HIGGS HUNTING
 FROM THE BOTTOM UP

COLLABORATIVE SEARCH STRATEGIES AT THE LHC

LHC2TSP: CERN - MARCH 2012

Jamison Galloway
based on work with A. Azatov and R. Contino (arXiv:1202.3415 and in progress)
$\underset{\text { UNivergitidingoma }}{\text { SAPIENZA }}$

HIGGS HUNTING
 FROM THE BOTTOM UP

COLLABORATIVE SEARCH STRATEGIES AT THE LHC*

LHC2TSP: CERN - MARCH 2012

*Or, a demonstration of principles described in yesterday's discussion of the Les Houches Recommendations

Entering a data-driven era...

- Focus on bridging any gaps between theory and experiment:
- Indentify the essential theory that is useful for experimentalists, and...
- The essential experiment (statistics) for theorists

Entering a data-driven era...

- Focus on bridging any gaps between theory and experiment:
- Indentify the essential theory that is useful for experimentalists, and...
- The essential experiment (statistics) for theorists

> Establishes necessary knowledge for how to report data: not just to make interpetation easier, but to make it
> *possible at all* (examples to come)

Entering a data-driven era...

- Focus on bridging any gaps between theory and experiment:
- Indentify the essential theory that is useful for experimentalists, and...
- The essential experiment (statistics) for theorists

Establishes necessary knowledge for how to report data: not just to make interpetation easier, but to make it
possible at all (examples to come)

Which models are ruled out, which are still in play?
Answering accurately requires an understanding of essential statistics...

OUTLINE

It is in exploring the common ground between theory that one can isolate the important points regarding efficient communication of results
inasmuch as one is interested in constructing likelihoods and exclusions in general parameter spaces

OUTLINE

It is in exploring the common ground between theory that one can isolate the important points regarding efficient communication of results
inasmuch as one is interested in constructing likelihoods and exclusions in general parameter spaces

Three such items by our count = emphasis of this talk...

Getting at answers with an obvious example:The Higgs
The theory we know has to be augmented (unitarity, renorm'ability):

Getting at answers with an obvious example:The Higgs
The theory we know has to be augmented (unitarity, renorm'ability): Three massive vectors, triplet of approximate SU(2)

$$
U=\exp \left[2 i \tau_{a} \pi_{a}(x) / v\right]
$$

$$
\mapsto \quad L U R^{\dagger}
$$

described at leading order:

$$
\begin{aligned}
\Delta \mathcal{L}= & \frac{v^{2}}{4} \operatorname{tr}\left[\left(D_{\mu} U\right)^{\dagger}\left(D^{\mu} U\right)\right] \\
& -\frac{v}{\sqrt{2}} \psi_{i}^{c} U^{\dagger} \times \lambda_{i j} \psi_{j}+\text { h.c. }
\end{aligned}
$$

Getting at answers with an obvious example:The Higgs

The theory we know has to be augmented (unitarity, renorm'ability): Three massive vectors, triplet of approximate SU(2)

$$
U=\exp \left[2 i \tau_{a} \pi_{a}(x) / v\right]
$$

$\mapsto \quad L U R^{\dagger}$
described at leading order:

$$
\begin{aligned}
\Delta \mathcal{L}= & \frac{v^{2}}{4} \operatorname{tr}\left[\left(D_{\mu} U\right)^{\dagger}\left(D^{\mu} U\right)\right] \times\left(1+2\left(2 \frac{h}{v}+b \frac{h^{2}}{v^{2}}+\ldots\right)\right. \\
& \frac{v}{\sqrt{2}} \psi_{i}^{c} U^{\dagger} \times \lambda_{i j} \psi_{j} \times\left(1+c \frac{h}{v}+\ldots\right)
\end{aligned}
$$

Assumption: the (custodial singlet) 'Higgs' might not be single-handedly responsible for unitarization, etc.
OTHER NEW PHYSICS enters at potentially low scales,

$$
\text { e.g. } \Lambda_{\mathrm{C} . \mathrm{H} .} \sim 4 \pi v / \sqrt{1-a^{2}} \ll M_{\mathrm{P}}
$$

