Absolute \mathcal{L} determination in 2011 – and towards 2012: first impressions & wishes from the experiments

W. Kozanecki (CEA-Saclay)

- \circ Absolute precision of \mathcal{L} determination
 - \circ σ_{vis} calibration: a survey of achieved & projected systematic uncertainties
 - the all-important bunch-current product
 - van der Meer method
 - long-term stability issues & extrapolation to (high-μ) physics conditions
 - the low-μ regime: calibration transfer btwn ALFA / TOTEM & ATLAS / CMS?
 - Heavy-lon & low-energy pp collisions
- \circ \mathcal{L} calibration plans for 2012 & wishes from the experiments
 - o precision (and other) trade-offs
 - overview of luminosity-calibration requests
- Tools & procedures in 2012
 - o critical instrumentation
 - LHC operations
- In lieu of conclusion...

Disclaimer

- This is not
 - a workshop summary talk...
 - a summary talk for session 2...
 - o an attempt at showing a few representative slides from each speaker...
 - a comprehensive compendium of all important issues...
 - a request for scheduling various scans (this belongs in the LPC)...
- o ...but it is a (feeble) attempt at extracting a preliminary overview of
 - the dominant systematic uncertainties, and where they may limit us
 - the main issues to keep in mind when preparing 2012
 - $_{\odot}$ the (still evolving) wishes of the four large collaborations with respect to $\mathcal L$ calibration- & monitoring- scans, with their trade-offs & limitations
 - what our LHC colleagues could do (besides delivering clean, stable, bright beams 24/7!) to help us improve our luminosity determinations
- ... focussing on 7 TeV pp (most demanding in terms of precision)
- I beg your indulgence for the mistakes & misunderstandings you will no doubt spot... Corrections will be gratefully implemented!

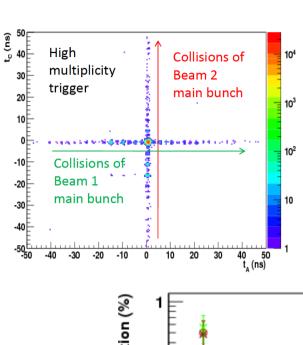
Bunch-current product uncertainties: <u>major</u> progress in 2011

	Early 2010-11	2011 update
Total intensity scale: <u>DCCT</u>	2.7 %	0.2 - 0.3 %
Bunch-by-bunch fractions • FBCT • x-checks: BPTX, LDM	1.3 - 1.7 %	0.1 - 0.2 %
Satellites • vertexing (ATLAS, CMS) • Timing • CMS ECAL • ALICE ZDC • LDM	'Only' ATL/CMS vertexing + CMS ECAL	LDM + ALICE ZDC (Pb-Pb only) + vertexing
Ghost charge + debunched beam • LDM • LHCb beam-gas (BG) • ATLAS BCM halo	LHCb B-G in learning curve	LDM LHCb B-G ATLAS BCM ?

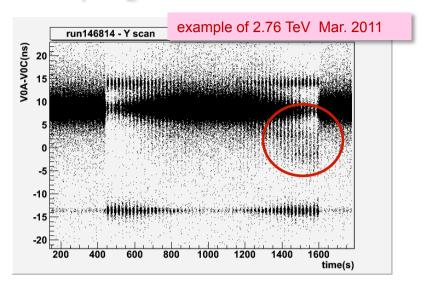
Bunch-current product uncertainties: <u>major</u> progress in 2011 (2)

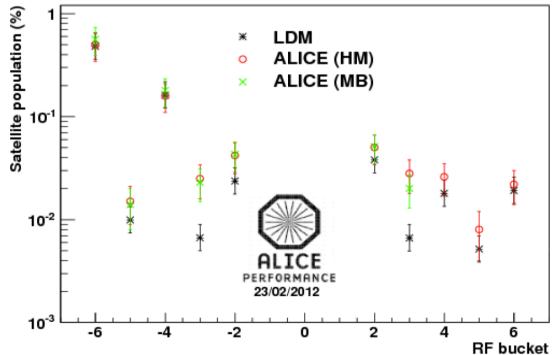
Summary of the DCCT uncertainties given as an envelope error Multiply final number by 0.683 to interpret as 1-σ error

Final uncertainty depend on:

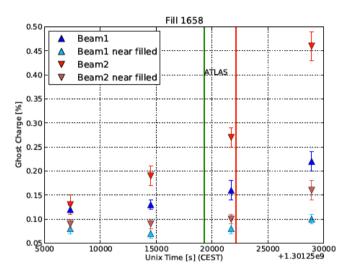

- Acquisition range
- •Intensity relative to the full range
- •Signal averaging time

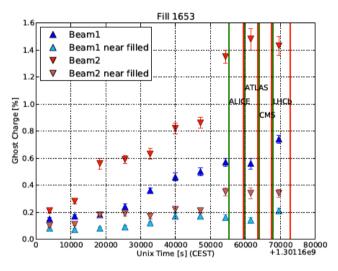
1 LSB = $I_{full}/(I_{DCCT} \times 2000)$ e.g. 0.06 % at 80% of the range


The highest accuracy is reached with ranges 1-3 close to the calibration point

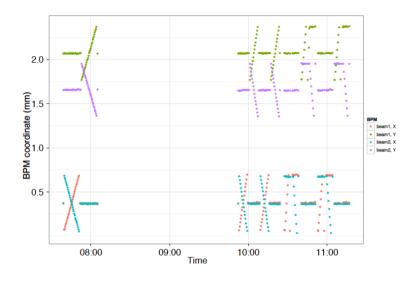

Source of uncertainty	Range	Relative error (%)	Absolute error	Correlated btw. beams
Current source precision		± 0.05%		yes
accuracy limited by instrumentation (Sec. 5.1)				
Baseline correction				
If data is manually baseline corrected (Sec. 3.1)			$\pm 1 \cdot 10^9 e$	
If data is not baseline corrected (Sec. 3.2)	1		$(\pm 6 \cdot 10^{10} e)$	
	2		$(\pm 7 \cdot 10^9 e)$	
	3		$(\pm 4 \cdot 10^9 \ e)$	
	4		$(\pm 4 \cdot 10^9 e)$	
Non-linearity of 12-bit ADC (Sec. 3.4.3) non-linearity tue to acquisition chain beam 1, 2 and all ranges share same ADC			± 1 LSB	yes
Long term stability of baseline				
observed fluctuations within 2×12 hours	1		$\pm 1.1 \cdot 10^{11} e$	
if signal average ≥ 1 minute (Sec. 3.4.1)	2		$\pm 1.0 \cdot 10^{10} e$	
ii signai average \geq 1 initiate (Sec. 3.4.1)	3		$\pm 2.4 \cdot 10^9 e$	
	4		$\pm 2.3 \cdot 10^9 e$	
observed fluctuations within 2×12 hours	1		$(\pm 7.3 \cdot 10^9 e)$	
if signal average ≥ 1 hour (Sec. 3.4.1)	2		$(\pm 1.1 \cdot 10^9 e)$	
ii signal average = 1 noar (see. 5.4.1)	3		$(\pm 1.1 \cdot 10^9 e)$	
	4		$(\pm 1.0 \cdot 10^9 e)$	
Long term stability of calibration	1,2,3		± 1 LSB	
envelope observed within 8 month (Sec. 3.6)	4		± 4 LSB	
Bunch pattern dependence (laboratory test) accuracy limited by instrumentation (Sec. 4.2.1)	•	±0.1%		yes
Difference between system A and B	1,2,3		\pm 1 LSB	
observed during all physics injections 2011 range 4 limited by noise (Sec. 6)	4		\pm 10 LSB	

