Searches for Long-lived Particles and Leptoquarks at CMS James Hirschauer Fermilab (for CMS) Implications of LHC results for TeV-scale physics 26-30 March 2012 CERN # Outline | Search | Int. Luminosity | Documentation | |---|-----------------|---| | Slow HSCP | 4.7/fb | EXO-11-022
(1.1/fb, 4.7 /fb coming soon) | | Stopped HSCP | 0.9/fb | EXO-11-020 | | Displaced Leptons | 1.1/fb | EXO-11-004 | | Displaced Photons (using conversions) | 2.1/fb | EXO-11-067 | | 2 nd Generation
Leptoquarks (µµjj,µvjj) | 2.0/fb | EXO-11-028 | | 3 rd Generation
Leptoquarks (bbνν) | 1.8/fb | EXO-11-030 | ### **Updates in progress!** # Introduction: Long-lived Particles - Many models of new physics predict long-lived massive particles including SUSY, Extra dimensions, Hidden valley. - Experimentally challenging. - Detection strategies depend on charge and βγcτ: | Charge | βγсτ | Example | Detection Strategy | |---------|-------------------------|-------------------------------------|--| | Charged | ~cm - detector
scale | Gluino, | Stopped HSCP: Isolated, out-
of-time energy in calorimeter. | | Charged | > detector
scale | stop | Slow HSCP: Ionization (dE/dx) and time-of-flight. | | Neutral | ~cm - detector
scale | H→XX→4l,
GMSB NLSP
neutralino | Displaced photons,
Displaced leptons | | Neutral | > detector scale | SUSY LSP | Large MET | ### Slow HSCP #### **Triggers**: - Single μ, MET (for charge suppression models) - 75% (10%) efficiency for staus with $\beta = 0.6$ (0.45) ### **Two selection strategies**: - Tracker-only : large dE/dx + large p_T - Tracker+TOF: Tracker-only + μ-like + long time-of-flight (β⁻¹ from μ system) ### **Data-driven background estimation**: From uncorrelated sidebands in β^{-1} , dE/dx MIP-compatibility (I_{as}^*), and p_T (w/ correction for η -dependence of dE/dx). *Defined in backup slides. ### Slow HSCP #### 95% CLs mass limits for - R-hadrons: gluino, stop - Two interaction models: cloud and conservative charge suppression - ▶ R-gluonball fractions: 0.1, 0.5 - Lepton-like: - stau (direct pair production, GMSB) - Hyper-kaon (DY+range of M_{hyper-ρ}) # Stopped HSCP <u>Trigger</u>: 50 GeV single jet trigger with BPTX veto in triggered bunch crossing (BX) ± 1 BX. 168 hours live time. #### **Background rate**: - 1.7±0.7e-5 Hz from beam-related, cosmic rays, and detector noise. - Signal efficiency ~13%. - Noise and cosmic rates from 2010 data (36 pb⁻¹). Methods: Counting experiment and timing profile analysis (for τ <0.7ms). | Lifetime | $L_{eff}(pb^{-1})$ | Expected Bg | Observed | |-------------------------|--------------------|-----------------|----------| | 75 ns | 4.3 | 0.11 ± 0.05 | 0 | | 100 ns | 12.5 | 0.35 ± 0.14 | 0 | | $1 \mu s$ | 139 | 3.3 ± 1.3 | 4 | | 10 μs | 352 | 10.1 ± 4.1 | 9 | | $30 \ \mu s - 10^3 \ s$ | 360 | 10.4 ± 4.2 | 10 | | $10^{4} { m s}$ | 268 | 10.4 ± 4.2 | 10 | | $10^{5} { m s}$ | 65 | 10.4 ± 4.2 | 10 | | $10^{6} { m s}$ | 7.5 | 10.4 ± 4.2 | 10 | # Stopped HSCP - 95% CL mass exclusion limits assuming $10^{-6} < \tau < 10^3$ s: - m_{gluino}<601 GeV</p> - \rightarrow m_{stop}<337 GeV - 95% CL limits on cross section x BR x stopping efficiency are independent of interaction model. ### Displaced Lepton Pair #### **New physics model:** - gg \rightarrow H⁰ \rightarrow 2X, X \rightarrow I⁺I⁻ - X is long-lived, spin 0 - Consider 200<M_H<1000 GeV and 20<M_X<500 GeV. - Assume ee/μμ are each 50% of I+I- width. #### **Selection:** - track and event quality, - isolated tracks, - transverse decay length significance > 8 (5)*, - no back-to-back tracks, - dilepton p collinear with primary and displaced vertices, - signal efficiency = 20-30% (10-20%)* - * for muon (electron) # Displaced Lepton Pair - Background estimate from fit to MC. - $L_{XY} \approx 4$ cm for backgrounds. - 95% CL_s cross section limits vs. ст - ▶ Typically 3–30 fb for $c\tau \approx 1$ meter. #### CMS Preliminary √s=7 