Likewise "a" tells us about other Higgses in the spectrum e.g. $a=1 \Rightarrow H^{ \pm}, A^{0}$ completely decoupled in MSSM

Getting at answers with an obvious example:The Higgs

The theory we know has to be augmented (unitarity, renorm'ability): Three massive vectors, triplet of approximate SU(2)

$$
U=\exp \left[2 i \tau_{a} \pi_{a}(x) / v\right]
$$

described at leading order:

$$
\begin{aligned}
\Delta \mathcal{L}= & \left.\frac{v^{2}}{4} \operatorname{tr}\left[\left(D_{\mu} U\right)^{\dagger}\left(D^{\mu} U\right)\right] \times\left(1+2 a \frac{h}{v}\right)+b \frac{h^{2}}{v^{2}}+\ldots\right) \\
& -\frac{v}{\sqrt{2}} \psi_{i}^{c} U^{\dagger} \times \lambda_{i j} \psi_{j}+\text { h.c. } \times\left(1+c \frac{h}{v}-\ldots\right)
\end{aligned}
$$

Focus on:

$$
\begin{aligned}
a & \equiv \frac{g}{g_{\mathrm{SM}}} \\
c & \equiv \frac{y}{y_{\mathrm{SM}}}
\end{aligned}
$$

Getting at answers with an obvious example:The Higgs

The theory we know has to be augmented (unitarity, renorm'ability): Three massive vectors, triplet of approximate SU(2)

$$
U=\exp \left[2 i \tau_{a} \pi_{a}(x) / v\right]
$$

described at leading order:

$$
\begin{aligned}
\Delta \mathcal{L}= & \left.\frac{v^{2}}{4} \operatorname{tr}\left(D_{\mu} U\right)^{\dagger}\left(D^{\mu} U\right)\right] \times\left(1+\left(2 \frac{h}{v}\right)+b \frac{h^{2}}{v^{2}}+\ldots\right) \\
& -\frac{v}{\sqrt{2}} U_{i}^{c} U^{\dagger} \times \lambda_{i j} v_{j}+\text { h.c. } \times\left(1-\left(\frac{h}{v}\right) \cdots\right)
\end{aligned}
$$

Focus on:

$$
\begin{aligned}
a & \equiv \frac{g}{g_{\mathrm{SM}}} \\
c & \equiv \frac{y}{y_{\mathrm{SM}}}
\end{aligned}
$$

with theory predictions:

* SM: $\left\{\begin{array}{l}a=b=1 \\ c=1\end{array}\right.$
* "MCHM4": $\left\{\begin{array}{l}\xi \equiv v^{2} / f^{2} \\ a=c=\sqrt{1-\xi}\end{array}\right.$
$\star{ }^{\prime}$ MCHM5" $^{\prime}:\left\{\begin{array}{l}a=\sqrt{1-\xi} \\ c=\frac{1-2 \xi}{\sqrt{1-\xi}}\end{array}\right.$

Getting at answers with an obvious example:The Higgs
The theory we know has to be augmented (unitarity, renorm'ability): Three massive vectors, triplet of approximate SU(2)

$$
U=\exp \left[2 i \tau_{a} \pi_{a}(x) / v\right]
$$

$\mapsto \quad L U R^{\dagger}$
described at leading order:

$$
\begin{aligned}
\Delta \mathcal{L}= & \frac{v^{2}}{4} \operatorname{tr}\left[\left(D_{\mu} U\right)^{\dagger}\left(D^{\mu} U\right)\right] \times\left(1+\left(2 a \frac{h}{v}\right)+b \frac{h^{2}}{v^{2}}+\ldots\right) \\
& -\frac{v}{\sqrt{2}} v_{i}^{c} U^{\dagger} \times \lambda_{i,} \psi_{j}+\text { h.c. } \times\left(1+\left(\frac{h}{v}\right) \cdots\right)
\end{aligned}
$$

Focus on:
with theory predictions:

A minimally-prejudiced question:
HOW CAN WE CONSTRAIN THIS SPACE? $a=c=\sqrt{1-\xi}$
$\left\{\begin{array}{l}a=\sqrt{1-\xi} \\ c=\frac{1-2 \xi}{\sqrt{1-\xi}}\end{array}\right.$