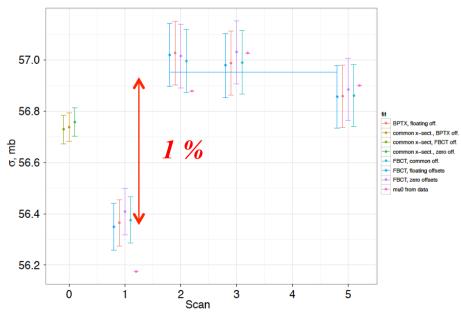
Satellites: ALICE + LDM → impressive progress in 2011





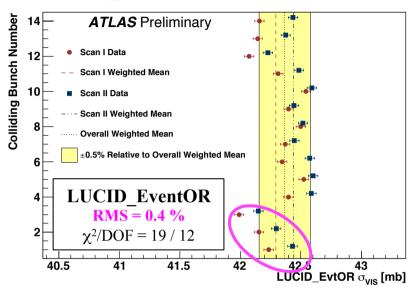
Ghosts: LHCb + LDM → impressive progress in 2011

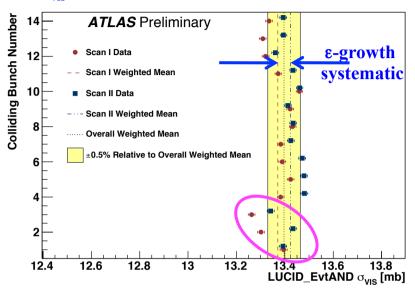


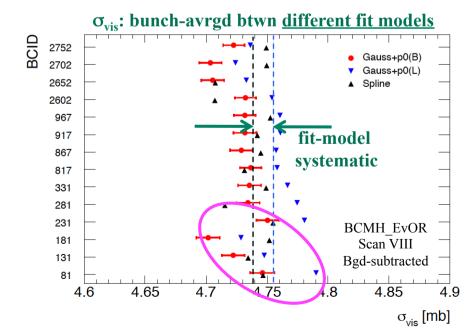

Jaap Panman (CERN) LHCb beam-gas rates LumiDays 2012 19 / 2

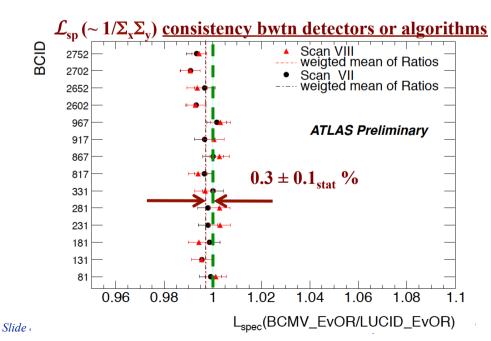
	Error for ghost charge	Error for Satellites
Statistical	10 %	5 %
Baseline uncertainty	12 %	3 %
Emittance dependence	20 %	20 %
Debunched beam	100 % ?!	25 % ?!
Total	-25% / +100%	-20% / + 30%

The importance of being earnest...: the LHCb example

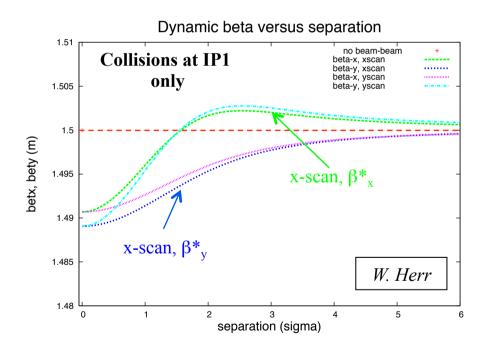


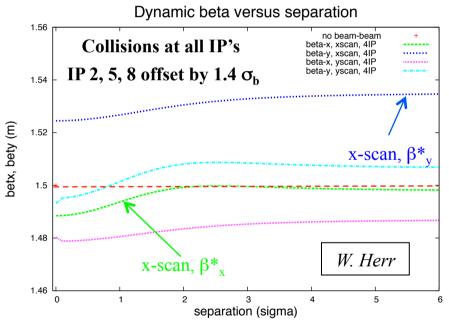

	Error, %	Correction, %
DCCT normalization	0.23	
FBCT w-wo offset	0.05	
FBCT vs BPTX	0.02	
ghost charge	0.20	+1.50
satellites	0.34	+0.68
statistical	0.15	
scan difference	1.06	
integral/sum difference	0.04	
zero point stability	0.00	
zero point pulls	0.29	
background subtraction	0.00	
length scale calibration	0.14	+0.37
X-Y tilt of luminous region	0.01	
beam scale difference	0.00	
beam-beam effects	0.80	
Total VDM calibration error	1.45	


Consistency checks on ATLAS May'11 vdM scan analysis



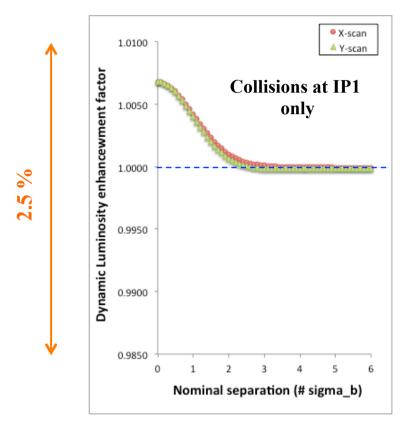
σ_{vis}: <u>bunch-averaged btwn consecutive scans</u>

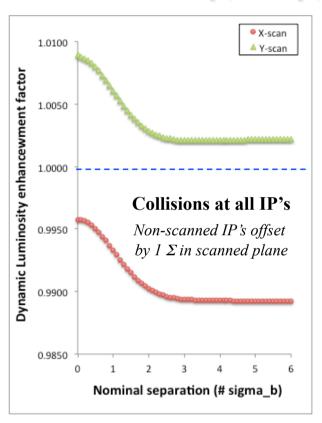




Dynamic-β effect: MADX simulations for IP1

O Compute dynamic β as a function of beam separation, using MADX for typical conditions during May'11 scan:


$$\odot$$
 0.85 10¹¹ p/bunch, ε_{inv} = 4 μm, Q_x/Q_v = .31/.32, scan +- 6 σ_b (β* = 1.5 m)



Dynamic-β effect: impact on luminosity-scan curves

O Compute effect of dynamic β on x & y scans: $\mathcal{L} \sim 1 / \sqrt{\beta^*_{dyn, x}} \sqrt{\beta^*_{dyn, y}}$

- O Refit gaussians and compute impact on $\sigma_{vis} \sim \Sigma_x \Sigma_y \mu_{vis,pk}$
 - \odot collisions at IP1 only: $\Delta \sigma_{vis} / \sigma_{vis} = + 0.80 \%$
 - \odot collisions at all IP's (non-scanned IP's offset): $\Delta\sigma_{vis}$ / σ_{vis} = + 0.36 %
 - ATLAS took ± 0.8 % as systematic (safe? over conservative?)

