

PSI's SC cyclotron "COMET" for proton therapy

Marco Schippers

PAUL SCHERRER INSTITUT

Contents

- Proton therapy
- Dose delivery techniques
- Cyclotron

X-rays vs. Protons

X-rays vs. Protons

X-rays vs. Protons

X-ray beams (IMRT) from 7 directions

Proton beams

from 3 directions

Dose [展]

1000
-900
-800
-700
-600
5000
-400
-300
200.
1000

pictures: Medaustron

Dose delivery techniques

Methods to control depth:

1) Vary energy in accelerator (synchrotron)
2) Slow down from a fixed to the desired energy

- modulate "just" before patient (in "nozzle")
- at start of beam transport (cyclotron)

Dose delivery techniques: Depth

Dose delivery techniques: lateral

Scatter technique

Pencibean

Collimator, bolus

scanning

Possible solutions:

Organ motion

- Gating

Extracted
Beam

- Adaptive scanning
(tumor tracking)
- Fast rescanning

Spot scanning: step\&shoot

Continuous scanning

kHz-Intensity modulation

Requirements for accelerator:
stable beam position
allows fast target repainting: 15-30 scans / 2 min.

Requirements for accelerator:

- stable beam position
- continuous and stable beam
- fast adjustable beam intensity
- fast adjustable beam energy

The
 SC cyclotron at PSI

PAUL SCHERRER INSTITUT -
 the PROSCAN facility

Cyclotron (1930)

Magnet

Proton source
RF electrodes

RF-Voltage "Vdee"
RF frequency f,

At electrode slit crossing: Energy gain $\quad \Delta E=V_{\text {dee }}$

Cyclotron

Circular orbits:
Centripetal force $=$ Magnetic force $\frac{m v^{2}}{r}=B q v$
$\Rightarrow T_{\text {circle }}=\frac{2 \pi \cdot r}{v}=\frac{2 \pi \cdot m}{B q}$
=> $T_{\text {circle }}$ independent from orbit radius r

$$
\begin{aligned}
& m=\text { mass } \\
& v=\text { speed } \\
& r=\text { orbit radius } \\
& B=\text { magnetic field } \\
& q=\text { charge }
\end{aligned}
$$

250 MeV proton cyclotron (ACCEL/Varian)

Closed He system 4×1.5 W @4K

Proton source

superconducting coils => $2.4-3.8 \mathrm{~T}$

4 RF-cavities:
72 MHz (h=2)
~80 kV

Max. intensity set b proton source

Deflector plate: sets intensity

- within $50 \mu s$
- 3\% accuracy

Relativity in high-E cyclotrons

Cyclotron essential: $\quad T_{\text {circle }}=\frac{2 \pi \cdot m}{B q}=>T_{\text {circle }}$ constant for all radii

However, when $v \rightarrow c: m=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}}=\gamma \cdot m_{0}$
e.g: $10 \mathrm{MeV} p: \quad v / c=0.14 \quad=>=1.01 \mathrm{~m}_{0}$ $250 \mathrm{MeV} \mathrm{p}: \quad v / c=0.61 \Rightarrow m=1.27 m_{0}$

=> $T_{\text {circle }}$ increases with radius => particles lose pace with RF.

Relativity in high-E cyclotrons

Relativity in high-E cyclotrons

Radial variation of field (field index):

$$
n(R)=-[R / B(R)][d B(R) / d R]
$$

$$
n>0: d B / d r<0
$$

When B decreases with radius:
Automatic vertical stability

When B increases with radius:
No vertical stability

```
    n<0 : dB/dr >0
n(R)=-[R/B(R)][dB(R)/dR]=-(\mp@subsup{\gamma}{}{2}-1)
```


When crossing B change not \perp
=> vertical force from $B_{\theta} \times v$

Thomas focusing: $v_{z}^{2}(R)=n(R)+F(R)$

Vertical focussing

Azimuthally Varying Field cyclotron

Extraction from cyclotron

Resonant extraction: use $V_{r}=1$

resonant extraction

Extraction from cyclotron

(ACCEL / Varian)

Advantages of a cyclotron

=> a cyclotron provides:

- continuous beam
- any intensity
- very fast adjustable intensity
- accurate intensity control
- great reliability
+ range change of $5 \mathrm{~mm}<50 \mathrm{~ms}$
(with fast degrader and good magnets + power supplies)