Some "need to know" statistics

Given background, signal, and observed events: construct likelihood:

$$
\begin{aligned}
P\left(n \mid n_{\mathrm{obs}}\right) & =\frac{n^{n_{\mathrm{obs}}} e^{-n}}{n_{\mathrm{obs}}!} \times \pi(n) \\
& \xrightarrow{\text { A.L. }} \exp \left[\frac{-\left(n-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \times \pi(n)
\end{aligned}
$$

Some "need to know" statistics

Given background, signal, and observed events: construct likelihood:

$$
\begin{aligned}
& P\left(n \mid n_{\mathrm{obs}}\right)=\frac{n^{n_{\mathrm{obs}}} e^{-n}}{n_{\mathrm{obs}}!} \times \pi(n) \\
& \stackrel{\text { A.L. }}{\longrightarrow} \exp \left[\frac{-\left(n-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \times \pi(n) \\
& n=n_{B}+\mu n_{S}^{\mathrm{SM}} \Rightarrow P(\mu)=\pi(\mu) \times \exp \left[\frac{\left(n_{B}+\mu n_{S}-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right]
\end{aligned}
$$

Some "need to know" statistics

Given background, signal, and observed events: construct likelihood:

$$
\begin{aligned}
P\left(n \mid n_{\mathrm{obs}}\right) & =\frac{n^{n_{\mathrm{obs}}} e^{-n}}{n_{\text {obs }}!} \times \pi(n) \\
& \stackrel{\text { A.L. }}{\longrightarrow} \exp \left[\frac{-\left(n-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \times \pi(n) \\
n=n_{B}+\mu n_{S}^{\mathrm{SM}} & \Rightarrow P(\mu)=\pi(\mu) \times \exp \left[\frac{\left(n_{B}+\mu n_{S}-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right]
\end{aligned}
$$

Some "need to know" statistics

Given background, signal, and observed events: construct likelihood:

$$
\begin{aligned}
P\left(n \mid n_{\mathrm{obs}}\right) & =\frac{n^{n_{\mathrm{obs}}} e^{-n}}{n_{\mathrm{obs}}!} \times \pi(n) \\
& \stackrel{\text { A.L. }}{\longrightarrow} \exp \left[\frac{-\left(n-n_{\mathrm{obs}}\right)^{2}}{2 n_{\text {obs }}}\right] \times \pi(n) \\
n=n_{B}+\mu n_{S}^{\mathrm{SM}} & \Rightarrow P(\mu)=\pi(\mu) \times \exp \left[\frac{\left(n_{B}+\mu n_{S}-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right]
\end{aligned}
$$

$\tilde{\mu}$: upper bound on signal strength modifier at CL = alpha.

Two versions:
I. Expected (background only hypothesis)
2. Observed (compared to data)

Some "need to know" statistics

Given background, signal, and observed events: construct likelihood:

$$
\begin{aligned}
& P\left(n \mid n_{\text {obs }}\right)=\frac{n^{n_{\mathrm{obs}} e^{-n}}}{n_{\mathrm{obs}}!} \times \pi(n) \\
& \stackrel{\text { A.L. }}{\longrightarrow} \exp \left[\frac{-\left(n-n_{\text {obs }}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \times \pi(n) \\
& n=n_{B}+\mu n_{S}^{\mathrm{SM}} \Rightarrow P(\mu)=\pi(\mu) \times \exp \left[\frac{\left(n_{B}+\mu n_{S}-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right]
\end{aligned}
$$

$\tilde{\mu}$: upper bound on signal strength modifier at CL = alpha.

Two versions:
I. Expected (background only hypothesis)
2. Observed (compared to data)

A closer look at "signal strength modifier"

We want to compare number of observed signal events in SM units:

A closer look at "signal strength modifier"

We want to compare number of observed signal events in SM units:

$$
\begin{gathered}
n_{S}^{(i)}=\left(\int d t \mathcal{L}\right) \times \sum_{p} \sigma_{p}^{(i)} \times \zeta_{p, i} \times \operatorname{BR}(h \rightarrow i) \\
\Rightarrow \mu=\frac{\sum_{p} \sigma_{p}^{(i)} \times \zeta_{p, i} \times \operatorname{BR}(h \rightarrow i)}{\left[\sum_{p} \sigma_{p}^{(i)} \times \zeta_{p, i} \times \operatorname{BR}(h \rightarrow i)\right]_{\mathrm{SM}}}
\end{gathered}
$$

