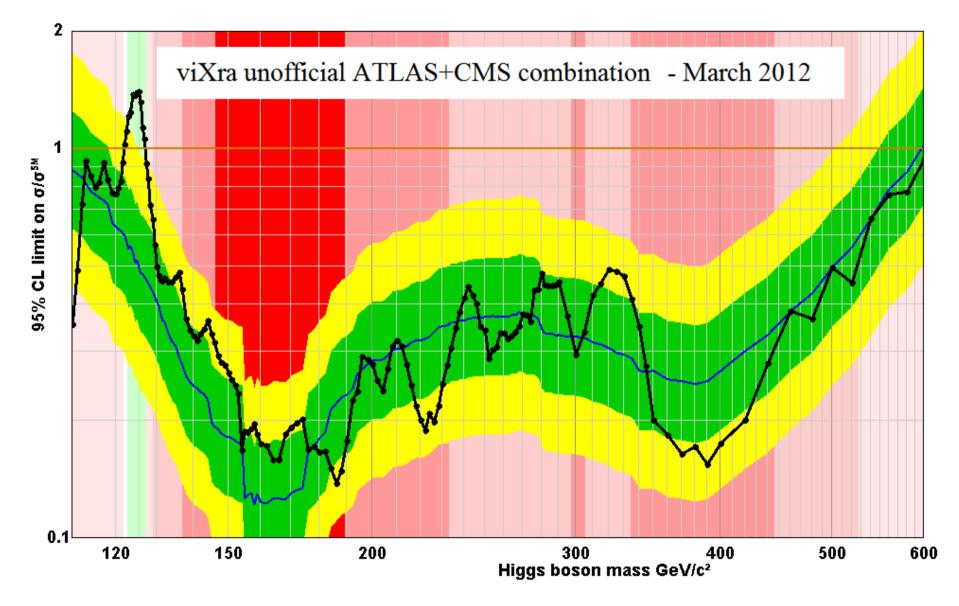
Implications of LHC Results for TeV-Scale Physics WG1 (Signals of Electroweak Symmetry Breaking): Towards the Final Document

Sven Heinemeyer, IFCA (CSIC, Santander)

on behalf of Andreas, Chiara, Georg, Marumi

CERN, 03/2012

- "... to evaluating the implications of recent results from the LHC, and elsewhere, for TeV-scale physics, and to discuss the impact of these results on the future strategy for particle physics."
- WG1: Signals of electroweak symmetry breaking
- The task of the working groups is to assess the possible interpretations of the experimental results in view of their implications for the future strategy of particle physics.
- First general meeting: 08/2011 @ CERN \Rightarrow initial ideas, discussions Intermediate WG1 meeting: 11/2011 @ Orsay \Rightarrow "unclear" situation
- final document will be ready in time for the Orsay-type meeting of the European Strategy update
 ⇒ 31.07.2012


Keep in mind:

- a) How well do the observed signatures in the early LHC data constrain the possible physics scenario?
- b) What could be the impact of early LHC results on the choice of the next facility and its (ultimate) energy reach and luminosity?
- c) What would be the possible implications for the machine and the detector design?

⇒ draft very soon (pre-draft exists already :-)

("dry run": take a look at LHC2FC report!)

Unofficial(!) LHC combination for SM-like Higgs searches:

Sven Heinemeyer, 2. LHC2TSP workshop (CERN): 30.03.2012

Sven Heinemeyer, 2. LHC2TSP workshop (CERN): 30.03.2012

- SM-like Higgs excluded for $M_{H} \lesssim 120~{\rm GeV}$
- SM-like Higgs excluded for 130 GeV $\lesssim M_H \lesssim 500$ GeV
- large regions excluded beyond the 99% CL limit
- large regions excluded for a Higgs with strongly reduced couplings
- "tantalizing hints" observed for 122 ${\rm GeV} \leq M_H \leq$ 128 ${\rm GeV}$
 - ATLAS: 2.5 σ (local, with 2.8 σ expected): $\gamma\gamma$ (+ ZZ)
 - CMS: 2.8 σ (local, with 2.8 σ expected): $\gamma\gamma$
 - Tevatron: 2.7 σ (local, with 1.5 σ expected): $b\overline{b}$ (+ $l\nu l\nu$)

 \Rightarrow parallel sessions on 125 GeV implications . . .

 \Rightarrow impressively coherent picture

- SM-like Higgs excluded for $M_{H} \lesssim 120~{\rm GeV}$
- SM-like Higgs excluded for 130 GeV $\lesssim M_H \lesssim 500$ GeV
- large regions excluded beyond the 99% CL limit
- large regions excluded for a Higgs with strongly reduced couplings
- "tantalizing hints" observed for 122 GeV $\leq M_{H} \leq$ 128 GeV
 - ATLAS: 2.5 σ (local, with 2.8 σ expected): $\gamma\gamma$ (+ ZZ)
 - CMS: 2.8 σ (local, with 2.8 σ expected): $\gamma\gamma$
 - Tevatron: 2.7 σ (local, with 1.5 σ expected): $b\overline{b}$ (+ $l\nu l\nu$)
- \Rightarrow parallel sessions on 125 GeV implications . . .
- \Rightarrow impressively coherent picture

Do not forget: SM-fit prefers low M_H MSSM predicted M_h around this range for decades! For our analysis/write-up: $\mathcal{L} \lesssim 3 - 7 \, \text{fb}^{-1}$ @ 8 TeV

- collaboration internal combination :-) sufficient for 5σ ???

