LHC Luminosity: Operational aspects

Alick Macpherson
LHC Lumi Days 2012
1 March 2012

Acknowledgements: Reyes Alemany Fernandez, Helmut Burkhardt, Gabriel Mueller, Giulia Papotti, Stefano Redaelli, Georges Trad, Mariusz Sapinski, Jorg Wenninger
Introduction

- LHC in 2012: normal operation
 - Changes in Beam Conditions for 2012

- Special Runs
 - Luminosity Calibration:
 - Van der Meer Scans
 - Length Scale Calibration
 - Software changes associated with Luminosity Scans

- High β optics
 - β^* of 90m and 500m
The LHC in normal operation
LHC operational cycle

Time-functions for settings of

1. ramp,
2. squeeze(s),
3. collisions,
4. pre-cycle (without beam).

Discrete ("actual") settings for:

1. injection,
2. prepare ramp,
3. flat-top,
4. adjust (end of squeeze),
5. stable beams.
LHC operational cycle

Time-functions for settings of:

1. ramp,
2. squeeze(s),
3. collisions,
4. pre-cycle (without beam).

Discrete ("actual") settings for:

1. injection,
2. prepare ramp,
3. flat-top,
4. adjust (end of squeeze),
5. stable beams.

End of Fill Studies

Luminosity Optimization
LHC in 2012: What’s new in the optics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value at 450 GeV</th>
<th>Value at top energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy [GeV]</td>
<td>450</td>
<td>4000</td>
</tr>
<tr>
<td>$\beta^*_{IP1/5}$ [m]</td>
<td>11.0</td>
<td>0.6</td>
</tr>
<tr>
<td>β^*_{IP2} [m]</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>β^*_{IP8} [m]</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Parallel separation [mm]</td>
<td>2.0</td>
<td>0.67</td>
</tr>
<tr>
<td>Crossing angle IP1/5 [µrad]</td>
<td>170</td>
<td>145</td>
</tr>
<tr>
<td>Crossing angle IP2 [µrad]</td>
<td>170</td>
<td>90⁺</td>
</tr>
<tr>
<td>Crossing angle IP8 [µrad]</td>
<td>170 (H)</td>
<td>100 (V)</td>
</tr>
</tbody>
</table>

These changes require tight collimator settings: TCPs @ 4.3σ, TCTs @ 9σ
LHC in 2012: What’s new in the optics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value at 450 GeV</th>
<th>Value at top energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy [GeV]</td>
<td>450</td>
<td>4000</td>
</tr>
<tr>
<td>$\beta^*_{IP1/5}$ [m]</td>
<td>11.0</td>
<td>0.6</td>
</tr>
<tr>
<td>β^*_{IP2} [m]</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>β^*_{IP8} [m]</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Parallel separation [mm]</td>
<td>2.0</td>
<td>0.67</td>
</tr>
<tr>
<td>Crossing angle IP1/5 [µrad]</td>
<td>170</td>
<td>145</td>
</tr>
<tr>
<td>Crossing angle IP2 [µrad]</td>
<td>170</td>
<td>90±</td>
</tr>
<tr>
<td>Crossing angle IP8 [µrad]</td>
<td>170 (H)</td>
<td>100 (V)</td>
</tr>
</tbody>
</table>

These changes require tight collimator settings: TCPs @ 4.3σ, TCTs @ 9σ

Operational Sequence: Turnaround Improvements

- Ramp duration [s]: **770 s** (2010: 1020 s)
- Squeeze duration [s]: **819 s** (0.6 m) (2010: 548 s (1.0 m))
- Collision BP duration [s]: **56 s** (2010: 56 s)

Theoretical time from Start of Ramp to collisions is the same from 2012 to 2010

- Crossing angle rotation in IP8 ~ **200 s**
LHC in 2012: What else is new

- Luminosity improvements compared to starting parameters of 2011
 - $E = 3.5\text{TeV}$ \ $I_{\text{bunch}}=1.1\times10^{11}$ \ $\beta^*=1\text{m}$ \ $\epsilon_n=2.0\mu\text{m}$ \ Crossing angle =240 μrad
 - Increase I_{bunch} from 1.1×10^{11} -> 1.6×10^{11}: Luminosity Increase = 112%
 - Emittance Increase: ϵ_n from 2.0 -> 2.5 μm Luminosity Increase = -18%
 - Decrease β^* from 1m -> 0.6m Luminosity Increase = 56 %
 - Beam Energy from 3.5 -> 4TeV Luminosity Increase = 12.5 %
 - Crossing angle: 240 -> 290 μrad: Luminosity Increase = -4.6 %