A closer look at "signal strength modifier"

We want to compare number of observed signal events in SM units:

$$
\begin{gathered}
n_{S}^{(i)}=\left(\int d t \mathcal{L}\right) \times \sum_{p} \sigma_{p}^{(i)} \times \zeta_{p, i} \times \operatorname{BR}(h \rightarrow i) \\
\Rightarrow \mu=\frac{\sum_{p} \sigma_{p}^{(i)} \times \zeta_{p, i} \times \operatorname{BR}(h \rightarrow i)}{\left[\sum_{p} \sigma_{p}^{(i)} \times \zeta_{p, i} \times \operatorname{BR}(h \rightarrow i)\right]_{\mathrm{SM}}}
\end{gathered}
$$

Efficiencies not always provided, so unknown to theorists Best we can do: assume that $\zeta_{p, i}=\zeta_{i} \forall p .{ }^{\dagger}$
${ }^{\dagger}$ Safely justified for SM and SM-like $(a=c)$, but not in general.

A closer look at "signal strength modifier"

We want to compare number of observed signal events in SM units:

$$
\begin{gathered}
n_{S}^{(i)}=\left(\int d t \mathcal{L}\right) \times \sum_{p} \sigma_{p}^{(i)} \times \zeta_{p, i} \times \operatorname{BR}(h \rightarrow i) \\
\Rightarrow \mu=\frac{\sum_{p} \sigma_{p}^{(i)} \times \zeta_{p, i} \times \operatorname{BR}(h \rightarrow i)}{\left[\sum_{p} \sigma_{p}^{(i)} \times \varsigma_{\mu, i, i} \times \operatorname{BR}(h \rightarrow i)\right]_{\mathrm{SM}}}
\end{gathered}
$$

Efficiencies not always provided, so unknown to theorists Best we can do: assume that $\zeta_{p, i}=\zeta_{i} \forall p .{ }^{\dagger}$

$$
\left.\mu \rightarrow \frac{\sum_{p} \sigma_{P}^{(i)} \times \operatorname{BR}(h \rightarrow i)}{\left[\sum_{p} \sigma_{P}^{(i)} \times \operatorname{BR}(h \rightarrow i)\right]_{\mathrm{SM}}}\right\}
$$

This can be related purely to theory, but it's only approximate

EFFICIENCIES NEEDED

\dagger Safely justified for SM and SM-like $(a=c)$, but not in general.

A closer look at "signal strength modifier"

IMPORTANT POINT NUMBER ONE

Tracing back from number of events to underlying theory REQUIRES knowledge of efficiencies when considering generalized spaces.

Moving on: Comparison to Likelihood

From here just map theory parameters to μ and compare to $P(\mu)$...

Moving on: Comparison to Likelihood

From here just map theory parameters to μ and compare to $P(\mu)$...

NOTYET AVAILABLE *

Moving on: Comparison to Likelihood

From here just map theory parameters to μ and compare to $P(\mu)$...

NOTYET AVAILABLE *

* but let's not despair (although it would be nice to have)

Moving on: Comparison to Likelihood

IMPORTANTish POINT NUMBER TWO*

Constructing exclusions for underlying theory WOULD BE HELPED BY knowledge of likelihoods directly.

Moving on: Comparison to RECONSTRUCTED Likelihood

(Three variables, only two constraints: we need to be slightly clever)

Assume asymptotic limit, i.e. Poisson \longrightarrow Gaussian:

$$
P\left(n_{B}+\mu n_{S} \mid n_{\text {obs }}\right)=\pi(\mu) \times \exp \left[\frac{-\left(n_{B}+\mu n_{S}-n_{\text {obs }}\right)^{2}}{2 n_{\mathrm{obs}}}\right]
$$

Moving on: Comparison to RECONSTRUCTED Likelihood

(Three variables, only two constraints: we need to be slightly clever)