Dynamic- β effect: effect of collsions at other IP's

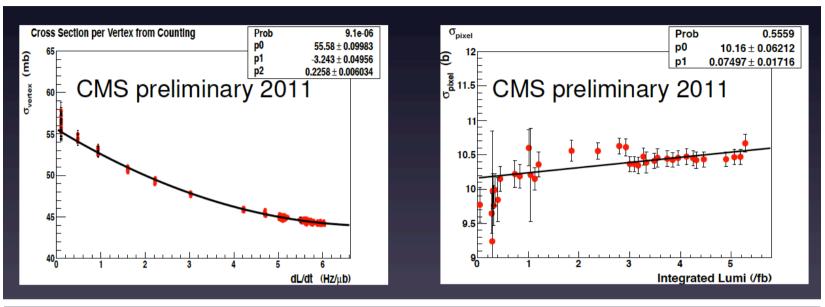
May'11 vdM scan, 8.5E10/bunch, ε = 4 μ , w/o & w/ head-on collisions at IP5/IP1 only

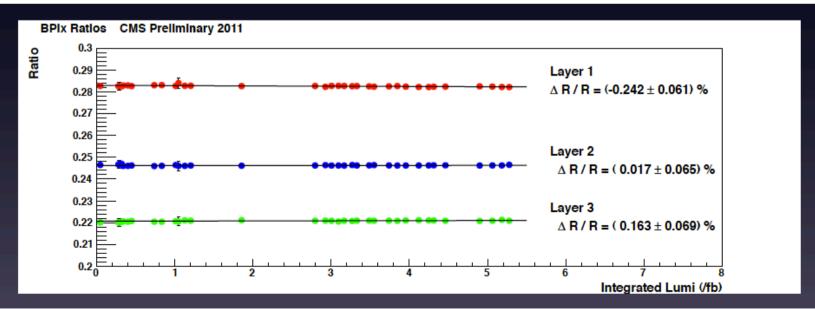
	Horizontal scan				Vertical scar	$\sigma_{\mbox{\tiny vis}}$ bias (%)	$\sigma_{\mbox{\tiny vis}}$ bias (%)	
	β^*_x / β^*_{x0}	β* _y / β* _{y0}	$L_{\text{peak},x} / L_{\text{peak}, x 0}$	β^*_x / β^*_{x0}	β* _y / β* _{y0}	L _{peak,y} / L _{peak,y0}	(pk var only)	$(pk + \Sigma)$
IP1 only	0.994	0.993	1.0065	0.994	0.993	1.0065	0.65	0.80
s IP1, c IP5	0.983	1.011	1.0031	0.983	1.011	1.0031	0.31	tbd
IP5 only	0.989	1.018	0.9966	0.989	1.018	0.9966	-0.34	tbd
s IP5, c IP1	0.983	1.011	1.0031	0.983	1.011	1.0031	0.31	tbd

Luminosity distortions scale like N_p/ε_{inv}

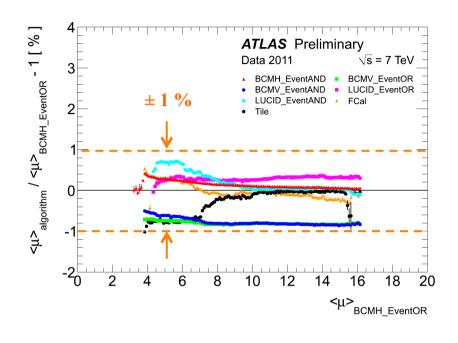
May'11 vdM scan, 8.5E10/bunch, ϵ = 4 μ , 1 Σ (= 1.4 $\sigma_{\rm b}$) offset in scanning plane @ non-scanned IP's

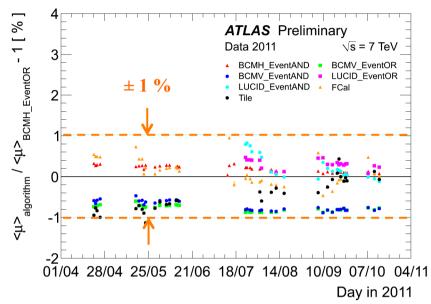
	Horizontal scan				Vertical scar	$\sigma_{\mbox{\tiny vis}}$ bias (%)	$\sigma_{\mbox{\tiny vis}}$ bias (%)	
	β^*_x / β^*_{x0}	β^*_y / β^*_{y0}	$L_{\text{peak},x} / L_{\text{peak}, x 0}$	$\beta_{x}^{*}/\beta_{x0}^{*}$ $\beta_{y}^{*}/\beta_{y0}^{*}$ $L_{peak,y}/L_{peak,y0}$			(pk var only)	$(pk + \Sigma)$
IP1	0.9923	1.0163	0.9958	0.9869	0.9955	1.0089	0.23	0.36
IP2	0.9943	1.0143	0.9958	0.9971	0.9964	1.0033	-0.05	tbd
IP5	0.9948	1.0147	0.9953	1.0002	0.9965	1.0017	-0.15	tbd
IP8	0.9991	1.017	0.9921	1.0241	0.9968	0.9897	-0.91	tbd


Systematic uncertainties on σ_{vis} (pp @ 7 TeV, vdM scans)