Total Peak Lumi improvement over ‘2011 start conditions’ = 187 %
Total improvement over ‘2011 end conditions’ ($I_{\text{bunch}}=1.4\times10^{11}$) = 76 %
LHC in 2012: What else is new

- Luminosity improvements compared to starting parameters of 2011
 - E= 3.5TeV \(I_{\text{bunch}}=1.1\times10^{11} \) \(\beta^*=1\text{m} \) \(\epsilon_n=2.0\mu\text{m} \) Crossing angle =240 \(\mu\text{rad} \)
 - Increase \(I_{\text{bunch}} \) from 1.1\(\times10^{11} \) -> 1.6\(\times10^{11} \): Luminosity Increase = 112%
 - Emittance Increase: \(\epsilon_n \) from 2.0 -> 2.5 \(\mu\text{m} \) Luminosity Increase = -18%
 - Decrease \(\beta^* \) from 1\(\text{m} \) -> 0.6\(\text{m} \) Luminosity Increase = 56%
 - Beam Energy from 3.5 -> 4\(\text{TeV} \) Luminosity Increase = 12.5%
 - Crossing angle: 240 -> 290 \(\mu\text{rad} \): Luminosity Increase = -4.6%

Total Peak Lumi improvement over ‘2011 start conditions’ = 187%
Total improvement over ‘2011 end conditions’ (\(I_{\text{bunch}}=1.4\times10^{11} \)) = 76%

However: Pileup ...
- Expected Av number events/crossing \(<\mu> \) = 34.2
- Av. vertex multiplicity should scale linearly with \(\mu \)
- Expts: reconstruction algorithms not fully optimized
 => Clear feedback from Expts on useful delivered luminosity is needed
Luminosity Leveling

- Control of Instantaneous luminosity and pileup levels
 - Introduced in 2011. Now **Standard Operational Procedure**:
 - Luminosity regulated apply transverse offset in separation plane
 - Can be applied to all experiments

Fill 2160: Instantaneous Luminosity

- Date: 2011-09-27

Fill 2240: Instantaneous Luminosity

- Date: 2011-10-22

Luminosity Target value, Increment size, and time between increments controlled by each experiment
The new squeeze

- **$\beta^* = 0.9$ m**: Standard
 - 2011 collimator settings. (like in 2011). No issues

- **$\beta^* = 0.7$ m**: Significant commissioning (optics, orbit, Q')
 - Need to switch from **standard** to **tight** collimator settings.
 - Tight settings used in physics (EoF) in 2011 ... but some issues.
 - Orbit control in squeeze.
 - Instability/impedance control
 - Better chromaticity control.

- **$\beta^* = 0.6$ m**: Nominally straightforward once $\beta^* = 0.7$ m done
 - Tight collimator settings. Re-arrangement of TCSG6-TCDQ-TCT.

Plan for Initial running

- Prepare squeeze sequences to $\beta^* = 0.6$ m and 0.7 m
- Commission with low intensity to $\beta^* = 0.6$ m.
- **Then take a decision on β^* value.** ie 0.6 or 0.7m
Procedure to get to Stable Beams

- After the squeeze
 - Collapse the separation bumps
 - **Optimize luminosity in crossing angle plane** (All expts simultaneously)
 - **Declare Stable beams**
 - Optimize in separation plane (All expts where Lumi leveling not used)
 - Turn on Luminosity leveling in all required IRs
 - Take reference orbit once all Lumi leveling targets are reached

- One little complication ...
Procedure to get to Stable Beams

- After the squeeze
 - Collapse the separation bumps
 - **Optimize luminosity in crossing angle plane** (All expts simultaneously)
 - **Declare Stable beams**
 - Optimize in separation plane (All expts where Lumi leveling not used)
 - Turn on Luminosity leveling in all required IRs
 - Take reference orbit once all Lumi leveling targets are reached

- One little complication ...