Assume asymptotic limit, i.e. Poisson \longrightarrow Gaussian:

$$
\begin{gathered}
P\left(n_{B}+\mu n_{S} \mid n_{\mathrm{obs}}\right)=\pi(\mu) \times \exp \left[\frac{-\left(n_{B}+\mu n_{S}-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \\
\Rightarrow \tilde{\mu}_{\mathrm{exp}}^{95 \%}=1.96 \times \frac{\sqrt{n_{B}}}{n_{S}}
\end{gathered}
$$

Moving on: Comparison to RECONSTRUCTED Likelihood

(Three variables, only two constraints: we need to be slightly clever)

Assume asymptotic limit, i.e. Poisson \longrightarrow Gaussian:

$$
\begin{gathered}
P\left(n_{B}+\mu n_{S} \mid n_{\mathrm{obs}}\right)=\pi(\mu) \times \exp \left[\frac{-\left(n_{B}+\mu n_{S}-n_{\mathrm{obs}}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \\
\Rightarrow \tilde{\mu}_{\mathrm{exp}}^{95 \%}=1.96 \times \frac{\sqrt{n_{B}}}{n_{S}}
\end{gathered}
$$

For observed exclusion, use a simple rewriting:

$$
P\left(n_{B}+\mu n_{S} \mid n_{\mathrm{obs}}\right)=\pi(\mu) \times \exp \left[-\frac{1}{2}\left(\mu \frac{n_{S}}{\sqrt{n_{B}}} \frac{\sqrt{n_{B}}}{\sqrt{n_{\mathrm{obs}}}}+\delta\right)^{2}\right] ; \quad \delta \equiv \frac{n_{B}-n_{\mathrm{obs}}}{\sqrt{n_{\mathrm{obs}}}}
$$

Moving on: Comparison to RECONSTRUCTED Likelihood

(Three variables, only two constraints: we need to be slightly clever)

Assume asymptotic limit, i.e. Poisson \longrightarrow Gaussian:

$$
\begin{gathered}
P\left(n_{B}+\mu n_{S} \mid n_{\text {obs }}\right)=\pi(\mu) \times \exp \left[\frac{-\left(n_{B}+\mu n_{S}-n_{\text {obs }}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \\
\Rightarrow \tilde{\mu}_{\mathrm{exp}}^{95 \%}=1.96 \times \frac{\sqrt{n_{B}}}{n_{S}}
\end{gathered}
$$

For observed exclusion, use a simple rewriting:

$$
P\left(n_{B}+\mu n_{S} \mid n_{\mathrm{obs}}\right)=\pi(\mu) \times \exp \left[-\frac{1}{2}\left(\mu \frac{n_{S}}{\sqrt{n_{B}}} \frac{\sqrt{n_{B}}}{\sqrt{n_{\mathrm{obs}}}}+\delta\right)^{2}\right] ; \quad \delta \equiv \frac{n_{B}-n_{\mathrm{obs}}}{\sqrt{n_{\mathrm{obs}}}}
$$

Now make the assumption $\frac{n_{\text {obs }}-n_{B}}{n_{\text {obs }}} \ll 1$

Moving on: Comparison to RECONSTRUCTED Likelihood

(Three variables, only two constraints: we need to be slightly clever)

Assume asymptotic limit, i.e. Poisson \longrightarrow Gaussian:

$$
\begin{gathered}
P\left(n_{B}+\mu n_{S} \mid n_{\text {obs }}\right)=\pi(\mu) \times \exp \left[\frac{-\left(n_{B}+\mu n_{S}-n_{\text {obs }}\right)^{2}}{2 n_{\text {obs }}}\right] \\
\Rightarrow \tilde{\mu}_{\mathrm{exp}}^{95 \%}=1.96 \times \frac{\sqrt{n_{B}}}{n_{S}}
\end{gathered}
$$

For observed exclusion, use a simple rewriting:

$$
P\left(n_{B}+\mu n_{S} \mid n_{\mathrm{obs}}\right)=\pi(\mu) \times \exp \left[-\frac{1}{2}\left(\mu \frac{n_{S}}{\sqrt{n_{B}}} \frac{\sqrt{n / 3}}{\sqrt{\eta}}+\delta\right)^{2}\right] ; \quad \delta \equiv \frac{n_{B}-n_{\mathrm{obs}}}{\sqrt{n_{\mathrm{obs}}}}
$$

