Luminosity: experimental prospects and challenges, LHCb LHC Lumi Days 2012, CERN

Victor Coco

NIKHEF

February 29th, March 1st 2012

On behalf of the LHCb collaboration

- Overview of the LHCb detector.
- Luminosity measurements @ LHCb.
- $\, \bullet \,$ W,Z production measurements, luminosity and PDF uncertainties.
- ${\scriptstyle \circ}$ Potential for luminosity measurement with W,Z and exclusive di- μ from photon fusion.
- Impact of luminosity measurements on hadron cross section measurements.

- Designed for CP violation studies in B decay and rare decays.
- $\,\circ\,$ Single arm spectrometer, $\sim\,30\%$ of $b\bar{b}$ pairs produced in the acceptance.
- So far $\sim 0.3 nb^{-1}$ recorded at $\sqrt{s} = 900 GeV$ and $\sim 1.1 fb^{-1}$ at $\sqrt{s} = 7 TeV$.
- $\,$ $\,$ For muons 2 $<\eta<$ 2.5 overlap with Atlas/CMS, 2.5 $<\eta<$ 5 unique to LHCb.

- $\, \bullet \,$ Tracking efficiency $\sim 95\%$
- $\delta p/p \sim 0.5\%$
- $\, \circ \,$ partial backward coverage in the VELO $-4. < \eta < -1.5$

• Muon ID for μ from W > 98%.

Muon trigger for EW measurements:

- Di-muon trigger $m_{\mu\mu}>2.7~GeV/c^2$ or $m_{\mu\mu}>1.~GeV/c^2$ and $p_{T~\mu\mu}<900~MeV/c.$
- single high p_T muon trigger: $p_T \mu > 10 \ GeV/c$.

Direct measurements J. Instrum. 7 (2012) P01010

• Two methods are used to measure the parameters of the beams

see Massi and Vladislav talk.

- Van der Meer scan method.
- Beam gas imaging method.
- Average on large datasets: 3.5 % uncertainty on the luminosity measurement.
- Both methods are limited by the bunch current knowledge.

Indirect measurements

- Measure the rate of a theoretically well known process, with small experimental uncertainties
- At LHCb the two candidates are:
 - W and Z production
 - ${\scriptstyle \circ }$ Exclusive di- μ produced by photon fusion.

Low average number of visible interaction per bunch crossing: < µ >= 1.4 most of the year.
 During 2011 data taking, luminosity leveling was used

 \rightarrow Constant instantaneous luminosity.

W,Z production and PDF

Production cross sections

$$\sigma_{pp\to Z} = \int dx_a dx_b f_{a/p_1}(x_a, Q^2) f_{b/p_2}(x_b, Q^2) \hat{\sigma}_{ab\to Z}$$

- \bullet Partonic cross-section: Accuracy of ~ 1 % for W and Z @ NNLO.
- PDF: parametrized using data from previous experiments.

- Small x from one proton, large x from the other.
- $\,$ $\,$ Drell-Yan production probe x as low as $\,10^{-5}$ (soon)

W,Z production and PDF

Production cross sections

$$\sigma_{pp\to Z} = \int dx_a dx_b f_{a/p_1}(x_a, Q^2) f_{b/p_2}(x_b, Q^2) \hat{\sigma}_{ab\to Z}$$

 $\,$ $\,$ $\,$ Partonic cross-section: Accuracy of ~ 1 % for W and Z @ NNLO.

• PDF: parametrized using data from previous experiments.

- Good knowledge of the luminosity \rightarrow better constraint of the PDFs.
- Good knowledge of the PDFs → indirect measurement of the luminosity

W,Z production and PDF $_{\text{PDF constraint @ LHCb}}$

Luminosity uncertainties cancel through ratios:

$$\circ R_{WZ} = \frac{d\sigma(W)}{d\sigma(Z)}$$

$$\circ R_{+-} = \frac{d\sigma(W^+)}{d\sigma(W^-)}$$

$$\circ A_{+-} = \frac{d\sigma(W^+) - d\sigma(W^-)}{d\sigma(W^+) + d\sigma(W^-)}$$

• Production ratios R_{+-} and A_{+-} are strong handle to constrain PDFs.