LHCb Request: change from horizontal to vertical external crossing angle

- **Reason:**
 - beam-beam @ 25ns: Ensure beam separation of 1st parasitic encounter >12σ
 - New scheme: crossing angle (hence machine config) independent of spectrometer polarity
 - LHCb: Crossing angle independent of polarity removes one systematic error

- **Implementation: Not yet defined ...**
 - crossing angle rotation at injection if aperture margin
 - After LHCb squeezed to 3m and while IP1/5 squeezing to 0.6m
 - After the squeeze
From the LPC ...

- Emphasis on luminosity production
 - Concentrate special runs towards the 2nd part of 2012

- Special Runs: Two higher priority tasks
 - Luminosity calibration ... what is requested?
 - One VdM scan with $\beta^* = 11$ m to reach ultimate precision
 - Perform the scan at sufficiently low μ (~1 or 2)
 - Keep transverse luminous size larger than vertex resolution
 - to investigate correlations between horizontal and vertical beam profiles
 - May also ask for calibration at nominal β^*

- High beta physics
 - 2 physics goals:
 - Diffractive physics at $\beta^* = 90$ m (mainly TOTEM)
 - Highest β^* to approach Coulomb interference region for elastic scattering
 - Only one of physics run is likely within the present schedule
 - Proposal: A mixed setup with 90m in IP5 and 500m in IP1

- Other requests
 - Beam splashes events at expts, 10M evts in Low pileup sample ($\mu = 0.01$), very high pileup runs, stable beams fills 25 ns
 - Sufficient advance planning required to allow for preparation and setup
LHC Schedule

- **Re-commissioning with beam:** 21 days + 3 days of scrubbing.
- **Physics @ Easter…**
- **Earlier scrubbing, shorter 1st MD = > Maximize ∫ Ldt for ICHEP**
- **LPC to clarify when details for Special Runs in first part of the year.**

LHC Schedule Table

<table>
<thead>
<tr>
<th>Week</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>T</td>
<td>8</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>W</td>
<td>16</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>T</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>S</td>
<td>35</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>S</td>
<td>28</td>
<td>5</td>
<td>19</td>
</tr>
</tbody>
</table>

Technical stop

- **Start partial powering tests:** 1-Feb
- **Start full powering tests:** 1-Mar
- **Re-commissioning with beam**

LHC Schedule Diagram

- **Scrubbing run (date tbc)**
- **8 wks physics**
LHC re-commissioning and special setups

First turn, CO, capture

450 GeV

Ramp

Squeeze

Optics corrections

MPS commissioning

Injection setup & validation

Collimation setup & validation

Stable beams and intensity ramp up

Transfer line setup

Injection steering

Injection protection

Transfer line collimation

Injection protection validation

Collimation 450 GeV

Ramp settings

Collimation 4 TeV FT

Tertiary setup squeeze & collisions

Squeeze settings

Loss maps

Setup 450 GeV

Setup 4 TeV

Dump protection

Dump protection validation

Validation required after any change to standard operational setup

For simple changes the minimum setup time is ~ 2 shifts
Special Runs: Luminosity Calibration
Luminosity Calibration

- In 2011 this procedure matured and is now standard
- Luminosity Calibrations is a multi-step process
 - **Beam Size measurements**
 - Errors: 5% (Wires scans), 10% (BSRT)
 - **Van der Meer Scans**
 - Stepwise scan 1 beam across the other
 - Luminosity as a function of beam separation
 - Scan in orthogonal planes
 - Repeat VdM with scan directions reversed
 - **Length Scale Calibrations**
 - Correlate beam movement with vertex offset
 - **Other calibration effects**
 - Energy (Jorg), beam beam effects (Werner)

- VdM: Must guarantee Aperture Margin at IPs and TCTs

VdM: Aperture Margin OK for $\beta^*= 10\text{m}$ and $\beta^*= 0.6\text{m}$ @4 TeV