Now make the assumption $\frac{n_{\text {obs }}-n_{B}}{n_{\text {obs }}} \ll 1$

Moving on: Comparison to RECONSTRUCTED Likelihood

(Three variables, only two constraints: we need to be slightly clever)

Assume asymptotic limit, i.e. Poisson \longrightarrow Gaussian:

$$
\begin{gathered}
P\left(n_{B}+\mu n_{S} \mid n_{\text {obs }}\right)=\pi(\mu) \times \exp \left[\frac{-\left(n_{B}+\mu n_{S}-n_{\text {obs }}\right)^{2}}{2 n_{\mathrm{obs}}}\right] \\
\Rightarrow \tilde{\mu}_{\mathrm{exp}}^{95 \%}=1.96 \times \frac{\sqrt{n_{B}}}{n_{S}}
\end{gathered}
$$

For observed exclusion, use a simple rewriting:

$$
P\left(n_{B}+\mu n_{S} \mid n_{\mathrm{obs}}\right)=\pi(\mu) \times \exp \left[-\frac{1}{2}\left(\mu \frac{n_{S}}{\sqrt{n_{B}}} \frac{\sqrt{n \sqrt{3}}}{\sqrt{\eta}}+\delta\right)^{2}\right] ; \quad \delta \equiv \frac{n_{B}-n_{\mathrm{obs}}}{\sqrt{n_{\mathrm{obs}}}}
$$

Now make the assumption $\frac{n_{\text {obs }}-n_{B}}{n_{\text {obs }}} \ll 1$

Moving on: Comparison to RECONSTRUCTED Likelihood

$$
P(\mu)=N \times \exp \left[-\frac{1}{2}\left(\frac{1.96 \times \mu}{\tilde{\mu}_{\exp }^{(95 \%)}}+\delta\right)^{2}\right]
$$

Moving on: Comparison to RECONSTRUCTED Likelihood

$$
P(\mu)=N \times \exp \left[-\frac{1}{2}\left(\frac{1.96 \times \mu}{\tilde{\mu}_{\exp }^{(95 \%)}}+\delta\right)^{2}\right]
$$

Solve for remaining parameter using observed exclusion limit:

$$
0.95=\int_{0}^{\tilde{\mu}_{\mathrm{obs}}^{(95 \%)}} d \mu P(\mu)
$$

Moving on: Comparison to RECONSTRUCTED Likelihood

$$
P(\mu)=N \times \exp \left[-\frac{1}{2}\left(\frac{1.96 \times \mu}{\tilde{\mu}_{\mathrm{exp}}^{(95 \%)}}+\delta\right)^{2}\right]
$$

Solve for remaining parameter using observed exclusion limit:

$$
0.95=\int_{0}^{\tilde{\mu}_{\text {oss }}^{(95 \%)}} d \mu P(\mu)
$$

RECAP:

- Expected exclusion tells us about s/b
- Observed tells us delta, completes determination of (AL) likelihood
- Good news: can be done over whole mass range, not just at 'peaks' where information on best fit is available

How well does this method do?

One possible check: the total combination

One possible check: the total combination

- ACCURATE WITHIN I0\% BELOW 300 GeV; within 20\% at high masses
- Compare to "naive graphical analysis" (adding in inverse quadrature) which errs by 40\% or more
o Looks good: let's apply the method and run with it

$$
120 \quad 200
$$

$m_{h}(\mathrm{GeV})$

Status report for unpopular mass points

Status report for the Higgs at $125(?)(!)$

Five channels for a light Higgs:

$$
\begin{array}{lllll}
\text { 1. } W W & \text { 2. } \gamma \gamma & \text { 3. } Z Z & \text { 4. } \tau \tau & \text { 5. } b b
\end{array}
$$

Status report for the Higgs at $125(?)(!)$

Five channels for a light Higgs:

```
1.WW 2. }\gamma\gamma=3.ZZ 4. \\tau 5.b
```

1, 2. Zero Jet, same/opposite flavor lepton $\}$
$3,4$. One Jet, same/opposite flavor lepton $\}$
5. Two Jets

Status report for the Higgs at I25(?)(!)

