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Legal disclaimer

I assume that the hint for a 125 GeV Higgs is a 125 GeV Higgs

rather than a statistical fluctuation or a superluminal cable

While this is believed to be a correct information, nobody makes any warranty,

express or implied, or assumes any legal liability or responsibility for the accu-

racy, completeness, or usefulness of the information. Reference herein to any

specific experiment does not necessarily constitute or imply its endorsement,

recommendation, or favoring.

By not abandoning the room you accept the above assumption.

Thank you



Is the Higgs standard?

with P.P. Giardino, K. Kannike, M. Raidal



Observables

mh = 125 GeV is a lucky mass for LHC; several BR

BR(h→ b̄b) = 58%, BR(h→WW ∗) = 21.6%, BR(h→ τ+τ−) = 6.4%,
BR(h→ ZZ∗) = 2.7%, BR(h→ gg) = 8.5%, BR(h→ γγ) = 0.22%

and production mechanisms

σ(pp→ h) = (15.3± 2.6) pb, σ(pp→ jjh) = 1.2 pb,
σ(pp→Wh) = 0.57 pb, σ(pp→ Zh) = 0.32 pb,

allow to disentangle Higgs couplings and test Higgs properties.

Naturalness suggests that light stops or other new physics affect the Higgs



Higgs data: CMS, ATLAS, CDF, D0
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Fermiophobic searches

CMS looked for pp→ jjγγ measuring, at mh ≈ 125 GeV:

[0.033σ(pp→ h) + σ(pp→ jjh)]×BR(h→ γγ) = SM× (3.3± 1.1)

ATLAS looked for pp→ γγ with pTγγ > 40 GeV measuring

[0.3σ(pp→ h) + σ(pp→Wh,Zh, jjh)]×BR(h→ γγ) = SM× (3.3± 1.1)

For data I would like this format. So far we have to approximately deduce:

µ ≈ R95%
observed −R

95%
expected, σ =

R95%
expected

2
,

and get weights of production channels by asking or doing MC simulations.



Non-standard BR for loop processes
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Non standard best fits
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Fits to Higgs couplings: dysfermiophilia

Latest fermiophobic analyses prefer enhanced h→ γγ obtained for yt ≈ −ySM
t .

0.0 0.5 1.0 1.5 2.0
-2

-1

0

1

2

Higgs coupling to vectors a

H
ig

gs
co

up
lin

g
to

fe
rm

io
ns

c

mh = 125 GeV

SM

FP

68,95% CL

0.0 0.5 1.0 1.5 2.0
-2

-1

0

1

2

Higgs coupling to b and Τ�SM

H
ig

gs
co

up
lin

g
to

t�
SM

mh = 125 GeV

SM

0tFP

68,95% CL



Global fit

0.0 0.5 1.0 1.5 2.0
-2

-1

0

1

2

Higgs coupling to W�SM

H
ig

gs
co

up
lin

g
to

t�
SM

SM

68,95% CL

0 1 2 3 4
0

1

2

3

4

Higgs coupling to b�SM
H

ig
gs

co
up

lin
g

to
Τ

�S
M

SM

E.g. in the MSSM:

yt

MS
= 1 +

m2
t

4

 1

m2
t̃1

+
1

m2
t̃1

−
(At − µ/ tanβ)2

m2
t̃1
m2
t̃1

 ghW
SM

=
ghZ
SM

= cos(α− β)



Fit to the Higgs invisible width

BRinv = 0± 25%depending on the fit
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Higgs and SUSY

with G. Giudice



125 GeV is in no man’s land

SM is stable up to the Planck scale for mh>∼130 GeV but can go down to 115

MSSM with weak scale SUSY likes mh<∼120 GeV but can go up to 130

...but quasi-maximal stop mixing is needed (or NMSSM...)

...but best fit CMSSM regions are getting excluded (or LHC-phobic SUSY...)

...but the naturalness motivation for weak scale SUSY is mostly gone (light t̃?)
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Predicting mh(mSUSY, tanβ)

Time to consider mSUSY �MZ (SUSY... GUT... string) and consider:

• Split-SUSY (SUSY scalars at mSUSY and SUSY fermions around MZ).

Gives good unification and maybe makes theoretical sense.

• High-Scale-SUSY (all sparticles at mSUSY) aka “Super-Split-SUSY”.

Such a nice joke that its authors forgot to notice that there is one prediction

λ(mSUSY) =
1

4

[
g2

2(mSUSY) +
3

5
g2

1(mSUSY)
]

cos2 2β + loops



λ(mh,mSUSY)
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Full NLO computation

The total result does not depend on the regularization scheme:

One loop thresholds at the weak scale

+

One loop thresholds at the SUSY scale

+

2 loop Split-SUSY RGE between MZ and mSUSY
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Uncertain uncertainties at high energy

mSUSY � MZ allows to get analytic expressions for everything, but one loop
thresholds at the SUSY scale depend on unknown heavy sparticle masses:

(4π)2δλ(mSUSY) = −
9

100
g4

1 −
3

10
g2

1g
2
2 − (

3

4
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cos2 2β

6
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Q
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+ · · ·+ · · ·

In non-minimal SUSY models one can even have tree level corrections, positive
or negative. E.g. in the NMSSM λNNHuHd +MN2/2

δλ = λ2
N sin2 2β

(B − 2A)M +m2 −A2

2(M2 +m2 +BM)

Or neutrino Yukawa couplings in see-saw models.

For example, the theory of everything could be N = 1 SUSY with E6 unification
broken at the Planck scale by three fundamentals 27i. The Higgs is one slepton
that remains light due to anthropic selection. The Yukawa couplings come
from:

W = λijk27i27j27k



Effect of SM uncertainties
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“Central values” for mSUSY and tanβ
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Implications for mSUSY and tanβ
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Vacuum meta-stability

with J.E. Miró, J.R. Espinosa, G. Giudice, G. Isidori, A. Riotto



RGE running makes λ < 0
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Instability, meta-stability and stability

Instability
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Tree level stabilization

Add a singlet S with a vev (possibly the axion):

V = λH
(
H†H − v2

)2
+ λS

(
S†S − w2

)2
+ 2λHS

(
H†H − v2

) (
S†S − w2

)
Integrating out S at tree level gives a threshold correction that stabilizes V :

λlow energy = λH −
λ2
HS

λS
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The fate of the Universe

Does mh ≈ 126 GeV correspond to λ(MPl) = 0 within the SM?

(This would be the main message bla bla quantum gravity bla bla)

It is so close that so far the answer is

BOH
NNLO computation needed to reduce the theory uncertainty. The answer is...

δm2
h(µ̄ = mt)|NNLO = 0

y4
t g

2
3v

2

(4π)4
− 2(6 + π2)

y6
t v

2

(4π)4
+O(λ, g1, g2)

which means...



NO
[with Degrassi, Espinoza, Isidori, Giudice, to appear. Please don’t scoop us]



Conclusions

• SM Higgs gives a good fit to data.

Reduced gg → h and enhanced h→ γγ improves the fit.

Too good: is this just over-fitting fluctuations?

• SUSY: at the weak scale, or one loop above, or much above.

• mh ≈ 125 GeV corresponds to λ = 0 at the Planck scale? Almost, but NO.

λ gets slightly negative and the SM vacuum is meta-stable.

Implications for European Strategy for Particle Physics:

The Higgs could be the last particle. Carpe diem.