2010 Dataset: 37.1 pb⁻¹

- TRIGGER: Single muon with $p_T > 10 \ GeV/c$.
- $\bullet~$ Reconstruction: Two muons with $p_T>20~GeV/c,~2.<\eta_\mu<4.5$ and 60 $GeV/c^2< m_{\mu\mu}<120~GeV/c^2$
- BACKGROUNDS: $Z \rightarrow \tau \tau$ (from MC), heavy flavour (from data).

- Signal candidate: 1966 \pm 44
- ${\scriptstyle \odot}~$ Background : 4.9 \pm 2.0

2010 Dataset: 37.1 pb⁻¹

- $\,\circ\,$ Trigger: Single muon with $p_T>10~GeV/c.$
- RECONSTRUCTION: One muons with $p_T > 20 \text{ GeV}/c$, $2. < \eta_{\mu} < 4.5$ and isolation criteria $(P_T (ch.+neut.) \text{ in cone of } R=0.5 \text{ around } \mu < 2 \text{ GeV}/c$, with $R = \sqrt{\Delta \eta^2 + \Delta \phi^2})$ No extra muon with $p_T \mu > 5 \text{ GeV}/c$, $IP_{\mu} < 40\mu m$, E/p < 4%.
- BACKGROUNDS:
 - $Z \rightarrow \mu\mu, Z \rightarrow \tau\tau, W \rightarrow \tau\nu$ (from MC).
 - K/π punch-trough and decay in flight (from data).
 - Heavy flavour (from data).

 ${\circ}~$ Signal candidate: $W^+~15608\pm125, W^-~12301\pm111$

 ${\ensuremath{\,\circ}}$ Purity : $W^+ \sim 80$ %, $W^- \sim 78$ %

W and Z cross section measurements

Ingredients and associated systematics

$$\sigma = \frac{N_{candidates} - N_{background}}{A \times \epsilon_{Trigger} \times \epsilon_{Tracking} \times \epsilon_{ID} \times \epsilon_{Selection} \times \int L}$$

From $Z \rightarrow \mu \mu$ data with tag and probe method:

- A: 1. by definition of the kinematic range.
- *€*Trigger:
 - Tag: triggered muon
 - Probe: offline reconstructed muon.
- *€*Tracking
 - Tag: identified muon.
 - Probe: muon stubs.

● *€ID*

- Tag: identified muon.
- Probe: long track.

• $\epsilon_{Selection}$

- For $W \to \mu \nu$:Use $Z \to \mu \mu$ with one muon removed to simulate a ν .
- For $Z \to \mu \mu$: 1. by definition

The systematics associated to these efficiencies are statistical in nature.

	$Z \rightarrow \mu \mu$	$W^+ ightarrow \mu^+ u$	$W^- ightarrow \mu^- \nu$
Statistical	2.1	0.9	1.1
Shape	n.a.	1.9	1.7
Background contamination	0.4	1.6	1.6
Efficiencies	5.1	2.5	2.3
FSR	0.3	0.2	0.2
Luminosity	3.5	3.5	3.5

Efficiencies uncertainty are already at the level of the luminosity uncertainty with 2010 data sample.

Cross section measurements

Summary

LHCb-CONF-2011-012/LHCb-CONF-2011-039

Z differential cross section

Results

LHCb-CONF-2011-012/LHCb-CONF-2011-039

$\underset{\text{Results}}{W \text{ production ratios}}$

- Luminosity uncertainties cancel through the ratio.
- Most sensitive measurements.

Improvement of the uncertainties for 2011

Expectation

- Luminosity levelling gives stable running condition.
- Trigger thresholds are unchanged with respect to the 2010 dataset.
- Analysis is stable.
- $\bullet~30\times$ more candidates
 - \rightarrow naive expectation: uncertainties related to statistics reduced by \sim 80%.

Improvement of the uncertainties for 2011

Expectation

See Ronan Mcnulty talk @ EW precision measurements at the LHC WG, Nov 2011.

Caveat: this is assuming the systematics scales with the statistics. But they might reach some non statistical limits.

	$Z \rightarrow \mu \mu$	$Z ightarrow \mu \mu$	$W ightarrow \mu u$	$W ightarrow \mu u$
Uncertainty	2010	2011	2010	2011
Statistical	2.2% (2k Z)	0.4% (60k Z)	0.7% (20k W)	0.1% (600k W)
Purity	0.1%	0.0%	3.1%	1.% (?)
Efficiencies	4.0%	0.7%	2.8%	0.5%
Luminosity	3.5%	3.5 %?	3.5%	3.5 %?