– combination of ATLAS and CMS? :-(

For our analysis/write-up: $\mathcal{L} \leq 3 - 7 \, \text{fb}^{-1}$ @ 8 TeV

- collaboration internal combination :-) sufficient for 5σ ???
- combination of ATLAS and CMS? :-(

Possible scenarios: (things can change rapidly!)

observation of a state compatible with A: SM-like Higgs with $M_H \approx 125$ GeV

B: non-SM-like Higgs with $M_H \approx 125$ GeV

C: something inconclusive

D: "nothing" Is this possible with "our" data set?

Our "final" data set: everything presented at ICHEP 2012

For our analysis/write-up: $\mathcal{L} \leq 3 - 7 \, \text{fb}^{-1}$ @ 8 TeV

- collaboration internal combination :-) sufficient for 5σ ???
- combination of ATLAS and CMS? :-(

A: SM-like Higgs with $M_H \approx 125~{
m GeV}$

- mass measurement to $\pm ?~\text{GeV}$
- μ values ("signal strength") for various channels
- very rough coupling measurement (~ 50% level ~ 20% level??) (ATLAS? CMS? SFitter!, \mathcal{L}_{eff} fitters!)
- quantum numbers: J^{PC} , ...
- \Rightarrow parallel session on 125 GeV implications . . .
- \Rightarrow parallel session on coupling determination

For our analysis/write-up: $\mathcal{L} \leq 3 - 7 \, \text{fb}^{-1}$ @ 8 TeV

- collaboration internal combination :-) sufficient for 5σ ???
- combination of ATLAS and CMS? :-(

B: non-SM-like Higgs with $M_H \approx 125~{\rm GeV}$

- mass measurement to \pm ? GeV
- μ values ("signal strength") for various channels \Rightarrow deviation from SM?
- very rough coupling measurement ($\sim 50\%$ level!! $\sim 20\%$ level??) (ATLAS? CMS? SFitter!, \mathcal{L}_{eff} fitters!)
- quantum numbers: J^{PC} , ...
- \Rightarrow parallel session on 125 GeV implications . . .
- \Rightarrow parallel session on coupling determination

For our analysis/write-up: $\mathcal{L} \lesssim 3 - 7 \, \text{fb}^{-1}$ @ 8 TeV

- collaboration internal combination :-) sufficient for 5σ ???
- combination of ATLAS and CMS? :-(

C: something inconclusive

- unclear
- how to prepare??
- update with more data!!
- \Rightarrow parallel session on alternatives

For our analysis/write-up: $\mathcal{L} \leq 3 - 7 \, \text{fb}^{-1}$ @ 8 TeV

- collaboration internal combination :-) sufficient for 5σ ???
- combination of ATLAS and CMS? :-(
- D: "nothing"
- VV scattering will not say anything yet . . .
- VV scattering will be interesting/relevant in any scenario!
 (i.e. also in A, B, C)
- \Rightarrow parallel session on VV scattering

Work out/summarize what a future facility

- HL-LHC
- HE-LHC
- ILC
- CLIC
- LEP3
- LHeC

. . .

 $-\mu C$

will add in that scenario to what we will learn at the LHC with $\sim 300\, \rm fb^{-1}$

A: SM-like Higgs with $M_H \approx 125~{\rm GeV}$

Measurement of mass, (self-)couplings, quantum numbers, tensor structures at LHC(300) vs.

- HL-LHC
- HE-LHC
- ILC
- CLIC
- LEP3
- LHeC
- . . .

B: non-SM-like Higgs with $M_H \approx 125 \text{ GeV}$

Measurement of mass, (self-)couplings, quantum numbers, tensor structures at LHC(300) vs.

- HL-LHC
- HE-LHC
- ILC
- CLIC
- LEP3
- LHeC
- . . .

C: something inconclusive (also: hints at 125 GeV + someting inconclusive) D: "nothing"

We have to further probe the entire mass range (also below 114 GeV!!)

- Higgs with strongly suppressed couplings?
- Heavy Higgs (+ something else)
- VV scattering
- something else

Compare LHC(300) to

- HL-LHC
- HE-LHC
- ILC
- CLIC
- LEP3
- LHeC

- . . .

- the convenors will ask for special contributions (fits, numbers, ...)
- the convenors will (the sooner the better) prepare a draft (pre-draft exists already :-)
- the draft will be circulated pre-ICHEP
 - \rightarrow comments to be sent to the convenors
- the draft will be updated after ICHEP and circulated on a very short time scale!
- document ready by 31.07. latest
- \Rightarrow all in coordination with other WG's

- the convenors will ask for special contributions (fits, numbers, ...)
- the convenors will (the sooner the better) prepare a draft (pre-draft exists already :-)
- the draft will be circulated pre-ICHEP
 - \rightarrow comments to be sent to the convenors
- the draft will be updated after ICHEP and circulated on a very short time scale!
- document ready by 31.07. latest
- \Rightarrow all in coordination with other WG's

Possibly update with more data/refinements?

- the convenors will ask for special contributions (fits, numbers, ...)
- the convenors will (the sooner the better) prepare a draft (pre-draft exists already :-)
- the draft will be circulated pre-ICHEP
 - \rightarrow comments to be sent to the convenors
- the draft will be updated after ICHEP and circulated on a very short time scale!
- document ready by 31.07. latest
- \Rightarrow all in coordination with other WG's

Possibly update with more data/refinements?

After Moriond 2013 prepare the really final document