Five channels for a light Higgs:

$\begin{array}{lllll}\text { 1. } W W & \text { 2. } r y & \text { 3. } Z Z & 4 . & \tau \tau\end{array} \quad 5 . b b$

1. Both in barrel, $\min (R 9)>0.94$
2. Both in barrel, $\min (R 9)<0.94$

3 . \geq One in endcap, $\min (R 9)>0.94$
4. \geq One in endcap, $\min (R 9)<0.94$
5. Dijet tag

Photon candidates with high values of R_{9} are mostly unconverted and have less background than those with lower values. Photon candidates(in the barrel have less background)than those in the endcap. For this reason it has been found useful to divide photon candidates into four categories and apply a different selection in each category, using more stringent requirements in categories with higher background and worse resolution.

Status report for the Higgs at I25(?)(!)

Five channels for a light Higgs:

$$
\text { 1. } W W \quad \text { 2. } \gamma \gamma \quad \text { 3. ZПZ } \quad \text { 4. т〒 } \quad 5 . b b
$$

Inclusive

VBF + GF + "Boosted"

(combined limit given; event numbers for one mass)

Associated Production

Status report for the Higgs at 125(?)(!)

Status report for the Higgs at 125(?)(!)

Status report for the Higgs at 125(?)(!)

ATLAS seems to disfavor the SM: how should we take this?

Status report for the Higgs at I25(?)(!)

ATLAS seems to disfavor the SM: how should we take this?

NOTVERY SERIOUSLY

 stay tuned...
Final Point:The Need for Exclusive Searching and Reporting

About the displayed CMS results:
o AllWW subchannels treated individually
o Others (except bb) treated inclusively
o Can do better for gamma gamma exactly at peak

Final Point:The Need for Exclusive Searching and Reporting

About the displayed CMS results:
o AllWW subchannels treated individually

- Others (except bb) treated inclusively
o Can do better for gamma gamma exactly at peak

Final Point:The Need for Exclusive Searching and Reporting

About the displayed CMS results:
o AllWW subchannels treated individually

- Others (except bb) treated inclusively
o Can do better for gamma gamma exactly at peak

Total likelihood given by product of all

Final Point:The Need for Exclusive Searching and Reporting

Side-by-side comparison of INCLUSIVE results:

(There *are* real differences, but we see a distinctive -- qualitative -- similarity here)

Final Point:The Need for Exclusive Searching and Reporting

Now treat gamma gamma subchannels:

Final Point:The Need for Exclusive Searching and Reporting

Now treat gamma gamma subchannels:

Final Point:The Need for Exclusive Searching and Reporting

Now treat gamma gamma subchannels:

near $c=0$ line, $R \sim a^{2}$

Excess in dijet fit with gauge coupling

Final Point:The Need for Exclusive Searching and Reporting

WW subchannels:

Final Point:The Need for Exclusive Searching and Reporting

WW subchannels:

Final Point:The Need for Exclusive Searching and Reporting

WW subchannels:

Note VBF cuts deeper in this case: signal deficit in this subchannel BG ~ II, obs. ~ 8

Final Point:The Need for Exclusive Searching and Reporting

ALL subchannels:

Final Point:The Need for Exclusive Searching and Reporting
IMPORTANT POINT NUMBER THREE

Tracing back from events to underlying theory REQUIRES separate presentation of limits from each subchannel.

To Conclude

THREE IMPORTANT POINTS

I. Cut efficiencies truly needed for constraining generic spaces
II. Direct likelihoods would be nice to have
III. Exclusions in generic spaces need exclusive searches

To Conclude

THREE IMPORTANT POINTS

I. Cut efficiencies truly needed for constraining generic spaces
II. Direct likelihoods would be nice to have
III. Exclusions in generic spaces need exclusive searches

And some 'incidentals':

I. SM Higgs looking very good at 125 GeV
II. Other masses still in play, but very non-SM couplings
III. Time will tell us more, but we can already tell ourselves a LOT:

Well-tested techniques in place to explore the parameter space of your choice...

Choose a space, any space...

Choose a space, any space...

Which has Nature chosen?

We're well on our way to an answer...

