BRAN: Modeling and Experimental Results at ATLAS and CMS

H. Matis, M. Placidi, A. Ratti, W. Turner
[+ several students including S. Hedges] (LBNL)
E. Bravin (CERN), R. Miyamoto (BNL – now at ESSS)
BRAN Chamber Design

- 4 quadrant hi-pressure Ar-N\(_2\) ionization chamber
- Located in the TAN on both sides of IP1 and IP5
- Designed to measure
 - the relative bunch × bunch luminosity
 - collisions at 25 ns bunch spacing
- Quadrant nature allows measurement of crossing angle

H. Matis - LUMI Days 2012 - March 1
Overview of Simulations

- Using FLUKA with IR1 and IR5 geometry done by CERN
- We have added a detailed model of the TAN including forward detectors and BRAN
FLUKA model of ATLAS IP1

IP model developed at CERN

TAN Model developed by LBNL

ZDC Detector

BRAN

H. Matis - LUMI Days 2012 - March 1
Two methods of readout

- All four quadrants read out for each bunch and turn
- Data is processed in two ways
 - **Counting Mode (currently recorded for left side of each IP)**
 - Each bunch is counted as a “1” if exceeds a certain threshold
 - Software integrates over a specific number of turns
 - At lower luminosity this is linear as BRAN has a low acceptance
 - At higher luminosity can saturate
 - **Pulse Height Mode (currently recorded for right side of each IP)**
 - The signal voltage for each bunch is collected and summed for a number of turns
 - This higher statistical fluctuations but linear up to maximum digitization of the ADC (There are several ways to reduce the signal)
Simulated Counting Mode with Pileup

- Counting mode with thresholds of 10, 15, 20, 25 mV (number 2011 includes attenuators and cable lengths)
- Counting mode is linear but starts to saturate as rate increases
- One can reach a linear region by increasing threshold
Average Energy Collected/pp interaction

- Difference of energy between ATLAS and CMS due to different absorbers
- Total energy deposited decreases with increasing crossing angle
- Mapped energy response from 3.5 to 7.0 TeV beam energy with varying crossing angle
Correlation between BRAN and ATLAS

![Graph showing the correlation between BRAN and ATLAS. The x-axis represents ATLAS Lumi in units of $10^{30} \text{ cm}^{-2}\text{s}^{-1}$, and the y-axis represents the relative difference in percentages. Two lines are depicted: 1L (Count) and 1R (Pulse). The graph is labeled Fill 2006.](image_url)
Crossing Angle: Data and Simulation

- Crossing Angle ratio defined as:
 \[
 \frac{(Q_1+Q_2)(Q_3+Q_4)}{(Q_1+Q_2+Q_3+Q_4)}
 \]

- 0.259 ± 0.006 (vertical) for ATLAS at 240 µrad
- 0.261 ± 0.005 (horizontal) for CMS

Graphs:
- Data
- Simulation

Reference:
H. Matis - LUMI Days 2012 - March 1
New GUI for use in the CCC

System Parameters

Luminosity
Atlas and CMS

B x B Lumi @ ATLAS

Emittance
Atlas and CMS

B x B Emitt. @ ATLAS

Bad Batch

B x B Lumi @ CMS

B x B Emitt. @ CMS

H. Matis - LUMI Days 2012 - March 1
Beam Size Evolution– IP5

The plot of the Specific Luminosity is part of the operator display.

\[A = 4\pi \sigma_x \sigma_y = f_{rev} \frac{N_1 N_2}{L_b} \]
Tool providing data to experts

Counting Mode

- Records both counting mode and pulse height mode at the same time for each quadrant of all detectors
- Useful tool to diagnose health and setup of detector

Provided by E. Bravin
Summary

• Timber Data is different in Left and Right for 2011 data

• BRAN is in LHC control system and being used to optimize collisions

• Fully integrated detailed FLUKA model of TAN with CERN’s model of both IPs

• Detectors at the TAN are sensitive to crossing angle
 • As energy and or crossing angle increases, center of shower becomes more asymmetric

• BRAN is an excellent tool to cross check experiments

Timber Plot for PbPb

x axis: time
y axis: bunch #
z axis: Luminosity
Backup
Ionization Chamber Fabrication

Electrodes and ground plane
- OFHC copper
- Wire Electrical Discharge Machining (Wire-EDM)
- High precision
- Ground plane center element is e-beam welded

Sensor body
- Macor
- Several fine features with high precision
- Fasteners for assembly
- Over-constrained assembly requires some craftsmanship for precise alignment

H. Matis - LUMI Days 2012 - March 1
Case Hardware
Ar-N2 Ionization Chamber Design

- 4 quadrant gas ionization chamber (4 quadrant electrodes)
- 6x1 mm gaps
- Ar + N₂
- Central ground structure
- 3m coax between chamber and electronics

2 mm Cu
λ_R=14.4 mm
How to get Luminosity

\[\tau = \frac{x_{\text{GAP}}}{\nu} \]

\[Q = \int_0^\tau I(t)dt = \frac{1}{2}I_0\tau \]

- Signal is proportional to the # of parallel gaps
- Capacitance increases with # of gaps + slows down the signal
- Optimized for 6 gaps
- Must live in a radiation environment 10× worse than accelerator instruments have ever seen
 - \(\sim 10 \text{ GGy/yr}, \sim 10^{18} \text{ N/cm}^2 \) over lifetime (20 yrs), \(\sim 10^{16} \text{ p/cm}^2 \) over lifetime
Correlations between BRAN and CMS and ATLAS

![Graph showing correlations between IC rate and ATLAS/CMS lumi. The graph includes lines for 1L, 1R, 5L, and 5R.]
Can see subtle shift in Crossing Angle
PbPb Data in Timber
(Can average longer in Pulse Height Mode to lower error bars)
Program by Enrico Bravin

Counting Mode

Pulse Height Mode

Bucket Number

Bucket Number

H. Matis - LUMI Days 2012 - March 1