A possible outline for the "flavor chapter" of WG3

A possible outline for the "flavor chapter" of WG3

- ► Motivation (role of flavor in constraining NP)
- Status of the art (discussion of present "anomalies")
- ► General classification of NP models (as far as low-energy flavor physics is concerned)
- ► Minimal list of key observables
- Future exp. prospects for the key observables

► <u>Motivation</u> (role of low-energy flavor in constraining NP)

General decomposition of flavor-violating observables:

$$A = A_0 \left[c_{\text{SM}} \frac{1}{M_{\text{W}}^2} + c_{\text{NP}} \frac{1}{\Lambda^2} \right]$$

- Potential sensitivity up to very high NP scales
- No way to disentangle Λ & c_{NP} , but the combined information which can be extracted is <u>fully complementary</u> to direct searches at high- p_T : <u>flavor-symmetry structure of NP</u>

► <u>Motivation</u> (role of low-energy flavor in constraining NP)

General decomposition of flavor-violating observables:

$$A = A_0 \left[c_{\text{SM}} \frac{1}{M_{\text{W}}^2} + c_{\text{NP}} \frac{1}{\Lambda^2} \right]$$

- Potential sensitivity up to very high NP scales
- No way to disentangle Λ & c_{NP} , but the combined information which can be extracted is <u>fully complementary</u> to direct searches at high- p_T : <u>flavor-symmetry structure of NP</u>
- The interest of a given flavor obs. depends on the magnitude of c_{SM} vs. c_{NP} and on the theoretical error of c_{SM} \implies concentrate on th. clean or rare processes (very long lists of observables often misleadings)

- ► Status of the art (discussion of present "anomalies")
 - Overall good consistency of the SM

We need to stress there is much more that is not shown in the usual CKM plots $(\phi_s, B_s \rightarrow \mu\mu, etc...)$

- ► Status of the art (discussion of present "anomalies")
 - Overall good consistency of the SM
 - Key role of LHCb (& CDF) in $b \rightarrow s$ physics (ϕ_s , $B_s \rightarrow \mu\mu$, $B \rightarrow K*ll$) and Charm [substantial change of paradigm with respect to ~ 2 years ago]:

- ► Status of the art (discussion of present "anomalies")
 - Overall good consistency of the SM
 - Key role of LHCb (& CDF) in $b \rightarrow s$ physics (ϕ_s , $B_s \rightarrow \mu\mu$, $B \rightarrow K*ll$) and Charm [substantial change of paradigm with respect to ~ 2 years ago]:

- ► Status of the art (discussion of present "anomalies")
 - Overall good consistency of the SM
 - Key role of LHCb (& CDF) in b \rightarrow s physics (ϕ_s , $B_s \rightarrow \mu\mu$, $B \rightarrow K*ll$) and Charm [substantial change of paradigm with respect to ~ 2 years ago]
 - Two key open issues at present:
 - I. The "old" CKM anomaly
 - II. The recent puzzle of CPV in charm

- ► Status of the art (discussion of present "anomalies")
 - Overall good consistency of the SM
 - Key role of LHCb (& CDF) in $b \rightarrow s$ physics (ϕ_s , $B_s \rightarrow \mu\mu$, $B \rightarrow K*ll$) and Charm [substantial change of paradigm with respect to ~ 2 years ago]
 - Two key open issues at present:

I. The "old" CKM anomaly

II. The recent puzzle of CPV in charm

Need to improve the determination

of γ and V_{ub} :

- Clearly need to study charm system in detail. A lot more to do for LHCb!
 - All measurements being improved with larger data sets in hand.
 2012 will at least double that.
 - We are undertaking a comprehensive program in a variety of channels, using alternative analysis methods/trigger paths for CP searches. More soon!
 - Continue to investigate charm loops in a variety of ways, such as rare decays.
- LHCb thanks all of the theorists working to interpret our results!
 - We crave feedback. What measurements are most interesting to the theory community?
- Lots of precision charm results to come. Will calculations match precision?

