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Introduction

Long-Lived charged sleptons

Supersymmetry provides three major LSP candidates

neutralino

gravitino

axino

︸︷
︷︸

each allow for long-lived NLSP!

︸︷︷
︸

naturally: very weakly coupled

→ fine-tuned: degeneracy [hep-ph/0512197]

Long-lived: Decay length � Detector size
→ NLSP determines signatures at colliders

Assumption: lightest charged slepton = stau

Jan Heisig (Hamburg University)

Long lived charged slepton NLSP



Introduction Simplified models Selection criteria Projected Limits Implications and Conclusion

Introduction

Long-Lived charged sleptons

Supersymmetry provides three major LSP candidates

neutralino

gravitino

axino ︸︷
︷︸

each allow for long-lived NLSP!

︸︷︷
︸

naturally: very weakly coupled

→ fine-tuned: degeneracy [hep-ph/0512197]

Long-lived: Decay length � Detector size
→ NLSP determines signatures at colliders

Assumption: lightest charged slepton = stau

Jan Heisig (Hamburg University)

Long lived charged slepton NLSP



Introduction Simplified models Selection criteria Projected Limits Implications and Conclusion

Introduction

Long-Lived charged sleptons

Supersymmetry provides three major LSP candidates

neutralino

gravitino

axino ︸︷
︷︸

each allow for long-lived NLSP!

︸︷︷
︸

naturally: very weakly coupled

→ fine-tuned: degeneracy [hep-ph/0512197]

Long-lived: Decay length � Detector size
→ NLSP determines signatures at colliders

Assumption: lightest charged slepton = stau

Jan Heisig (Hamburg University)

Long lived charged slepton NLSP



Introduction Simplified models Selection criteria Projected Limits Implications and Conclusion

Introduction

Long-Lived charged sleptons

Supersymmetry provides three major LSP candidates

neutralino

gravitino

axino ︸︷
︷︸

each allow for long-lived NLSP!

︸︷︷
︸

naturally: very weakly coupled

→ fine-tuned: degeneracy [hep-ph/0512197]

Long-lived: Decay length � Detector size
→ NLSP determines signatures at colliders

Assumption: lightest charged slepton = stau

Jan Heisig (Hamburg University)

Long lived charged slepton NLSP



Introduction Simplified models Selection criteria Projected Limits Implications and Conclusion

Models

Models

χ0 G̃ ã

CMSSM/
X X XNUHM/NUGM

GMSB – X (X)

G̃MSB X X X

AMSB/
X – XMirage

...

Aim for a model-independent search!
⇒ Choose simplified model approach

−→‘bottom-up approach’
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Simplified models

Simplified models

Cover SUSY parameter space (at least approximately) by a few
low-scale parameters that dominantly determine the signature

[Alwall et al. 0810.3921, LHC NPWG 1105.2838]

Assuptions: q̃ mass degenerate, only NLSP long-lived,
consider strong production and direct NLSP production

→ Most dominant dependence on mg̃ ,mq̃,mτ̃1

Classification of spectra → Elementary mass spectra
[Horn 0905.4497, Konar et al. 1008.24831]

Dependence on mass pattern of intermediate sparticles
captured by extreme cases
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Simplified models

Limiting cases

(Most powerful discriminating variable: Velocity of staus)

LCP

τ̃

︸︷︷︸m LCP−
m
τ̃

1

A

one dominat decay

→ staus fast

→ hard jets/
leptons/MET

?

B

rel. mass gaps
equally spaced

mI =
√
mτ̃1

mLCP

→ moderate βτ̃

?

?

C

rel. mass gaps
equally spaced

→ slow staus

→ moderate SM
particle rad.

?

?
?
?
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Selection criteria

Selection criteria

Selection 1:

2 iso. τ̃ , pT>80 GeV,

∆pT>50 GeV

+ 2 jets pT>200 GeV

0.6 1

1

0.86

0.86

β (mτ̃1
,

r>15m)

→ β1

→
β

2

Selection 2:

2 isolated τ̃ ,

pT>160 GeV

no jets required

0.6 1

1

0.88

β (mτ̃1
,

r>15m)

→ β1

→
β

2

Selection 3:

2 isolated τ̃ ,

pT>300 GeV

no jets required

1

1

0.73

β (mτ̃1
,

r>1.5m)

→ β1

β (mτ̃1
,

r>10m)

→
β

2

−→
β (mτ̃1

, r>10m) . 0.6 ⇒ trigger: buffer tracker data!
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Selection criteria

Selection criteria

Background rejection saturated

Very high efficiencies throughout the whole parameter space

Cut on additional leptons can partially raise the efficiency of
worst case scenarios

Additional leptons or MET can raise trigger efficiencies for
very slow staus
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Projected Limits in mτ̃1
,mq̃ ,mg̃

Limits in the mτ̃1
-mg̃ -plane
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Projected Limits in mτ̃1
,mq̃ ,mg̃

Limits in the mg̃ -mq̃-plane

Explore spectra along minima (concerning mτ̃1
variation)
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Implications—stau decays

Stopped staus and stau decays

Stau lifetimes of ττ̃ . 5× 103 sec cosmologically motivated
[Pospelov hep-ph/0605215]

From reconstructed 2-body decays (τ̃ → τ+ LSP): mLSP

→ probe the SUSY breaking scale

〈F 〉 ∼ m
G̃
MPl (gravitino)

or (by measuring ττ̃ ) the Peccei-Quinn scale
[Brandenburg et al. hep-ph/0501287]

f 2
a ∼ ττ̃ mτ̃1

m2
B̃

(axino)

In 3-body decay: measure spin of the LSP → probe supergravity!

[Buchmüller et al. hep-ph/0402179]
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Conclusions

Conclusion

Gravitino or axino LSP scenarios are well motivated, scenarios
naturally provide long-lived NLSPs

Prospects for discovery and exclusion in a model-independent
way

Robust bounds on mg̃ ,mq̃,mτ̃1

Discovery of long-lived charged sleptons has far-reaching
implications on LHC updates and future colliders
→ Unique key to probe SUSY breaking scale and test
supergravity
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Conclusions

Thank you for your attention!
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