- VdM for $\beta^*= 0.6\text{m}$ uses $\sim0.19\sigma$ @ TCT (Aperture budget is 0.2 σ)
Luminosity Calibration
Luminosity Calibration

VdM Scans:
Scans in orthogonal planes

In 2011
- Horizontal plane
- Vertical plane

In 2012
- crossing angle
- separation planes

Allows for inclined crossing angle plane (eg LHCb)

Maximum beam separation at IP
- **Van der Meer Scan:** 6σ
- **Lumi Optimization:** 2σ

Beam size ($\varepsilon_n = 3.5 \mu m$)
- $\beta^* = 0.6 m$ @ 4 TeV
 $\sigma = 22 \mu m$
- $\beta^* = 1.0 m$ @ 3.5 TeV
 $\sigma = 31 \mu m$
Van der Meer Scans in 2011

VdM at collision settings

VdM scans: Typically 2-beam symmetric. Max Beam separation = ±6σ

VdM with offset in other plane
Off set = 160µm
Example: VdM Scan in May 2011 (Fill 1783)

- **Conditions:**
 - p-p @3.5 TeV, β^*: 1.5/10/1.5/3 m, $I_{\text{bunch}}=\sim 0.8\text{e11}$
 - Vdm Program Duration: ~11 hrs
 - Filling Scheme: Single_38b+1small_14_16_22_4bpi11inj

- **Scans per IP at collision settings:**
 - VdM 20 minutes each plane (H,V)
 - H-plane VdM with V-offset: 15 minutes
 - V-plane VdM with H-offset: 15 minutes

- **Length Scale Calibration (LSC)**
 - "Fast" LSC: 15 min per plane (full loop, and reversed)
 - ‘Leap-frog" LSC: 2 hrs per plane (Special request by ATLAS)

Minimum time for Lumi Calibration Run

Duration = $4\times2\times(VdM_{\text{1-plane}}) + 4\times2\times(VdM_{\text{offset}}) + 4\times2\times\text{LSC}_{\text{Fast}}$ = 400 min

=> Lumi Calibration is possible in 1 shift ... But special scan patterns take longer
Luminosity Scanning software improvements

- Ongoing ...
 - Ability to scan in crossing angle and separation planes (default)
 - implementation ongoing ...
 - depends somewhat on implementation of LHCb crossing angle rotation
 - Luminosity Leveling functionality for all IPs
 - Optimization Status to be published to Expts
 - Ability to pause/resume VdM scan sequence

- To be implemented ...
 - Ability to load predefined scan sequence
 - Each expt can define its scan procedure
 - VdM scans with single or both beam trims
 - LSC scans with leap-frog or fixed separation method.
 - Perform VdM scans at different IPs in parallel if requested
 - Make available LUMI-SCAN trims to experiments

For 2012 startup, **standard functionality assured** but testing/validation needed for more complicated requests ... end of fill tests etc.
High Pileup run - FILL 2252: \(N \approx 2.3 \times 10^{11} \) protons per bunch \(\varepsilon_n \approx 2.5 \) µm

Separation scans: all as expected
Note of caution ...

High Pileup run - FILL 2252: \(N \approx 2.3 \times 10^{11} \) protons per bunch \(\varepsilon_n \approx 2.5 \, \mu m \)

- Separation scans: all as expected
- Lumi re-optimization at EOF
 - ATLAS shows a \(\sim 10\% \) jump
 - ATLAS confirms data is correct
 - Reason: not optimised in vertical at start of fill

G.Trad – LSWG December 8, 2011
Special Runs: High β
High β operation

- **High β operation is classified as Special Running**
 - Physic coordinator defines priority: ~8 days of Special Runs allocated
 - High β program: need Special Runs + Machine Development time to meet the physics program
 - Only one of physics run can be supported within present schedule
 - **Proposal:** A mixed setup with 90m in IP5 and 500m in IP1

- **Setup time for High β**
 - $\beta=90m$: Re-commission the de-squeeze for 4TeV
 - $\beta=500m$: full commission of the de-squeeze for 4TeV
 - Preparation: New optics and extended operational sequence
 - Setup:
 - Full commissioning of new de-squeeze
 - Orbit + optics checks at matched points