- Clearly need to study charm system in detail. A lot more to do for LHCb!
 - All measurements being improved with larger data sets in hand.
 2012 will at least double that.
 - We are undertaking a comprehensive program in a variety of channels, using alternative analysis methods/trigger paths for CP searches. More soon!
 - Continue to investigate charm loops in a variety of ways, such as rare decays.
- LHCb thanks all of the theorists working to interpret our results!
 - We crave feedback. What measurements are most interesting to the theory community? *That's indeed the key question...*

- Clearly need to study charm system in detail. A lot more to do for LHCb!
 - All measurements being improved with larger data sets in hand.
 2012 will at least double that.
 - We are undertaking a comprehensive program in a variety of channels, using alternative analysis methods/trigger paths for CP searches. More soon!
 - Continue to investigate charm loops in a variety of ways, such as rare decays.
- LHCb thanks all of the theorists working to interpret our results!
 - We crave feedback. What measurements are most interesting to the theory community? *That's indeed the key question...*

- Clearly need to study charm system in detail. A lot more to do for LHCb!
 - All measurements being improved with larger data sets in hand.
 2012 will at least double that.
 - We are undertaking a comprehensive program in a variety of channels, using alternative analysis methods/trigger paths for CP searches. More soon!
 - Continue to investigate charm loops in a variety of ways, such as rare decays.
- LHCb thanks all of the theorists working to interpret our results!
 - We crave feedback. What measurements are most interesting to the theory community? *That's indeed the key question...*

I'm confident some progress will be made in the next new few months...

- Composite models, various versions of SUSY (disoriented A terms, effective SUSY,), ...
- Wider list of useful observables
- In several realistic cases the most significant effects are expected in 2nd → 1st transitions, either in the down sector (Kaon physics) or in the up sector (CPV in charm).

Only SM *Y*'s no new CPV

- Tiny effects, very limited class of relevant observables
- Notable exceptions: $B_s \rightarrow \mu\mu$, $B \rightarrow l\nu$, ϵ_K (hence γ and V_{ub})

Flavor-blind CP $U(2)^3$, ...

- Well motivated after LHC results (*natural SUSY*, ...)
- More observables in the B system: ϕ_s , $B \rightarrow K*11$

- Composite models, various versions of SUSY (disoriented A terms, effective SUSY,), ...
- Wider list of useful observables
- In several realistic cases the most significant effects are expected in 2nd → 1st transitions, either in the down sector (Kaon physics) or in the up sector (CPV in charm).

Only SM *Y*'s no new CPV

- Tiny effects, very limited class of relevant observables
- Notable exceptions: $B_s \rightarrow \mu\mu$, $B \rightarrow l\nu$, ϵ_K (hence γ and V_{ub})

Flavor-blind CP $U(2)^3$, ...

- Well motivated after LHC results (natural SUSY, ...)
- More observables in the B system:
 φ_s, B→K*ll

- Composite models, various versions of SUSY (disoriented A terms, effective SUSY,), ...
- Wider list of useful observables
- In several realistic cases the most significant effects are expected in $2^{nd} \rightarrow 1^{st}$ transitions, either in the down sector (Kaon physics) or in the up sector (CPV in charm).

In each of these classes we could show illustrative examples of the correlations with high-pT physics

In each of these classes we could show illustrative examples of the correlations with high-pT physics [here some feedback is welcome...]

E.g.: Natural (=split family) SUSY with $U(2)^3$

- γ from tree (B \rightarrow DK, ...)
- |V_{ub}| from semi-leptonic B decays
- $B_{s,d} \rightarrow l^+ l^-$
- CPV in B_s mixing
- B \to K^(*) l^+l^- , vv
- $B \rightarrow \tau \nu$, $\mu \nu$
- $K \rightarrow \pi \nu \nu$
- CPV in charm
- LFV in charged leptons

[again feedback is very welcome...!!]

