0.01$$
 $\hat{\delta}_{sb}^{LL} \approx V_{ts}^* \sim 0.05$

Sparticles at the EW scale

$$\hat{\delta}_{i3}^{LR} \equiv \frac{\mathcal{M}_{L3,R3}^2}{\tilde{m}^2} \hat{\delta}_{i3}^{LL} \qquad i,j=1,2$$

$$\hat{\delta}_{ij}^{LL} \equiv \hat{\delta}_{i3}^{LL} \hat{\delta}_{j3}^{LL*} \quad \hat{\delta}_{ij}^{LR} \equiv \frac{\mathcal{M}_{L3,R3}^2}{\tilde{m}^2} \hat{\delta}_{i3}^{LL} \hat{\delta}_{j3}^{RR*}$$

Marco Ciuchini

these figures are in the ballpark of SuperB sensitivities

R-S models

- flavour in extra-dim. is severely constrained by $\epsilon_{\rm K}$
- large B/Bs effect are still possible

there are R-S models where effects in B(s) are confined to the mixing amplitudes

Marco Ciuchini

M. Blanke et al., 0906.5454

Marco Ciuchini

CPV in charm mixing

Strategy	Decay	$\sigma(q_D/p_D) imes 10^2$	$\sigma(\phi_{\scriptscriptstyle M})^\circ$	
HFAG (direct CPV allowed):				
Global χ^2 fit	<All modes $>$	± 18	± 9	
Asymmetries a_z :				
x_D	<All modes $>$	± 1.8	_	
y_D	$<\!$ All modes $>$	± 1.1	_	
y_{CP}	K^+K^-	± 3.8	_	
y'	$K^+\pi^-$	± 4.9	_	
$x^{\prime 2}$	$K^+\pi^-$	± 4.9	_	
$x^{\prime\prime}$	$K^{+}\pi^{-}\pi^{0}$	± 5.4	_	
$y^{\prime\prime}$	$K^{+}\pi^{-}\pi^{0}$	± 5.0	—	
TDDP (CPV allo	wed):			
Model-dependent	$K_{s}^{0}h^{+}h^{-}$	± 8.4	± 3.3	
BES III DP model	$K_{s}^{0}h^{+}h^{-}$	± 3.7	± 1.9	
Super B DP model	$K_{s}^{0}h^{+}h^{-}$	± 2.7	± 1.4	
SL Asymmetries a	a_{SL} :			
75 ab^{-1} at $\Upsilon(4S)$	$X\ell \nu_\ell$	± 10		
500 fb^{-1} at $\psi(3770)$	$K\pi$	± 10		
500 fb ⁻¹ at $\psi(3770)$	$X\ell\nu_\ell$	TBD		

Marco Ciuchini

DETECTOR TIMELINE CARTOON

Marco Ciuchini