	ATLAS-CONF- 2011-116 (2 fb ⁻¹) May 2011 vdM %	ATL Upd 2011 5 fb ⁻¹ , projected May 2011 vdM %	ATL est. 2012 for precision vdM scan	CMS 2011 pp 7 TeV May 2011 vdM %	ALICE 2011 pp 2.76 TeV Mar 2011 vdM %	LHCb 2011 pp 7 TeV Oct 2011 vdM %
DCCT calibration	2.73	0.23			0.4	0.23
FBCT bunch-by-bunch fractions	1.30	0.20			?	0.05
Ghost charge & satellites	0.18	0.18			0.4	0.39
Subtotal, bunch-charge product	3.0	0.35		3.10	0.64	0.46
Statistical	0.04	0.04		0?	0?	0.15
Beam centering		0.10		?	0	0
Beam position jitter	0.30	0.30	depend	?	?	?
ε arowth & other non-reproducibility		0.77	-	1.34	0.64	1.06
Bunch-to-bunch σ _{vis} consistency	0.40	0.55	on	2 bunches	?	-> inflate stat err
Fit model	0.80	0.29		0	?	0.29
Background subtraction		0.31	beam	N/A	0.30	0
Reference $\mathcal{L}_{\scriptscriptstyle{SD}}$	NC	0.30		only 1 det/alg	only 1 det/alg	only 1 det/alg
Dynamic beta	NC	0.80	conditions	?	1.00	0.80
Linear x-y coupling	negligible	negligible?		?	0.60	0.01
Non-linear transverse correlations	0.50	0.50		?	?	?
μ-dependence during vdM scan	0.50	0.50		?	negligible	no effect seen
Length scale calibration	0.30	0.30		0.50	1.41	0.14
ID lengh scale	0.30	0.30		?	?	?
Instrumental issues (e.g. BCM H/V)	0.70	0.70		-	-	-
Subtotal, calibration-scan syst.	1.5	1.75		1.43	1.96	1.38
Total syst. uncertainty on $\sigma_{ m vis}$	3.4	1.8		3.4 (1.5?)	2.1	1.5

The numbers are the systematic uncertainties (%) as reported by each experiment (and regrouped to fit roughly in the same descriptive scheme)


"?" reflect this speaker's ignorance as to how this uncertainty was treated; it does not necessarily imply that it was ignored in the analysis – only that it was unclear where to find it.


μ-dependence & long-term reproducibility: CMS examples

Projected total luminosity uncertainties for 2011 & 2012 (pp, 7 TeV)

TILE / FCal crucial!

Γ		ATLAS-CONF-	ATL Upd 2011	CMS 2011	ALICE 2011	LHCb 2011
ı		2011-116 (2 fb ⁻¹)	5 fb ⁻¹ , projected			
ı				May 2011 vdM	Mar 2011 vdM	Oct 2011 vdM
L		%	%	%	%	%
	Subtotal, syst. uncertainty on $\sigma_{\scriptscriptstyle{ m vis}}$	3.4	1.8	3.4 (1.5 ?)	2.1	1.5
Г						
ı	Long-term stability	1.0	1.0	0.7	?	0.5 ?
Įμ	-dependence during physics running		1.0	?	negligible	0.5 ?
Ĺ	Afterglow subtraction	0.2	0.2	1.0	0.2	0
L	Subtotal, rel. luminosity monitoring	1.4	1.4	1.2	0.2	0.7 ?
	Total luminosity uncertainty	3.7	2.3	3.6 (1.9 ?)	2.1	1.6?

A few (preliminary!) words about correlations

- ATLAS, across vdM sessions (hence 2011 \leftarrow > 2012)
 - most systematics associated with beam conditions, hence uncorelated
 - exceptions
 - **ID scale: 0.3 %**
 - perhaps BCM H/V ratio: 0.7 % (depending on actual cause)?
- CMS, across vdM sessions (hence 2011 \leftarrow > 2012)
 - see J. Hegeman's talk
 - some of the 'correlations' may need to be rediscussed (IMHO)
- ATLAS vs. CMS
 - o uncorrelated when calibrated in 2 separate vdM sessions
 - o if calibrated within same vdM session
 - bunch-intensity measurements <u>are</u> correlated
 - other beam-related sytematics are uncorrelated in practice even if common source
 - ullet e.g. bunch-to bunch σ_{vis} inconsistencies in May'11 vdM scans

Calibration transfer btwn ALFA / TOTEM ← → ATLAS / CMS

\circ \mathcal{L} from ATLAS/CMS luminometers to ALFA/TOTEM for σ_{tot} msmts

- **IDENTIFY and SET 10.1 IDENTIFY and SET 10.1 IDE**
 -) $\mu_{pp} \sim 0.03$ 0.05 for "nominal" bunch
 - ALFA/ATLAS example using BCM (LUCID) for \mathcal{L} measurement
 - beam-gas/pp ~ 1% (0.2 %) should be manageable...
 - activation/afterglow ~ 1% (<< 1%) should be manageable...
 - ...but: sizeable inconsistencies across LUCID & BCM algorithms: instrumental?
 Vertex methods crucial to resolve this (~ 10 kHz data stream w/ pixel+SCT only)
 - similar problems observed in μ –scan: check of μ –dependence at low μ complicated by much stronger afterglow (> 800 bunches) & beam-gas background
 - TOTEM/CMS: assumed $\Delta_{\mathcal{L}}/\mathcal{L} = 4\% \Rightarrow \Delta\sigma_{tot}/\sigma_{tot} \sim 2\%$
 - how did/can one check consistency between $\mathcal L$ response at high μ & very low μ ?
- \odot extrapolation to $\beta^* = 500-600$ m
 - $\mu_{pp} \sim 0.005 0.009 \Rightarrow$ beam-gas/pp $\sim 6 \%$ (1.5%) or more: systematics?
 - cannot push intensity too high $\leftarrow \rightarrow$ dynamic β !
 - hard to predict achievable accuracy until inconsistencies understood

Calibration transfer btwn ALFA / TOTEM $\leftarrow \rightarrow$ ATLAS / CMS (2)

 \circ Absolute \mathcal{L} calibration transfer

from ALFA/TOTEM: $d\sigma_{el}/dt$ + [Coulomb interference or total rate] to ATLAS/CMS for normal physics running

- what is achievable precision in ALFA/TOTEM ?
 - technical proposals: 2 3 % ?
 - 2012: what is realistic estimate?
- what is precision of calibration transfer?
 - today: unknown? (early ALFA experience + issues at higher β^*)
 - achievable 2012: 0.5 2 % ??
- total luminosity accuracy for normal physics running: must add...
 - μ-dependence uncertainty: 0.5 % ultimate?
 - long-tem stability: 0.5 1.0 %
- ⊚ hence $\sigma_{\mathcal{L}}/\mathcal{L} \sim 2.1 3.7 \%$? (but... I hope I am wrong here!)