TeV L=1.2 fb⁻¹ #### CMS Preliminary √s=7 TeV L=1.2 fb⁻¹ #### CMS Preliminary √s=7 TeV L=1.2 fb⁻¹ # Displaced Photons ### **New physics model:** - ullet GMSB SPS8: $ilde{\chi}_1^0 ightarrow \gamma ilde{G}$ - 2 < neutralino c < 25cm - high p_T jets, MET, displaced diphotons #### **Conversion Reconstruction:** - Determine photon impact parameter (d_{XY}) from $\gamma \rightarrow$ ee conversions in tracker. - Complementary to analysis of timing/ shape of showers in EM calorimeter (for signals with $c\tau\sim1m$). - Reco efficiency of 6–7%. - $Z \rightarrow \mu \mu \gamma$ studies: - ▶ ~20% uncertainty on efficiency - \blacktriangleright Negligible uncertainty on d_{XY} resolution. $$d_{XY} = -L_X \cdot \sin \phi + L_Y \cdot \cos \phi$$ # Displaced Photons ### **New physics model:** - ullet GMSB SPS8: $ilde{\chi}_1^0 ightarrow \gamma ilde{G}$ - 2 < neutralino c < 25cm - high p_T jets, MET, displaced diphotons #### **Conversion Reconstruction:** - Determine photon impact parameter (d_{XY}) from $\gamma \rightarrow$ ee conversions in tracker. - ► Complementary to analysis of timing/ shape of showers in EM calorimeter (for signals with ct~1m). - Reco efficiency of 6–7%. - $Z \rightarrow \mu \mu \gamma$ studies: - ▶ ~20% uncertainty on efficiency - \blacktriangleright Negligible uncertainty on d_{XY} resolution. $$d_{XY} = -L_X \cdot \sin \phi + L_Y \cdot \cos \phi$$ ### Displaced Photons #### **Data-Driven Bkg. Estimation:** - Compare d_{XY} in isolated/non-isolated and high-MET/low-MET regions → d_{XY} shape independent of MET and isolation. - Use low-MET control sample for background shape. #### **Cross section limits** • 95% CL_S, 0.1−0.25 pb depending on CT: ### Introduction: Scalar Leptoquarks - Predicted by many BSM theories including versions of GUTs, technicolor, and superstring-inspired E₆. - Natural explanation for observed quark-lepton symmetry of SM. - Carry both baryon and lepton number. - Assume coupling only within a single generation. - Produced dominantly via qq and gg annihilation. - Cross section determined by model-independent LQ-gluon coupling. - Today, discuss μμjj/μνjj and bbvv final states. - ▶ eejj/evjj <u>results from 2010 data</u>; update coming soon. # 2nd Generation Leptoquarks ### Data driven background estimation: - Normalization for Z+jets. - Norm and shape for ttbar. #### **Selection:** - μμjj - $p_{T\mu}>40 \text{GeV}, |\eta_{\mu}|<2.1, p_{Tj}>30 \text{GeV}$ - $ightharpoonup M_{\mu\mu}$ (remove Z+jets), - Scalar sum of $\mu\mu jj p_T$, - Smaller $M_{\mu j}$ in $M_{\mu j}$ -pair that minimizes LQ-LQ mass difference. - μνjj - 2nd μ veto, electron veto, - $p_{T\mu} > 80 \text{GeV}$, - MET (remove W+jets), - Scalar sum of $\mu\nu jj p_T$, - $ightharpoonup M_{\mu j}$ that minimizes $\Delta M(LQ, \overline{LQ})$ # 2nd Generation Leptoquarks - Statistics dominated; background modeling systematic uncertainty is largest. - 95% CL_S limits (crosscheck with Bayesian+MCMC method). - $M_{LQ} > 632$ (523) GeV, assuming $\beta = 1.0$ (0.5). # 3rd Generation Leptoquarks Razor-based analysis: Modelindependent variables to search for pair-produced particles with masses larger than those of SM particles and MET. $$M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2} .$$ $$M_T^R \equiv \sqrt{\frac{E_T^{j_1}(p_T^{j_1} + p_T^{j_2}) - E_T^{j_1}(\vec{p}_T^{j_1} + \vec{p}_T^{j_2})}{2}}$$ $$R \equiv \frac{M_T^R}{M_R}$$ # 3rd Generation Leptoquarks - Data-driven background estimation using R sidebands and signal-depleted samples from lepton triggers. - Signal efficiency 1−10% for 200<M_{LQ}<600 GeV. # Summary #### **HSCP Mass Limits** gluino, R_{gluonball}=0.5 gluino, Rgluonball=0.1 gluino, charge suppression stop stop, chg. sppn. stop, GMSB stop, pair production Hyper-K, M_ρ=800GeV Hyper-K, $M_{\rho}=1200$ GeV Hyper-K, M_{ρ} =1600GeV Stopped gluino Stopped stop 0 550 1100 Lower Mass Exclusion Limit (GeV) - CMS has an active search program for the "most exotic" new physics signals. - Updates in progress and new analyses planned. gg → $$H^0$$ → 2X, X → I + I - σxBR < 3–30 fb for c $\tau \approx 1$ meter #### **GMSB** neutralino σ < 0.12–0.24 pb for c τ =2–25cm #### **Leptoquark Mass Limits** ### Additional Material ### Slow HSCP: Ias As an estimator of the degree of compatibility of the observed charge measurements with the MIP hypothesis, a modified version of the Smirnov-Cramer- von Mises [18, 19] discriminant is used (the modification applied to the original form of the discriminant eliminates the sensitivity to incompatibility with the MIP hypothesis due to low ionization): $$I_{as} = \frac{3}{N} \times \left(\frac{1}{12N} + \sum_{i=1}^{N} \left[P_i \times \left(P_i - \frac{2i-1}{2N}\right)^2\right]\right),$$ where N is the number of charge measurements in the silicon-strip detectors, P_i is the probability for a MIP to produce a charge smaller or equal to the i^{th} charge measurement for the observed path length in the detector, and the sum is over the track measurements ordered in terms of increasing P_i . The charge probability density function used to calculate P_i is obtained using tracks with p > 5 GeV/c in events collected with a minimum bias trigger. Non-relativistic HSCP candidates will have the value of the discriminant I_{as} approaching unity. ### Slow HSCP: Ih The most probable value of the particle dE/dx is determined using a harmonic estimator I_h of grade k = -2: $$I_h = \left(\frac{1}{N} \sum_i c_i^k\right)^{1/k},$$ where c_i is the charge per unit path length in the detector of the ith measurement for a given track. In order to estimate the mass (m) of highly ionizing particles, the following relationship between I_h , p, and m is assumed: $$I_h = K \frac{m^2}{p^2} + C.$$ Equation 3 reproduces the Bethe-Bloch formula with an accuracy of better than 1% in the range $0.4 < \beta < 0.9$, which corresponds to $1.1 < (dE/dx)/(dE/dx)_{MIP} < 4.0$. The empirical parameters K and C are determined from data using a sample of low-momentum protons. # Slow HSCP: Systematic Uncertainties Table 2: Sources of systematic uncertainties and corresponding relative uncertainties. | Source of systematic uncertainty | Relative uncertainty (%) | |--|--------------------------| | Signal acceptance: | | | - Trigger efficiency | 5 | | - Track momentum scale | < 4 | | - Ionization energy loss | 2 | | - Time-of-flight | 2 | | - Track reconstruction efficiency | < 2 | | - Muon reconstruction efficiency | < 2 | | - Pile-up | < 0.5 | | Total uncertainty on signal acceptance | 7 | | Expected background | 10 | | Integrated luminosity | 4.5 | # Displaced Lepton Pair Electron channel results #### CMS Preliminary \sqrt{s} =7 TeV L=1.1 fb⁻¹ #### CMS Preliminary √s=7 TeV L=1.1 fb⁻¹ #### CMS Preliminary √s=7 TeV L=1.1 fb⁻¹ # 3rd Gen LQ: Data Samples | Sample | R ² cut | leptons | # b-taged jets | Comment | |--------|--------------------|--------------|----------------|---| | W/Z MC | $R^2 > 0.07$ | tight μ | ≥ 2 | shape of $W/Z+HF$ jets | | MU | $R^2 > 0.14$ | tight μ | ≥ 2 | shape of $t\bar{t}$ +jets | | MU | $R^2 > 0.14$ | loose μ | ≥ 1 | shape of HF multijets | | ELE | $0.2 < R^2 < 0.25$ | tight e | = 1 | M_R < 600, sideband to extract $SF_{\rm ELE}$ | | ELE | $R^2 > 0.25$ | tight e | ≥ 2 | ELE "signal-like" control region | | HAD | $0.2 < R^2 < 0.25$ | veto leptons | =1 | M_R < 600, sideband to extract SF_{HAD} | | HAD | $R^2 > 0.25$ | veto leptons | ≥ 2 | signal box, search for LQ signal | Table 1: Summary of various samples used in the search, with a short description of their specific purpose. $M_R > 400$ is always applied in all boxes. The cuts on R^2 listed in the table are after recalculating E_T and R when leptons are treated as neutrinos. Definitions of muons (μ) and electrons (e) are listed in Sec. 3.1.