Introduction	Simplified models	Selection criteria	Projected Limits	Implications and Conclusion
				0
				00

Long lived charged slepton NLSP

Jan Heisig (Hamburg University)

Based on Jörn Kersten, JH, arXiv:1106.0764, 1203.1581

Implications of LHC results for TeV-scale physics

March 29th, 2012

Jan Heisig (Hamburg University)

Introduction	Simplified models	Selection criteria	Projected Limits	Implications and Conclusion
				0 00
Introduction				

Supersymmetry provides three major LSP candidates

- neutralino
- gravitino
- axino

Jan Heisig (Hamburg University)

Introduction	Simplified models	Projected Limits	Implications and Conclusion
0			0 00
Introduction			

Supersymmetry provides three major LSP candidates

- neutralino
- gravitino
- axino

each allow for long-lived NLSP!

Jan Heisig (Hamburg University)

Introduction	Simplified models	Projected Limits	Implications and Conclusion
			0 00
Introduction			

Supersymmetry provides three major LSP candidates

- neutralino
 gravitino
 axino
 → fine-tuned: degeneracy [hep-ph/0512197]
 haturally: very weakly coupled

each allow for long-lived NLSP!

plications and Conclusion
c
5

Supersymmetry provides three major LSP candidates

- neutralino
 gravitino
 axino
 → fine-tuned: degeneracy [hep-ph/0512197]
 haturally: very weakly coupled

each allow for long-lived NLSP!

Long-lived: Decay length \gg Detector size \rightarrow NLSP determines signatures at colliders

Assumption: lightest charged slepton = stau

Introduction	Simplified models	Projected Limits	Implications and Conclusion
0			0
Models			
Models			

Models

	χ^{0}	Ĝ	ã
CMSSM/ NUHM/NUGM	\checkmark	\checkmark	\checkmark
GMSB	_	\checkmark	(√)
ĞМЅВ	\checkmark	\checkmark	\checkmark
AMSB/ Mirage	\checkmark	_	\checkmark
÷		•	

Jan Heisig (Hamburg University)

Introduction	Simplified models	Projected Limits	Implications and Conclusion
0			0 00
Models			

Models

	χ^{0}	Ĝ	ã
CMSSM/ NUHM/NUGM	\checkmark	\checkmark	\checkmark
GMSB	-	\checkmark	(√)
ĞMSB	\checkmark	\checkmark	\checkmark
AMSB/ Mirage	\checkmark	_	\checkmark

Aim for a model-independent search! \Rightarrow Choose simplified model approach

 \checkmark 'bottom-up approach'

Jan Heisig (Hamburg University)

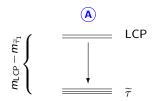
	Simplified models ●○	Selection criteria	Projected Limits 00	Implications and Conclusion 0 00
Simplified models				

Simplified models

Cover SUSY parameter space (at least approximately) by a few low-scale parameters that dominantly determine the signature [Alwall et al. 0810.3921, LHC NPWG 1105.28

Assuptions: \tilde{q} mass degenerate, only NLSP long-lived, consider strong production and direct NLSP production

ightarrow Most dominant dependence on $m_{\widetilde{g}}, m_{\widetilde{q}}, m_{\widetilde{ au}_1}$


Classification of spectra \rightarrow Elementary mass spectra [Horn 0905.4497, Konar et al. 1008.24831]

Dependence on mass pattern of intermediate sparticles captured by extreme cases

	Simplified models ○●	Selection criteria	Projected Limits 00	Implications and Conclusion
Simplified models				

Limiting cases

(Most powerful discriminating variable: Velocity of staus)

one dominat decay

- \rightarrow staus fast
- $\begin{tabular}{l} \rightarrow \mbox{ hard jets} \\ \mbox{ leptons/MET } \end{tabular} \end{tabular}$

Jan Heisig (Hamburg University)

	Simplified models ○●	Selection criteria	Projected Limits 00	Implications and Conclusion
Simplified models				

Limiting cases

 $m_{\rm LCP}-m_{\widetilde{ au}_1}$

(Most powerful discriminating variable: Velocity of staus)

Jan Heisig (Hamburg University)

	Simplified models ○●	Selection criteria	Projected Limits 00	Implications and Conclusion
Simplified models				

Limiting cases

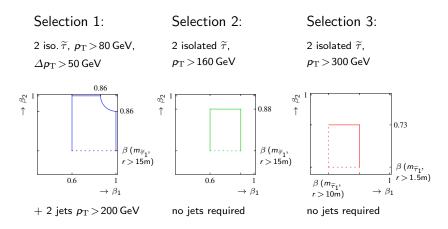
(Most powerful discriminating variable: Velocity of staus)

B

one dominat decay \rightarrow staus fast \rightarrow hard jets/

Α

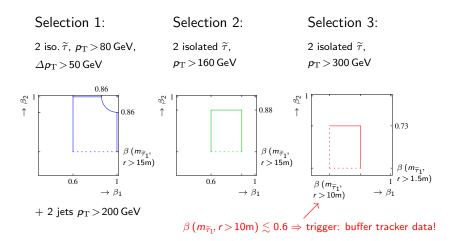
→ hard jets/ leptons/MET rel. mass gaps equally spaced $m_{I} = \sqrt{m_{\widetilde{\tau}_{1}} m_{\text{LCP}}}$ $\rightarrow \text{moderate } \beta_{\widetilde{\tau}}$



rel. mass gaps equally spaced

- \rightarrow slow staus
- \rightarrow moderate SM particle rad.