Heavy-lon & low-energy pp collisions

- The absolute \mathcal{L} accuracy (1.5 2.5 %) achieved for high- \mathcal{L} pp running at \sqrt{s} = 7 TeV doesn't necessarily apply to other running modes!
- low- \mathcal{L} pp running at \sqrt{s} = 2.76 TeV, β^* = 10-11 m
 - larger bunch-current uncertainties (FBCT non-linearities/offsets?)
 - systematic checks complicated by
 - sizeable bunch-by-bunch intensity and ϵ variations + lower statistics/bunch
 - beam aborted between 2 pairs of scans → very different beam profiles (ATLAS)
 - o larger (relative) beam-gas background, esp. in ATLAS very-low-μ run
- HI running (2010 + 2011): e.g. ALICE, Nov 2010, $\sigma_L / L = -5.2 / +6.4 \%$
 - larger bunch-current uncertainties (DCCT in 2010; sat's + ghost charge)
 - o large systematic spread in bunch intensities & emittance across trains
 - o faster emittance growth
 - larger single-beam background that grows with time in fill (2011 HI!)
 - o instrumental issues (ATLAS ZDC aging)

vdM calibration: a random list of observations, nagging questions or potential traps

- O Lack of reproducibility: why?
 - o orbit jitter? LHCb study suggests not...
 - o emittance growth?
 - but peak rate & convolved width should compensate!
 - could it be related to the 'chronological ordering' problem and to the adequacy of the fit model to the data?
 - what (anything?) can be done to control the injected-beam tails?
 - non- or 2^{nd} -gaussian signature varies fill to fill, or even $x \neq y$ in same fill
- Satellites & ghost during vdM scans
 - becoming a significant limitation to abs. precision
 - LDM is crucial; the precision of its baseline subtraction is v. important
 - \odot we need Σ MO Γ running during vdM scans!
 - would be helpful to have ALICE monitor satellites also in pp
 - but: Xing angle? ZDC rate?

vdM calibration: a random list of nagging questions & potential traps (2)

- Scan with or without Xing angle?
 - satellites may come back & bite us (ALICE example in Mar'11 scans)
- Distance-scale calibration
 - what is the magic to get it right— every time and cheaply?
- Transverse correlations
 - o linear x-y coupling: seems OK or is it just that we were expecting it to be small? Did we look hard enough?
 - learn more from study of luminous-centroid & -width evolution during scan?
 - o non-linear correlations: does the x-shape of the scan depend on y & vv?
 - is it a red herring? or ...
 - ... a real issue we are blind to?
 - For ATLAS in 2010+2011, syst. uncertainty ranges from 0.5 to 3 % depending on fill considered (somewhat correlated with non-gaussian character of beam)
 - Could the other experiments try to fit the naïve ATLAS model (correlated g+g)?
 - Need $\beta^* = 11$ vdM scans to settle this one way or the other

Absolute \mathcal{L} determination: a random list of nagging questions & potential problems

- Monitoring long-term stability
 - BCID-blind relative

 monitoring
 - ATLAS Fcal + TILE proved invaluable
 - saved early 2011 £ calibrations!
 - were crucial in quantifying the μ-dependence and the long-term stability
 - other ideas? e.g. RPC's, Medipix...
 - automated monitoring using Z's should be put in place in both ATLAS &
 CMS
- Is there really a ~ 8% discrepancy between the ATLAS & CMS integrated luminosities in 2011 pp running?
 - o hopefully an accounting problem...
 - o otherwise hard to reconcile with ~ 2% absolute precision
 - should reactivate the comparison of luminosity candles (track-based event counting, Z's?)

\mathcal{L} – calibration plans & <u>wishes</u> for 2012: overview

- \circ \mathcal{L} -calibration transfer from 2011 to 2012 very delicate at best
 - ⊚ σ_{vis} changes (σ_{tot} + eff'cy) with \sqrt{s} significant (ATLAS: $\Delta \mathcal{L}/\mathcal{L} \sim 5$ 17 %)
 - o detector reproducibility/consistency problems at startup?
 - \odot ... especially in view of expected achievable precision ($\sigma_r/L \sim 2 \%$?)
- O Calibration scans essential for both absolute \mathcal{L} & μ -dependence
 - \odot vdM scans (+ distance-scale calibration for every new value of E_b, β *)
 - trade-offs = $f(\beta^*, \epsilon_{inv}, \theta_c, n_{1,2}, n_{coll}, bunch pattern, schedule, ...)$
 - early, 'low-cost' beam-separation scans (= before April TS)
 - 'ultimate' vdM scans in pp (= after closing ICHEP dataset) + p-Pb (all expts)
 - μ scan [ATLAS + CMS]
 - essential to control systematics (pile-up + aging >> 2011!)
 - ATLAS: needs $\mathcal{L} > 2 \cdot 10^{33}$ (Fcal, TILE) + μ as high as stable running permits
 - CMS: 'regular' beam-sep scans in physics for stability checks, on request
 - afterglow scan: calibrate afterglow subtraction [ATLAS + CMS]
 - ≤ 4 colliding bunches > 700 BCID apart, no pilots, no interleaved unpaired
 - highest possible μ to minimize data-taking time

van der Meer strategy in 2012: precision trade-offs

β* (m)	0.6	11	Comments
ε _{inv} (μm-rad)	3	3	Often as large as 4
Σ_{y} (μ m)	29	124	
$\sigma_{\mathcal{L}}$ (mm)	15	62	σ(vtx) ~ 30-50 μm
N _{1,2} (10 ¹⁰ /bunch)	()6 -12</td <td>6 - 12</td> <td> Low N_{1,2} → • fewer/weaker ghosts/satellites Sparse pattern (no trains) → • fewer ghosts/satellites • cleaner transverse phase space (tails) ? • less impact of afterpulsing, instrumental tails, reflections, etc • less collsion/induced afterglow </td>	6 - 12	 Low N_{1,2} → • fewer/weaker ghosts/satellites Sparse pattern (no trains) → • fewer ghosts/satellites • cleaner transverse phase space (tails) ? • less impact of afterpulsing, instrumental tails, reflections, etc • less collsion/induced afterglow
μ (inel pp / BX)	4.1 – 16.6	0.27 - 1.09	
Peak counts / step [30 s] (worst case)	2700 – 10800	175 - 710	μ_{vis} (ATLAS BCM_AND) ~ 0.002
$\Delta \mathcal{L}/\mathcal{L}$ [dyn. β] (%)	0.75 – 1.50	0.75 – 1.50	assumes worst case: collisions @ IP1 only

van der Meer strategy in 2012: precision trade-offs (2)

β* (m)	0.6	11	Comments
N _{1,2} (10 ¹⁰ /bunch)	6 (?) - 12	6 (?) - 12	see previous slide
μ (inel pp / BX)	4.1 – 16.6	0.27 - 1.09	
$\Delta \mathcal{L}/\mathcal{L}$ [dyn. β] (%)	0.75 – 1.50	0.75 – 1.50	Can do better wih compensation?
Advantages	 high-stat consistency checks, bunch-by- bunch & btwn detectors/algorithms allows x-calibrtn to TILE in same fill (ATLAS) 	access to imaging & non-linear correlations: is x (y)shape y- (x-) dependent?	
Disadvantages	 mixes detector calib'tn & μ-correction: scancurve distortions for some detectors (tbc) ? no lum. reg. imaging → non-linear correlation syst. (0.5 – 3 %?) from arbitrary model ↑ afterglow (if trains) 	 Lowest efficiency detector/algorithm: σ_{vis} = statistics- limited dynamic-β limited: cannot buy rate with more protons some syst. checks statistics-limited low-μ inconsistencies ? 	Dynamic β caps usable brightness (N _{1,2} / ε) and makes statistics limitations @ 11 m more acute

van der Meer strategy in 2012: trade-offs (3)