- γ from tree (B \rightarrow DK, ...)
- |V_{ub}| from semi-leptonic B decays
- $B_{s,d} \rightarrow l^+ l^-$
- CPV in B_s mixing
- B $\to K^{(*)} l^+ l^-, vv$
- $B \rightarrow \tau \nu$, $\mu \nu$
- $K \rightarrow \pi \nu \nu$
- CPV in charm
- LFV in charged leptons

 $|V_{ub}|$, but maybe not the only one (?)

- γ from tree (B \rightarrow DK, ...)
- |V_{ub}| from semi-leptonic B decays

Tree-level CKM $\rightarrow \sin(2\beta)^{SM} \& \varepsilon^{SM}$ (clarification of the CKM-fit anomaly)

 $B \rightarrow \pi$ likely to be the best channel for $|V_{ub}|$, but maybe not the only one (?)

- $B_{s,d} \rightarrow l^+ l^-$
 - Scalar FCNCs, MFV + nMFV [$\sigma(f_B)$ < 5% (lattice)]
- CPV in B_s mixing New CPV (natural SUSY, ...), MFV + nMFV [$\sigma(S_{\psi\phi}) \sim 0.01$ + control chan.]
- B \rightarrow K^(*) l^+l^- , vv Non-standard FCNCs, MFV + nMFV [$\sigma(A_{FB,T}) \sim 5\%$]
- B $\rightarrow \tau \nu$, $\mu \nu$ Scalar charged curr. (H⁺), MFV + LFV [$\sigma(f_B) < 5\%$ (lattice)]
- $K \rightarrow \pi \nu \nu$ Very sensitive probe of nMFV [$\sigma(BR) < 5\%$]
- CPV in charm Flavor-violation in the up sector, nMFV [σ_{th} to be discussed]
- LFV in charged leptons

- γ from tree (B \rightarrow DK, ...)
- |V_{ub}| from semi-leptonic B decays

- Tree-level CKM $\rightarrow \sin(2\beta)^{SM} \& \varepsilon^{SM}$ (clarification of the CKM-fit anomaly)
- $B \rightarrow \pi$ likely to be the best channel for $|V_{ub}|$, but maybe not the only one (?)
- $B_{s,d} \rightarrow l^+ l^-$ Scalar FCNCs, MFV + nMFV [$\sigma(f_B) < 5\%$ (lattice)]
- CPV in B_s mixing New CPV (natural SUSY, ...), MFV + nMFV [$\sigma(S_{\psi\phi}) \sim 0.01$ + control chan.]
- B \rightarrow K^(*) l^+l^- , vv Non-standard FCNCs, MFV + nMFV [$\sigma(A_{FB,T}) \sim 5\%$]
- B $\rightarrow \tau \nu$, $\mu \nu$ Scalar charged curr. (H⁺), MFV + LFV [$\sigma(f_B) < 5\%$ (lattice)]
- $K \rightarrow \pi \nu \nu$ Very sensitive probe of nMFV [$\sigma(BR) < 5\%$]
- CPV in charm Flavor-violation in the up sector, nMFV [σ_{th} to be discussed]
- LFV in charged leptons Shall we discuss it ? ... probably Yes

•
$$\gamma$$
 from tree (B \rightarrow DK, ...) (S)LHCb

• |V_{ub}| from semi-leptonic B decays SuperB's

•
$$B_{s,d} \rightarrow l^+ l^-$$
 (S)LHCb

• CPV in B_s mixing (S)LHCb

• B
$$\rightarrow$$
 K^(*) l^+l^- , $\nu\nu$ (S)LHCb, SuperB's

• B $\rightarrow \tau \nu$, $\mu \nu$ SuperB's

• $K \rightarrow \pi \nu \nu$ Kaon beams (NA62,...)

• CPV in charm (S)LHCb, SuperB's

• LFV in charged leptons Muon beams, (S)LHCb, SuperB's