- De-squeeze to 90 and 500 m will be commissioned together.
High β^* optics: going from 90m to 500m

- **De-squeeze to 90 m (as usual) then extend to 500m in steps**
 - At each Step (matched point)
 - Require vertical phase advance (IP to RP) $\Delta \mu_V = 90^\circ$. No constraint on $\Delta \mu_H$
 - Cabling constraint on Beam1:Beam2 ratio of Quadruple strengths (Q4 to Q8)
 - $0.5 < k_{b1}/k_{b2} < 2.0$
 - **Current basis and status :**
 - **Optics: 1st iteration exists optics for $\beta^* = 90 - 500$ m sequence**
 - All constraints satisfied, but smoothing and validating required

Talks by Helmut and Sophie
Operational Issues

- **De-Squeeze sequence**
 - ~17 match points to go from β^* of 10m to 500m

- **Orbit control:**
 - Need regular orbit control/correction
 - Constraint
 - de-squeeze beam separation \sim 2mm

- **Get Roman Pots close to beam**
 - Possibility of scraping to $\varepsilon_n \sim$ 1 µm
 - Try to probe Coulomb region

- **Setups for High β runs**
 - $I_{\text{bunch}} \sim 3 \times 10^{10}$
 - no crossing angle \Rightarrow up to 156 bunches.
 - **Equipment setup:** ADT, Feedbacks, BCTs, BPMs
 - Only standard equipment re-configurations
High β commissioning ... time estimates

- **Fill 1:** Established feasibility, first optics measurements *(1-2 shifts)*
 - Probe beams. Several de-squeezes probably needed

- **Fill 2:** Validate operational sequence all the way to collisions. *(1 shift)*
 - Probe beams

- **Fill 3:** Beam based alignment of Roman Pots *(1 shift)*
 - Few nominal bunches
 - Optics measurements and checks

- **Fill 4:** Roman Pots to "physics" settings => validate stable beams *(1 shift)*
 - 10-20 nominal bunches.
 - Complete set of loss maps in physics settings + Async dump test

- **Fill 5:** Stable beams running at High β setting with Roman Pots in *(1 shift)*
 - Optional: Make luminosity calibration measurements (VdM and Length Scale Calib) in IP8 & IP2 while taking physics data in IP1&5

Total high β setup time (optimistic): 5+1 non-consecutive shifts
High β running: Experience from 2011

- Total High β^*=90m time: 119 hrs - 15hrs physics = 104 hrs ~13 shifts
 - Time spread over 5 periods
 - No beam dumps directly triggered by the β^* de-squeeze.

- Expectation for 2012:
 - Commissioning of β^*=500m should take about the same time ...
Summary

- **2012 Standard operation**
 - The 2012 LHC priority is to deliver luminosity
 - **5 fb\(^{-1}\) by June is tough**: 8 wks @ \(\beta^*=0.6\text{m}\ \ell_{\text{bunch}}=1.6\times10^{11} \Rightarrow L_{\text{DEL}} \approx 6.6 \text{ fb}\(^{-1}\)**
 - Commission to \(\beta^*=60\text{ cm}\). Decide on \(\beta^*\) then intensity ramp up
 - Adiabatic increase of \(\ell_{\text{bunch}}\) up to \(1.6\times10^{11}\) (as machine permits)
 - Optimization of operational cycle
 - Turnaround trimmed & Minimal procedure to declare stable beams
 - Rotation of LHCb crossing angle
 - Details and procedure still being finalized

- **Special runs: Priorities mostly set. Now scheduling needed**
 - Lumi Calibration: Firm up details on what and when
 - Lumi Scan and VdM software **upgrade is ongoing ...**
 - Lumi leveling functionality for all IPs
 - High \(\beta\): Only 1 run seems likely \(\Rightarrow\) confirm required configuration
 - ie \(\beta=90\text{m}\) for TOTEM and \(\beta=500\text{ m}\) for ALFA, no pilots, \(\ell_{\text{bunch}} \approx 3\times10^{10}\) etc
 - Optics for \(\beta=500\text{ m}\) is in good shape.