

Short summary and comments on the machine session

Mike Lamont

Thanks to Massi, Helmut and Alick for their input

Beam instrumentation

• DCCT

- Superb close to full potential (Colin, Gabriel and team)
- < 1%
- 24 bit ADC under commissioning "really promising" to be used in VdMs this year. Clear support for support for development/deployment/calibration
- Continuation of 12-bit ADC DCCT calibration monitoring
- FBCT
 - Relative 2 per mil level during VdM
 - Monitor itself (beam position, bunch length dependence etc.)
 - Assessing new type of monitor (ICT)

Beam instrumentation

• WCM

- Hope to achieve relative accuracy of < 1%
- Support for developments of WCM as bunch population measuring device
- Beam current from sync light
 - Challenging
- Beam current from LDM
 - Disagreement between LDM and FBCT on main bunch populations usually < 2%
 - deployment/test/validation of diffuser on both LDMs asap already there for B1 next TS for B2 if good

$$\sum FBCT DCCT$$

$$\sum FBCT + \sum Ghost \ charge + \sum Debunched \ beam = DCCT$$

- Emittance via BSRT
 - Aiming for corrected sigmas +/- 10% at injection and top energy
- Emittance from WS
 - Reference for 2012
- BPMSW
 - Wrestling with B1/B2 cross-talk
 - Use synchronous orbit mode on well placed bunches
 - Noise < 10 microns but still temperature effects...

Beam instrumentation

- Acknowledge significant effort made by beam instrumentation group in understanding their instruments and reducing the associated uncertainties
- Thanks for the: trust, patience, help, demanding requirements, gentle pressure
- "We learnt a lot!"
- Tension between "Rest in Peace" and "keep current momentum"

BRAN – Energy

- BRAN
 - Performing well and some very nice operational tools in place
 - Essential for debugging and as back-up to experiments' signals
 - The team would like be around for VdMs
- Energy
 - Magnet model does a good job abs ~0.1%
 - RF/revolution frequency in conjunction with p-PB offers an interesting possibility
 - Might be able to get error down to per mil level at 4 TeV
 - "operational development" time for Jorg

2012 operations

Parameter	Value at 450 GeV	Value at top energy
Energy [GeV]	450	4000
β [*] IP1/5 [m]	11.0	0.6
β [*] _{IP2} [m]	10.0	3.0
β [*] ιթ8 [m]	10.0	3.0
Parallel separation [mm]	2.0	0.67
Crossing angle IP1/5 [µrad]	170	145
Crossing angle IP2 [µrad]	170	90+
Crossing angle IP8 [µrad]	170 (H)	100 (V)

These changes require tight collimator settings: TCPs @ 4.3o, TCTs @ 9o

Alick's offering a 76% increase in luminosity and a max <mu> of around 34

8 fb⁻¹, 5 fb⁻¹ by middle of June? 3 to 4 fb⁻¹ would be good

2012 - Of note

- Luminosity leveling in Atlas and CMS
- Improved procedures for going into Stable Beams
- LHCb
 - horizontal to vertical external crossing angle
 - plus tilted leveling
- Improved lumi scan software
 - LHCb, leveling, status to DIP, pause/resume, loadable scan sequences, tilted leveling, parallel scans
 - Luminosity trims to experiments eek?
- VdM for β^* = 0.6m uses ~0.19 σ @ TCT
 - Aperture budget is 0.2 σ
 - Van der Meer Scan: 6 σ
 - Definitions of MP allowed scan ranges to take into account VDM & LSC as much as possible

Optics

- Two techniques:
 - Segment-by-segment via AC dipole/2k turns
 - K-modulation
- 90 m optics
 - global correction of beating and dispersion
 - Beating down to 10 15%
 - Measurement error ~8%
- Ly via segment-by-segment
 - Error around 3%

Ly via Monte Carlo (quads/phase error)

Error similar to s-b-s

IP5 could expect similar but not better...

Systematic uncertainties

- 90 m optics at IP1
 - Leff(y) uncertainities
 - Quad gradient errors MAD versus machine (~10⁻⁵) negligible impact on Leff
 - Quad misalignments optics parameters change but negligible impact on Leff
 - Beam-beam 0.3% dominant effect
 - Leffy is very robust!
 - But an interesting discussion after the talk....

S. Cavalier

Stefano Redaelli

Roman pots

Reviewed the strategy to align LHC collimators and movable devices

- We can align very accurately the collimators around the beam with beam-based techniques - no other way to be accurate within a fraction of σ
- The setting validation relies on loss maps that ensure cleaning and MP role

Roman pot settings are determined by the collimator positions

- In all cases, the settings must respect some collimator hierarchy

A closest approach for Roman pot settings in 2012 was proposed

- Defined retractions from various collimator types: different strategies to cope with "standard" and "special" machine configurations
- Relies on achieving "tight" collimator settings in 2012
- Detailed settings will be followed up by panels of experts (collimation+MP)

Special "dream" scenarios can be attempted but cannot be guaranteed

 Challenge to operate with full TCP gaps around 1 mm at top energy to take data with pots between 3-5o for small emittance beams

Possibility to take data without alignment campaign being investigated

- Proposal by R. Assmann under investigation

- Clearly, will have to sacrifice accuracy of settings: could be a good startup strategy

Requests

- CMS:
 - "assuming 15 fb-1 in 2012 at 8 TeV" the clear priority
 - EOF scans (2 sigma, 10 points..)
 - Dedicated VdM run with nominal optics
 - Precision VdM at 11 m (set-up required)
 - VdM with p-Pb
- Atlas: two options but similar
- ALFA: "Coulomb scattering regime in 2012" (a few bunches)
 - "900 m with last year's beam conditions"
- TOTEM: diffractive physics at $\beta^*=90$ m (156 bunches)
 - A mixed setup with 90m in IP5 and 500m in IP1
 - 6 shifts to commission, including some Stable beam running, is, as Alick says, optimistic
 - Note a total of 13 shifts for 90 m in 2011 (lessons learnt)
 - Support for speeding-up of collimator alignment and loss validation procedures

Requests

- 1: Roman pots in standard physics fills at high intensity
 - Set-up and validation required
- 2.1: Low intensity special optics single stage cleaning pots to 4 6 sigma
 - Background...
- 2.2 Special optics high intensity
 - Set-up and full validation
- Machine is not asking for long painful alignment
- Dreamin'...

Normalization is part of the program (~8 days in schedule – for VdM and RP/high beta) – need a rough schedule soon

High beta

- 90 m recommissioning before ICHEP?
 - At 4 TeV...
- Viable 500 m for 2012
 - Higher beta difficult...
 - Coulomb regime possibly within reach (1 micron etc.)
 - Valuable experience for beyond LS1
 - Commission in MD
- Extra quad return cables decision before July 2012.

Miscellaneous

- Watch beam induced heating of ALFA
- Clarify appropriate bunch intensities during special runs vis a vis BPN sensitivity ranges
- ATLAS BPTX data via DIP to be pushed as FBCT data into LDB
- ABP: Effort/collaboration needed to quantify and correct for beam-beam effects in VDM scans (model vs data, tune shift measurements in dedicated conditions ?)
- OP: operational procedures with sufficient flexibility , feed-backs not just locked to high intensity and many bunches, also working for fewer bunches and intensity