- O Preferred bunch pattern: no trains!
 - transverse & longitudinal phase space cleaner with individual bunches (non-gaussian tails, satellites, ghost charge, ...)
 - associated systematics vary from one scan period to the next, and can only be quantified with the actual scan data themselves
 - all experiments insist on a sparse (no trains) pattern for "ultimate" vdM scan
 - \odot dynamic β is different for each bunch in a train (parasitic crossings)
- Sparse pattern (widely separated paired bunches + a few unpaired)
 - mitigates afterpulsing + reduces collision-induced afterglow
 - allows to decouple collisions at IP1+5, 2, 8 (dyn. β!)
 - # bunches: trade-off between
 - more bunch-to-bunch consistency checks (favored by LHCb?)
 - more bunches \rightarrow better statistics (average bunch-by-bunch σ_{vis} values) ?
 - fewer bunches: less afterglow (favored by ATLAS so far)
 - FBCT systematics ('all' bunches should be colliding)
- O Hybrid pattern: sparse (for vdM) followed by a 'growing' train (for MPP validation)?

van der Meer scans (+ DSC) in 2012: "wish" matrix (pp only)

	β* (m)	ε _{inv} (μ m)	θ _c /2	N (10 ¹⁰)	Pattern # b	E / U	Comments or special requests	
	0.6	~ 3	standard	5 - 6 (ALAP)	sparse < 20 coll ?	E ?	IP5 head-on; mostly private b	
ATLAS	11	~ 3	standard (tbc)	tbd (statistics vs.dyn. β)	sparse < 20 coll ?	U E ?	 mostly private b (or separ. IP2, 8) LDM ALICE satellite + LHCb ghost trigs ATLAS BPTX timing of U being discussed 	
CMS	0.6		standard		sparse or hybrid	Е	asar	
	11		no pref		sparse	U		

van der Meer scans (+ DSC) in 2012: "wish" matrix (pp only) (2)

	β* (m)	ε _{inv} (μ m)	θ _c /2	N (10 ¹⁰)	Pattern # b	EU	Comments or special requests
ALICE	standard			low	sparse or hybrid > 200-500 ns	E	if opportunity
	3				sparse > 200-500 ns > 16 b	U	May request 2-d raster to study x-y correlations
	standard		standard		sparse or hybrid	Е	if opportunity
LHCb	10	possibly enlarged	large in 1 plane only		sparse ~ 36 b w/ 16 private (~ Oct '11)	U	 LDM ATLAS BPTX several scans: reproducibility? SMOG extra running w/ head-on/separt'd beams for B-G

Tools & procedures for absolute \mathcal{L} determination in 2012

Critical instrumentation

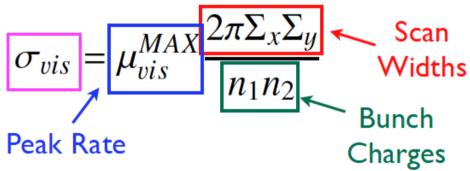
- DCCT: monitor/maintain calibration stability over long term
- FBCT + BPTX: availability of <u>both</u> during vdM scans
- LDM: automatic logging to TIMBER, both during vdM sessions & physics periods (satellite corrections?)
- LHCb beam-gas (SMOG active): during all vDM sessions, for all expts
- ALICE ZDC: monitor satellites in vdM sessions, p-Pb; possible in pp?

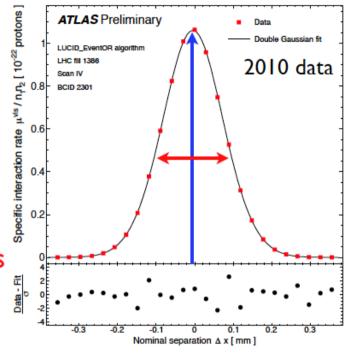
LHC operations

- © Choose bunch pattern & "colliding IP's" to minimize dyn-β distortions
 - e.g. when scanning IP1, collide in IP5 but not in IP2 + 8?
- No lumi levelling/optimization at IP1/2/8 during vdM scan @ IP5 (and all permutations thereof, even if only private bunches are used)
- New scan software (esp. automated leapfrog)
 - will make scans
 - less expensive
 - more robust against cockpit errors, DAQ failures, etc
 - will need time to be tested (and may require adjustements to DIP folders)

A conclusion in 7.5 words – in order of growing importance

- O Dynamic β!
- ghosts & satellites
- Redundancy → internal consistency?
- Reproducibility!

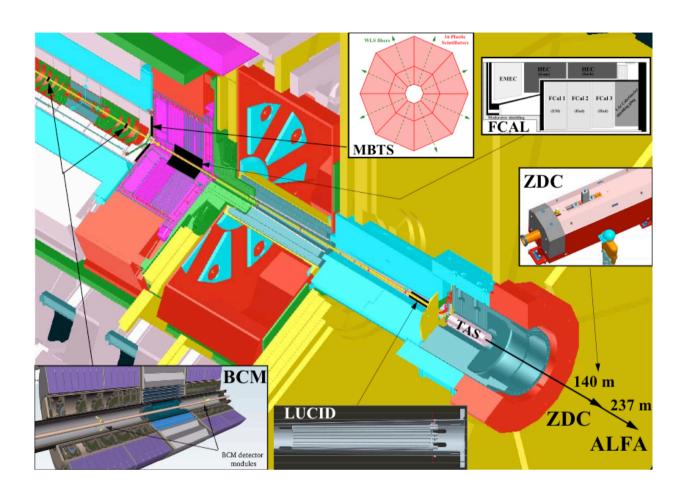

Additional material


van der Meer scan: Basic Observables

Absolute luminosity measurement using beam separation scans

$$\mathcal{L} = \frac{n_b f_r n_1 n_2}{2\pi \Sigma_x \Sigma_y}$$

Can directly calibrate σ_{vis} per lumi alg.

