CMSSM and NUHM Analysis by BayesFITS

Leszek Roszkowski*

National Centre for Nuclear Research (NCBJ)
Warsaw, Poland

BayesFITS group: A. Fowlie (UoS), M. Kazana, K. Kowalska, K. Nawrocki, L. Roszkowski, E. Sessolo, Y.-L. S. Tsai,

*On leave of absence from University of Sheffield

Outline

- Statistical approach
- Bayesian posterior
- LHC SUSY limits: derive likelihood maps for alphaT (1.1/fb) and razor (4.4/fb)
- Impact of possible m_h~125 GeV
- CMSSM results
- NUHM results
- Summary

Based on:

- Fowlie, Kalinowski, Kazana, Roszkowski, Tsai (arXiv:1111.6098 -> PRD)
- Roszkowski, Sessolo, Tsai (arXiv:1202.1503)
- in preparation

Statistical approach

Best way to go with so much data (sometimes mutually exclusive)

For positive measurements:

Central object: Likelihood function

 $(e.g., M_W)$

Take a single observable $\xi(m)$ that has been measured

- c central value, σ standard exptal error
- define

$$\chi^2 = \frac{[\xi(m)-c]^2}{\sigma^2}$$

assuming Gaussian distribution $(d \rightarrow (c, \sigma))$:

$$\mathcal{L} = p(\sigma, c | \xi(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

 \blacksquare when include theoretical error estimate τ (assumed Gaussian):

$$\sigma \to s = \sqrt{\sigma^2 + \tau^2}$$

TH error "smears out" the EXPTAL range

for several uncorrelated observables (assumed Gaussian):

$$\mathcal{L} = \exp\left[-\sum_i rac{\chi_i^2}{2}
ight]$$

For limits:

- Smear out bounds.
- Can add theory error.

Bayesian statistics

Bayes theorem: | Posterior =

$$Posterior = \frac{Prior \times Likelihood}{Evidence}$$

- **Prior**: what we know about hypothesis BEFORE seeing the data.
- Likelihood: the probability of obtaining data if hypothesis is true.
- Posterior: the probability about hypothesis AFTER seeing the data.
- Evidence: normalization constant, crucial for model comparison.

If hypothesis is a function of parameters, then posterior becomes posterior probability function (pdf).

Reproducing alpha_T (1.1/fb) limit

Poisson distribution to characterize counting experiments.

(arXiv:1111.6098)

$$\mathcal{L} = \prod_{i} \frac{e^{-(s_i + b_i)} (s_i + b_i)^{o_i}}{o_i!}$$

 o_i : observed events in LHC.

 b_i : expected SM background events.

$$s_i: s_i = \epsilon_i \times \sigma \times \int L.$$

 $\epsilon_i: N_i(\alpha_T > 0.55)/N_{\rm total}$

i = 1, 2, 3..., 8.

- ☐ Apply the same kinematical cuts as CMS.
- Obtain approximate efficiency and

likelihood maps (combine 8 bins, rescale by

CMSSM: global scan

- Perform random scan over 4 CMSSM +4 SM parameters simultaneously
- Use Nested
 Sampling
 algorithm to
 evaluate
 posterior

(arXiv:1111.6098)

Very wide ranges:

$$egin{aligned} 100\, ext{GeV} & \leq m_0 \leq 4\, ext{TeV} \ 100\, ext{GeV} & \leq m_{1/2} \leq 2\, ext{TeV} \ -2\, ext{TeV} & \leq A_0 \leq 2\, ext{TeV} \ 3 \leq aneta \leq 62 \end{aligned}$$

Measurement	Mean	Exp. Error	The. Error	Likelihood Distribution			
CMS α _T 1.1/fb analysis							
α_T	See text	See text	0	Poisson			
XENON100							
$\sigma_p^{SI}(m_\chi)$	$< f(m_\chi)$ – see text	0	1000%	Upper limit - Error Function			
Non-LHC							
$\Omega_{\chi}h^2$	0.1120	0.0056	10%	Gaussian			
$\sin^2 \theta_{eff}$	0.23116	0.00013	0.00015	Gaussian			
M_W	80.399	0.023	0.015	Gaussian			
$\delta(g-2)^{SUSY}_{\mu} \times 10^{10}$	30.5	8.6	1.0	Gaussian			
$BR(\bar{B} \rightarrow X_s \gamma) \times 10^4$	3.60	0.23	0.21	Gaussian			
$BR(B_u \rightarrow \tau \nu) \times 10^4$	1.66	0.66	0.38	Gaussian			
ΔM_{B_s}	17.77	0.12	2.40	Gaussian			
$BR(B_s \rightarrow \mu^+\mu^-)$	$< 1.5 \times 10^{-8}$	0	14%	Upper limit - Error Function			
Nuisance							
$1/\alpha_{em}(M_Z)^{MS}$	127.916	0.015	0	Gaussian			
m.pole	172.9	1.1	0	Gaussian			
$m_b(m_b)^{MS}$	4.19	0.12	0	Gaussian			
$\alpha_s(M_Z)^{\overline{MS}}$	0.1184	0.0006	0	Gaussian			
LEP and Tevatron -	95% Limits						

Impact of CMS alpha_T limit on CMSSM

- Favored (high posterior) regions (stau coan., A-funnel) are pushed up.
- Light Higgs funnel region is excluded.
- Focus point/horizontal branch region gets enhanced and pushed out.
- Best-fit point pushed up but remains in the stau coannihilation region, tanb(BF)~11 (but location of BF is very sensitive to input from bsgamma).