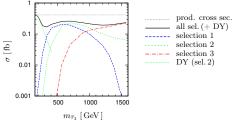
	Simplified models	Selection criteria ●○	Projected Limits 00	Implications and Conclusion
Selection criteria				


Selection criteria

Jan Heisig (Hamburg University)

	Simplified models	Selection criteria ●○	Projected Limits 00	Implications and Conclusion
Selection criteria				

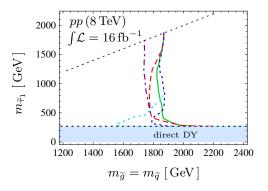
Selection criteria



Jan Heisig (Hamburg University)

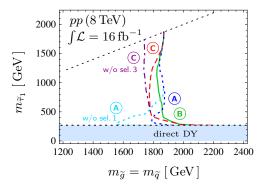
		Simplified models	Selection criteria ○●	Projected Limits	Implications and Conclusion O OO
Se	election criteria				

Selection criteria


- Background rejection saturated
- Very high efficiencies throughout the whole parameter space
- Cut on additional leptons can partially raise the efficiency of worst case scenarios
- Additional leptons or MET can raise trigger efficiencies for very slow staus

Jan Heisig (Hamburg University)

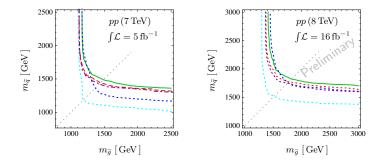
	Simplified models	Projected Limits	Implications and Conclusion
		00	
Projected Limits	in $m_{\widetilde{\tau}_1}, m_{\widetilde{q}}, m_{\widetilde{g}}$		


Limits in the $m_{\tilde{\tau}_1}$ - $m_{\tilde{g}}$ -plane

Jan Heisig (Hamburg University)

	Simplified models	Projected Limits	Implications and Conclusion
		00	
Projected Limits	in $m_{\widetilde{\tau}_1}, m_{\widetilde{q}}, m_{\widetilde{g}}$		

Limits in the $m_{\tilde{\tau}_1}$ - $m_{\tilde{g}}$ -plane



Jan Heisig (Hamburg University)

	Simplified models	Selection criteria	Projected Limits	Implications and Conclusion		
			00			
0				00		
Projected Limits in $m_{\widetilde{ au}_1}, m_{\widetilde{ extsf{g}}}, m_{\widetilde{ extsf{g}}}$						

Limits in the $m_{\tilde{g}}$ - $m_{\tilde{q}}$ -plane

Explore spectra along minima (concerning $m_{\tilde{\tau}_1}$ variation)

Jan Heisig (Hamburg University)

	Simplified models	Selection criteria	Projected Limits	Implications and Conclusion		
0	·		·	00		
Implications—stau decays						

Stopped staus and stau decays

Stau lifetimes of $\tau_{\tilde{\tau}} \lesssim 5 \times 10^3$ sec cosmologically motivated [Pospelov hep-ph/06052]

From reconstructed 2-body decays ($\tilde{\tau} \rightarrow \tau + LSP$): $m_{LSP} \rightarrow$ probe the SUSY breaking scale

$$\langle F
angle \sim m_{\widetilde{G}} M_{\mathsf{Pl}}$$
 (gravitino)

or (by measuring $au_{\widetilde{ au}}$) the Peccei-Quinn scale

[Brandenburg et al. hep-ph/0501287]

$$f_{\mathsf{a}}^2 \sim au_{\widetilde{ au}} \, m_{\widetilde{ au}_1} \, m_{\widetilde{B}}^2 \quad (ext{axino})$$

In 3-body decay: measure spin of the LSP \rightarrow probe supergravity!

[Buchmüller et al. hep-ph/0402179]

	Simplified models	Selection criteria	Projected Limits	Implications and Conclusion ○ ●○
Conclusions				

Conclusion

- Gravitino or axino LSP scenarios are well motivated, scenarios naturally provide long-lived NLSPs
- Prospects for discovery and exclusion in a model-independent way
- Robust bounds on $m_{\widetilde{g}}, m_{\widetilde{q}}, m_{\widetilde{\tau}_1}$
- Discovery of long-lived charged sleptons has far-reaching implications on LHC updates and future colliders
 → Unique key to probe SUSY breaking scale and test supergravity

Introduction Simplified n	odels Selection criteria	Projected Limits	Implications and Conclusion
			0
			00
Conclusions			

Thank you for your attention!

Jan Heisig (Hamburg University)