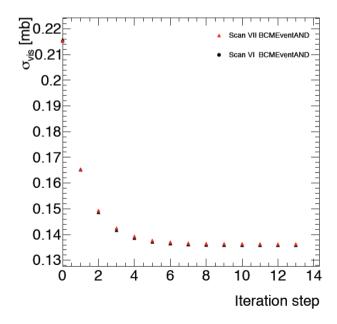

- n_b = number of colliding bunch pairs
- f_r = LHC revolution frequency
- μ_{vis} = number of <u>detected</u> "events" per bunch crossing = $\mu \epsilon$
- σ_{vis} = visible cross-section = luminosity calibration constant

Luminosity: basic observables

$$\mathcal{L} = \frac{\mu n_b f_r}{\sigma_{inel}} = \frac{\mu_{vis}}{\varepsilon \sigma_{inel}} = \frac{\mu_{vis}}{\varepsilon \sigma_{inel}} = \frac{\mu_{vis}}{\sigma_{vis}} \frac{n_b f_r}{\sigma_{vis}}$$

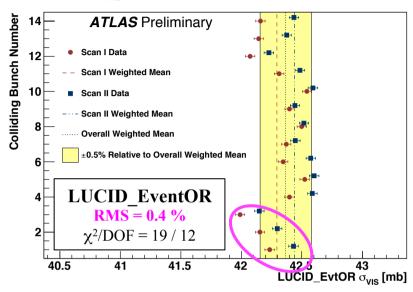
- μ = number of inelastic collisions per bunch crossing
- n_b = number of colliding bunch pairs
- f_r = LHC revolution frequency (11245.5 Hz)
- σ_{inel} = total inelastic [pp] cross-section
- μ_{vis} = number of <u>detected</u> "events" per bunch crossing = $\mu \epsilon$
- ε = acceptance x efficiency of luminosity detector
- σ_{vis} = visible cross-section = luminosity calibration constant

Luminosity measurements used in the ATLAS 2011 $\mathcal L$ analysis

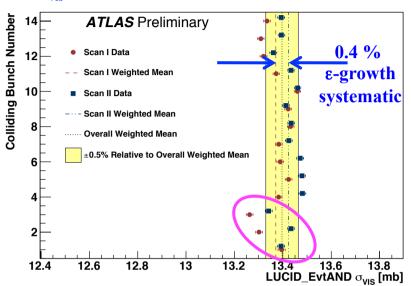

- BCM: bbb
 - Event OR, AND for BCM H/V separately
- LUCID: bbb
 - Event OR, AND,A, C
 - Hit OR/AND
- vtx methods: bbb
 - vtx-based event counting
 - vertex counting
- FCAL (fwd LAr)
 - gap currents
- TILE calorimeter
 - PMT currents
- RPC, Medipix, ZDC
- bbb = bunch-by-bunch (+ bunch-integrated over colliding bunches ATLAS triggers on)
- BCID-blind = sums over all BCID's

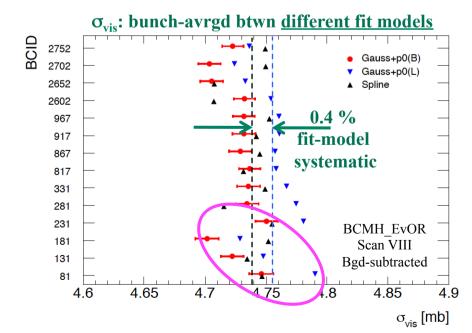
van de Meer scan analysis: formalism

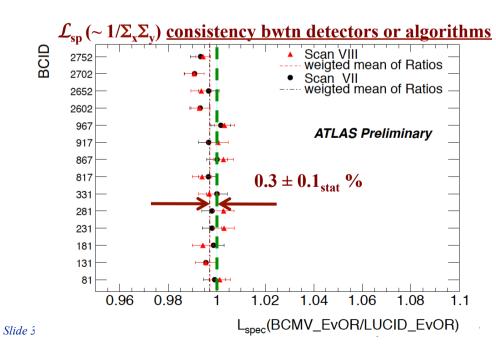
- \circ From "event" counting (actually 0-counting) to μ_{vis}
 - And/Or algorithms count 'events' N_{BC} passing some criteria
 - Assuming Poisson statistics:


$$P_{\text{Event_OR}}(\mu_{vis}^{OR}) = 1 - e^{-\underline{\mu_{vis}^{OR}}} = \frac{N_{OR}}{N_{BC}}$$

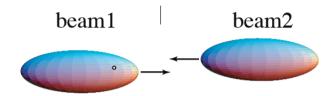
$$P_{\text{Event_AND}}(\mu_{vis}^{AND}) = 1 - 2e^{-(1 + \frac{\sigma_{vis}^{OR}}{\sigma_{vis}^{AND}})} \underline{\mu_{vis}^{AND}}^{2} + e^{-(\frac{\sigma_{vis}^{OR}}{\sigma_{vis}^{AND}})} \underline{\mu_{vis}^{AND}}^{2} = \frac{N_{AND}}{N_{BC}}$$




Consistency checks on May'11 vdM scan analysis


σ_{vis}: btwn bunches within one scan

σ_{vis}: <u>bunch-averaged btwn consecutive scans</u>



Dynamic-β **effect**

 The electromagnetic field produced by a B1 bunch (de)focusses the particles in the B2 bunch (& vice-versa)

- - the magnetic lattice and in particular the tunes
 - the bunch intensities and emittances ($\sim N_{1.2} / \epsilon_{inv}$)
 - whether the beams collide at other IP's (more beam-beam, but with different phase advances between IP's)
- O During a beam-separation scan, the *dynamic-β* effect may enhance (or reduce) the instantaneous luminosity, thereby *distoring the* scan shape slightly (first pointed out by H. Burkhardt afaik)

Systematic uncertainties in pp

item	Scan-II Oct. 2010 7 TeV	Scan-V Mar. 2011 2.76 TeV	comment
Beam intensity $\delta(N_1N_2)$	3.2%	2.7% → 0.4%(ghost) ⊕ 0.4%(DCCT)	2.76 TeV to be updated
Length scale calibration	1%⊕1%	1%⊕1%	
Luminosity decay	neglig.	0.5%	50% of corr. effect
Hysteresis & reproducibility	NA	0.4%	50% of observed pk-pk
Beam centering	neglig.	0.0%	no effect with corr. seen
After-pulse / after-glow	neglig.	0.2%	(*)
Background & satellite rate	neglig.	0.3%	50% of corr. effect
Pile-up correction	neglig.	neglig.	well under controlled
X-Y coupling	NC	0.6%	worst case observed
Beam-beam interaction	NC	? (1%)	under investigation
Total in experiment	1.41%	1.70% (1.97%)	
Total with beam intensity	3.50%	1.79% (2.05%)	

NA: not available at that time, NC: not considered at that time

(*) estimated as observed after-pulse and after-grow, together with observed cross section of exclusive events