 For R₊₋: in 2010: 1.5 % stat. 0.2 % syst. in 2011 0.3 % stat. 0.2 % syst.

• For A_{+-} , depending on η_{μ} : in 2010: from 1.4 % to 5.8 % in 2011 from 0.3 % to 1.0 %

Select event with exactly two muons forward and no backward tracks.

- $\,\circ\,$ Large theoretical uncertainty on resonant exclusive di- μ (O(15 %))
- For $\gamma\gamma \rightarrow \mu\mu,$ QED process uncertainty < 1 %.

Non-resonant exclusive Dimuons

Signal selection

- ${}_{\odot}$ $\gamma\gamma\rightarrow\mu\mu$ is candidate for indirect measurement of the luminosity.
- Purity of the signal is the main issue.

Background:

- Di-µ from double pomeron exchange.
- Di- μ from inelastic di-photon fusion
- MisID (found to be negligible)
- Background shape is taken from inelastic events.
- Purity extracted by template fit (signal shape from MC)

LPAIR: J. Vermaseren, Nucl. Phys. B229, 347 (1983), Pomwig: B. E. Cox, J. R. Forshaw, Phys. Comm. 144:104-110, 2002, arXiv:hep-ph/0010303v3

Potential for indirect measurement of the luminosity

Preliminary result, LHCb-CONF-2011-022:

 $\sigma_{pp \to p\mu^+\mu^-p} (2 < \eta_{\mu+}, \eta_{\mu-}, m_{\mu\mu} > 2.5 ~ \text{GeV}/c^2) = 67 \pm 10 (\text{stat}) \pm 7 (\text{sys}) \pm 15 (\text{lumi}) \text{pb}$

• Naive extrapolation for 2011:

Uncertainty	2010	2011
Statistical	16%	2.3%
Efficiencies	9%	1%
Purity	2%	0.3%

- 2010: most efficiencies taken from MC, 2011: most taken from data.
- Should give an improved luminosity uncertainty

 \rightarrow better constraint from W and Z production cross-section measurements.

Impact of luminosity on cross section measurements in 2010/2011 $_{\rm Quarkonia,\ Double\ J/\psi}$

 $\circ\,$ Eur. Phys. J. C 71 (2011) 1645: J/ ψ production cross section measurements @ $\sqrt{s}=$ 7 TeV.

Unknown J/ψ polarisation at the level of the luminosity uncertainty O(10 %).

ightarrow Plan to measure J/ψ polarisation

Luminosity uncertainty will become the largest systematic.

- LHCb-CONF-2011-016 and LHCb-CONF-2011-026 : Υ(1S) and ψ(2S) production cross section measurements @ √s = 7 TeV.
 Polarisation uncertainty dominates but the luminosity uncertainty is amongst the highest contribution
- Those measurements are planned to be repeated at $\sqrt{s} = 8$ TeV.

• LHCb-CONF-2011-009 Double J/ψ production @ $\sqrt{s} = 7$ TeV.

On the whole 2011 data statistics, the 3.5 % luminosity uncertainty would be dominant. No plan though to redo the cross section measurement.

Impact of luminosity on cross section measurements in 2010/2011 $_{\rm B\ hadrons,\ Double\ Charm}$

- Phys. Lett. B 694 (2010) 209-216 $pp \rightarrow \bar{b}b + X$ cross section @ $\sqrt{s} = 7$ TeV Tracking efficiency and luminosity are both O(10 %) (early 2010). 17.3 % systematic uncertainty, without luminosity 14. %
- LHCb-PAPER-2011-043 B^{\pm} production cross section @ $\sqrt{s} = 7 \ TeV$ 7.5 % systematic uncertainty, without luminosity 6.6 %
- Will be performed @ $\sqrt{s} = 8 \ TeV$

• LHC seminar 07.02.12 Double Charm and J/ψ + Charm 24 modes. Dominant systematic is due to uncertainties for hadron interactions in detectors and charm branching ratio, $J/\psi + D_0$ might benefit from improved luminosity.

- W and Z production measurements already put constraints on PDFs with 2010 dataset.
- 2011 measurement will be dominated by luminosity uncertainty.
- $\circ~pp \rightarrow p\mu\mu p$ should be able to provide an indirect measurement of the luminosity.
- W and Z production can also provide an indirect measurement of the luminosity.
- Other production cross section measurements at LHCb would benefit from reduced luminosity uncertainties.