CMSSM: extend mass range

- Increased importance of the FP/HB region.
- Somewhat decreased importance of A-funnel region.

Current hadronic limits

ATLAS

CMS

Reproducing Razor (4.4/fb) limit

Follow CMS analysis

For each SUSY point:

- simulated mass spectrum
- 10k events with reconstructed variables
- Consider 6 bins in R^2 and M_R
- Efficiency after final cuts
- Compute likelihood function
- Need to rescale by ~7 (for 6 bins)

(Previously we could "reproduce" 1.1/fb razor limit with scale factor of ~2)

VERY GOOD AGREEMENT

Impact of Razor(4.4/fb) limit on CMSSM

Extend range: $-7 \, \mathrm{TeV} \le A_0 \le 7 \, \mathrm{TeV}$

Measurement	Mean or Range	Exp. Error	Th. Error	Likelihood Distribution
CMS Razor 4.4/fb analysis	See text	See text	0	Poisson
SM-like Higgs mass m _h	117.5 - 118.5 and 122.5-129	0	2	Lower/Upper limit - Error Fn
	114.4 - 127.5	0	2	Lower/Upper limit - Error Fr
	> 114.4	0	2	Lower limit – Error Fn
ζÃ	$< f(m_h)$	0	0	Upper limit – Step Fn
$\Omega_{\chi}h^2$	0.1120	0.0056	10%	Gaussian
$\sin \theta_{\rm eff}$	0.23116	0.00013	0.00015	Gaussian
m_W	80.399	0.023	0.015	Gaussian
$\Delta (g-2)_{\mu}^{SUSY} \times 10^{10}$	30.5	8.6	1.0	Gaussian
$BR(\overline{B} \rightarrow X_s \gamma) \times 10^4$	3.60	0.23	0.21	Gaussian
$BR(B_u \rightarrow \tau \nu) \times 10^4$	1.66	0.66	0.38	Gaussian
ΔM_{B_s}	17.77	0.12	2.40	Gaussian
$BR(\overline{B}_s \rightarrow \mu^+\mu^-)$	$< 4.5 \times 10^{-9}$	0	14%	Upper limit – Error Fn

plus LHC higgs bounds and ${\rm BR}(\overline B_s \to \mu^+\mu^-) < 4.5 \times 10^{-9}$

Compare:

impact of alphaT (1/fb)

(arXiv:1111.6098)

- FP/HB is now much larger
- A-funnel region suppressed
- Stau coann. region: still best fit
- tanbeta(BF point)~21

...and IF mh~125 GeV?

Currently allowed (95%)

ATLAS: 117.5-118.5 GeV and 122.5-129 GeV

CMS: 114.4 - 127.5 GeV

- Add tau=2GeV th error (via Gaussian)
- Construct likelihood

- Assume mh~125 GeV confirmed
- Add tau=2GeV (th) and sigma=2GeV (expt)

The Like-function only differs in the lower mass window where it is rather small anyway.

CMSSM w/o and w/ mh~125 GeV

LHC mh limits only

mh~125 GeV

- Fairly similar probability maps!
- m_0 pushed up if mh~125 GeV
- Location of best-fit point also similar.

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND Leszek Roszkowski

CMSSM w/o and w/ mh~125 GeV

CMSSM: short of producing m_h=125 GeV, but fine with both limits and `signal' within realistic uncertainties!

Non-Universal Higgs Model (NUHM)

 $m_{H_u}^2, m_{H_d}^2
eq m_0^2$

Our efficiency map derived for the razor (4.4/fb) limit in CMSSM works also for NUHM

NUHM w/o and w/ mh~125 GeV

LHC mh limits only

Posterior pdf NUHM, $\mu > 0$ Log Priors LHC Higgs bounds

solid: 1σ region

dashed: 2σ region

mh~125 GeV

Posterior mean

Best fit

A₀ (TeV)

BayesFITS (2012)

m_h~125GeV actually prefers lower MSUSY and tanb!

NUHM w/o and w/ mh~125 GeV

LHC mh limits only

mh~125 GeV

Fairly similar pattern with and without m_h~125GeV

Light Higgs in CMSSM and NUHM

Summary

- Global Bayesian fits: a powerful tool to analyze SUSY models
- CMS razor SUSY limit included via our approximate likelihood maps (applicable to any MSSM-based Rparity conserving model)
- CMSSM is alive and reasonably well (both w/o and with mh~125 GeV, if uncertainties are taken into account)
- NUHM: equally (if not more) so ...just getting heavier, with a poorer fit
- NUHM: high probability regions very different from CMSSM, lighter spartners preferred