Total systematic uncertainties for PbPb

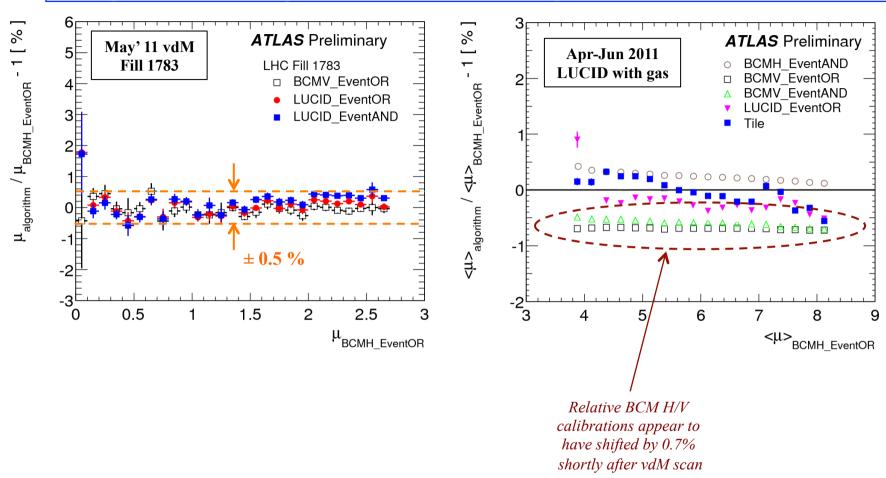
Bunch intensity	
DCCT scale	2.7%
Relative bunch populations	<0.1%
Ghost charge	-1.4% +3.9%
Satellites	0.5%
Other	
Length scale calibration	2.8%
Inclusive v.s. b-by-b difference	2%
Background	1%
Scan-to-scan discrepancy	1%
luminosity decay	2%
Total	−5.2% +6.4%

Values are preliminary, and still being studied

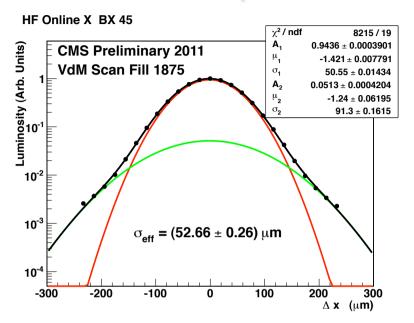
CMS systematics summary

Preliminary and under scrutiny			
Source	Uncertainty (%)		
Stability across pixel detector regions	0.3		
Pixel gains and pedestals	0.5		
Dynamic inefficiencies	0.4		
Length-scale correction	0.5		
Beam width evolution	0.6		
Beam shape	-		
Beam intensity	3.1		
Scan-to-scan variations	1.2		
Afterglow	1.0		
Total	3.6		
Preliminary 2011 integrated luminosity			
Extrapolating from the pixel live-time to the total delivered luminosity in 2011 this comes to $6.1~{\rm fb^{-1}}\pm\approx5\%$.			

LHCb systematics summary

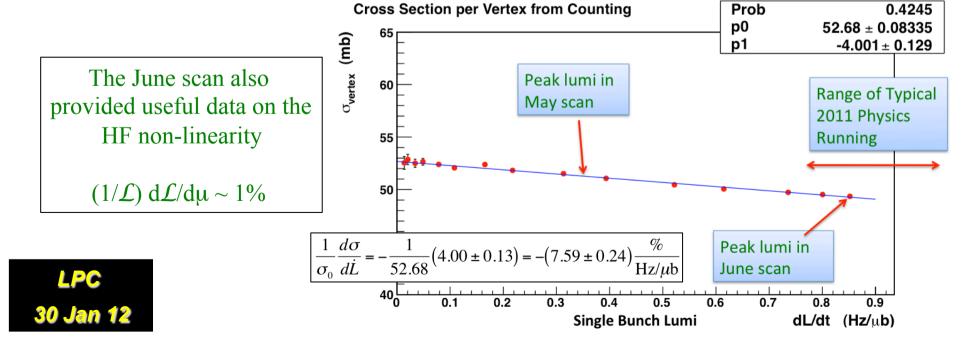

	Oct	May	Oct'10	Apr'10	Mar(1.38)
σ , mb	58.20	59.03	58.37	58.7	50.8
Calibration error, %	1.45	2.3	3.6	7.5	3.8
BCT	0.23	0.22	2.7	5.5	2.7
FBCT w-wo offset	0.05	0	0	-	0.71
FBCT vs BPTX	0.02	0.18	0.2	-	0.59
ghost charge	0.20	0.23	0.15	0.09	0.37
satellites	0.34				
statistical	0.15	0.10	0.09	0.9	0.2
scan difference	1.06	(2.1)	2.1	4.4	(2.1)
integral/sum difference	0.04				
zero point stability	0.00	0	0.4	0	0
zero point pulls	0.29				
length scale calibration	0.14	0.27	1	2	0.99
X/Y tilt of luminous region	0.01	0.01	0.3	-	0
beam scale difference	0.00	0	0.1	0	0
beam-beam effects	0.80	0.80			0.80

Error of relative luminosity monitoring during physics running is not included and not yet finalized. In 2010 it was 0.7%.


Further information may be found at http://cern.ch/balagura. Oct'10 scan results are published in JINST 7 P01010 (2012).

Beam-gas and beam-beam imaging studies are ongoing.

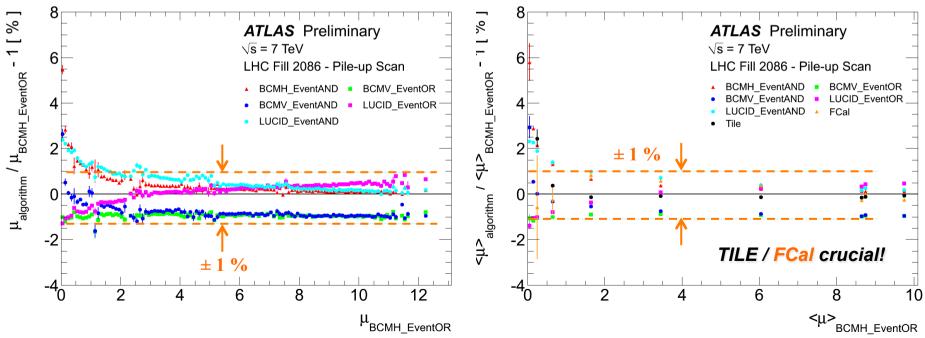
May'11 vdM analysis : self-consistency of absolute $\mathcal L$ calibration



Beam-separation scan under physics conditions: CMS

A scan done in June 2011, under more or less standard data taking conditions, was used to cross-check the May'11 scan.

Month	Fill/Cond.	$L_{\mathrm{peak}} \left(\mathrm{Hz}/\mu \mathrm{b} \right)$	k_{av}	
May	1753	0.34	$k_{\text{May}} = 1.115$	
June	1875	0.86	$k_{\rm June} = 1.064$	
May	Extrapolated	0.86	$k'_{\text{May}} = 1.071$	2%
June	Corrected	0.86	$k'_{\rm June} = 1.087$	1.


Direct measurement of μ-dependence: ATLAS pile-up ('μ') scan

'μ sweep' performed by beam-separation in F 2086 (873 b, \mathcal{L} ~ 1.9 10³³)

 \rightarrow characterize the relative μ -dep. of BCM H/V, FCal, LUCID, TILE, vtx algos

3 scans, covering $10 - 15 > \mu > 0.02$ i.e. all the way from normal physics conditions to (slightly below) the μ regime for the β * = 90 m ALFA run

