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Which models are 
ruled out, which are 

still in play?  
Answering accurately 

requires an 
understanding of 

essential statistics...
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OUTLINE

It is in exploring the common ground between theory 
that one can isolate the important points regarding 

efficient communication of results

*inasmuch as one is interested in constructing 
likelihoods and exclusions in general parameter spaces*

Three such items by our count
= emphasis of this talk...



Getting at answers with an obvious example: The Higgs
The theory we know has to be augmented (unitarity, renorm’ability):



Getting at answers with an obvious example: The Higgs
The theory we know has to be augmented (unitarity, renorm’ability):
Three massive vectors, triplet of approximate SU(2)

described at leading order:

∆L =
v2

4
tr

[
(DµU)†(DµU)

]

− v√
2

ψc
i U† × λijψj + h.c.

U = exp [2iτaπa(x)/v]
!→ LUR†



Getting at answers with an obvious example: The Higgs
The theory we know has to be augmented (unitarity, renorm’ability):
Three massive vectors, triplet of approximate SU(2)

described at leading order:

∆L =
v2

4
tr

[
(DµU)†(DµU)

]

− v√
2

ψc
i U† × λijψj + h.c.

U = exp [2iτaπa(x)/v]
!→ LUR†

×
(

1 + 2a
h

v
+ b

h2

v2
+ . . .

)

×
(

1 + c
h

v
+ . . .

)

Assumption: the (custodial singlet) ‘Higgs’ might not be 
single-handedly responsible for unitarization, etc.  

OTHER NEW PHYSICS enters at potentially low scales,
e.g.                                                .

Likewise “a” tells us about other Higgses in the spectrum
e.g.                             completely decoupled in MSSM

ΛC.H. ∼ 4πv/
√

1− a2 #MP

a = 1⇒ H±, A0
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Focus on: with theory predictions:
A minimally-prejudiced question:

HOW CAN WE 
CONSTRAIN 
THIS SPACE?
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This can be related purely to theory, but 

it’s only approximate

EFFICIENCIES NEEDED
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A closer look at “signal strength modifier”

***IMPORTANT POINT NUMBER ONE***

Tracing back from number of events to underlying theory
REQUIRES knowledge of efficiencies 
when considering generalized spaces.
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From here just map theory parameters to    and compare to          ...µ P (µ)

NOT YET AVAILABLE *

* but let’s not despair 
(although it would be nice to have)



Moving on: Comparison to Likelihood

***IMPORTANTish POINT NUMBER TWO***

Constructing exclusions for underlying theory
WOULD BE HELPED BY knowledge of likelihoods directly.
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Moving on: Comparison to RECONSTRUCTED Likelihood

P (µ) = N × exp
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RECAP:
o  Expected exclusion tells us about s/b
o  Observed tells us delta, completes determination of (AL) likelihood
o  Good news: can be done over whole mass range, not just at ‘peaks’
    where information on best fit is available

Solve for remaining parameter using observed exclusion limit:

0.95 =
∫ µ̃(95%)

obs

0
dµ P (µ)
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One possible check: the total combination

CMS ! 7 TeV, " 4.8 fb#1

Official Combination
Gaussian
Inverse Quadrature
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mh !GeV"

o  ACCURATE WITHIN 10% BELOW 300 GeV; 
    within 20% at high masses

o  Compare to “naive graphical analysis” (adding in 
    inverse quadrature) which errs by 40% or more

o  Looks good: let’s apply the method and run with it



Status report for unpopular mass points

!!
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Status report for the Higgs at 125(?)(!)

1. WW 2. γγ 3. ZZ 4. ττ 5. bbγγ

1. Both in barrel, min(R9) > 0.94
2. Both in barrel, min(R9) < 0.94
3. ≥ One in endcap, min(R9) > 0.94
4. ≥ One in endcap, min(R9) < 0.94
5. Dijet tag

} Inclusive

VBF

Five channels for a light Higgs:



Status report for the Higgs at 125(?)(!)

1. WW 2. γγ 3. ZZ 4. ττ 5. bb

Inclusive               

ZZ ττ bb

VBF + GF + “Boosted”

Associated Production

(combined limit given; event numbers for one mass)

Five channels for a light Higgs:
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SM LOOKS FINE

ATLAS seems to disfavor the SM: 
how should we take this?

NOT VERY SERIOUSLY
stay tuned...

Status report for the Higgs at 125(?)(!)



Final Point: The Need for Exclusive Searching and Reporting

About the displayed CMS results:
o  All WW subchannels treated individually
o  Others (except bb) treated inclusively
o  Can do better for gamma gamma exactly at peak

Different method:
Fit each band with

appropriate distribution
(approx. Gaussian)
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Final Point: The Need for Exclusive Searching and Reporting

About the displayed CMS results:
o  All WW subchannels treated individually
o  Others (except bb) treated inclusively
o  Can do better for gamma gamma exactly at peak

Total likelihood given by 
product of all



Final Point: The Need for Exclusive Searching and Reporting
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": All Inclusive
Side-by-side comparison of INCLUSIVE results:

(There *are* real differences, but we see a 
distinctive -- qualitative -- similarity here)
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Now treat gamma gamma subchannels:
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": All Inclusive

VBF

near c = 0 line, R ∼ a2 Excess in dijet 
fit with gauge coupling
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WW subchannels:
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CMS Likelihoods !$ 4.8 fb#1 % 7 TeV": WW Exclusive

VBF

Note VBF cuts deeper in this case:
signal deficit in this subchannel

BG ~ 11, obs. ~ 8
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ALL subchannels:
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***IMPORTANT POINT NUMBER THREE***

Tracing back from events to underlying theory REQUIRES 
separate presentation of limits from each subchannel.

Final Point: The Need for Exclusive Searching and Reporting
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1.  Cut efficiencies truly needed for constraining generic spaces
II.  Direct likelihoods would be nice to have

III.  Exclusions in generic spaces need exclusive searches

To Conclude



***THREE IMPORTANT POINTS***

1.  Cut efficiencies truly needed for constraining generic spaces
II.  Direct likelihoods would be nice to have

III.  Exclusions in generic spaces need exclusive searches

To Conclude

And some ‘incidentals’:

1.  SM Higgs looking very good at 125 GeV
II.  Other masses still in play, but very non-SM couplings

III.  Time will tell us more, but we can already tell ourselves a LOT:
Well-tested techniques in place to explore 

the parameter space of your choice...



Choose a space, any space...



Choose a space, any space...

Which has Nature chosen?

We’re well on our way 
to an answer...


