

PSI's SC cyclotron "COMET" for proton therapy

Marco Schippers

PAUL SCHERRER INSTITUT

Contents

X-rays vs. Protons

X-rays vs. Protons

X-rays vs. Protons

X-ray beams (IMRT) from 7 directions

Proton beams from 3 directions

pictures: Medaustron

Dose delivery techniques

Dose delivery techniques: **Depth**

Methods to control depth:

- 1) Vary energy in accelerator (synchrotron)
- 2) Slow down from a fixed to the desired energy
 - modulate "just" before patient (in "nozzle")
 - at start of beam transport (cyclotron)

Dose delivery techniques: **Depth**

All following magnets: 1% field change in 50-80 ms

- → fast treatment
- → fast room switching

Dose delivery techniques: lateral

Pencil beam Scatter technique scanning dose distributio Scatter system Collimator, bolus

organ / tumor motion

Organ motion

Possible solutions:

Gating

Adaptive scanning (tumor tracking)

• Fast rescanning

Pencil beam scanning

Requirements for accelerator:

- stable beam position

allows fast target **repainting**: 15-30 scans / 2 min.

Requirements for accelerator:

- stable beam position
- continuous and stable beam
- fast adjustable beam intensity
- fast adjustable beam energy

PSI Gantry-2: fast 3D scanning

The SC cyclotron at PSI

the PROSCAN facility

Cyclotron (1930)

Cyclotron

Circular orbits:

Centripetal force = Magnetic force $\frac{mv^2}{} = Bqv$

$$= T_{circle} = \frac{2\pi . r}{v} = \frac{2\pi . m}{Bq}$$

 $\Rightarrow T_{circle}$ independent from orbit radius r

m = mass

v = speed

r = orbit radius

B = magnetic field

q = charge

250 MeV proton cyclotron (ACCEL/Varian)

Closed He system 4 x 1.5 W @4K

Proton source

superconducting coils => 2.4 - 3.8 T

4 RF-cavities: 72 MHz (h=2) ~80 kV

Internal proton source

Internal proton source

intensity control

Relativity in high-E cyclotrons

Cyclotron essential:

$$T_{circle} = \frac{2\pi . m}{Bq}$$

 $T_{circle} = \frac{2\pi . m}{Ba}$ => T_{circle} constant for all radii

However, when $v \rightarrow c$: $m = \frac{m_0}{\sqrt{1 - v^2/c^2}} = \gamma \cdot m_0$

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}} = \gamma \cdot m_0$$

e.g: $10 \text{ MeV p: } v/c = 0.14 = m = 1.01 \text{ m}_0$

 $250 \text{ MeV p: } v/c=0.61 => m=1.27 m_0$

 $=> T_{circle}$ increases with radius => particles lose pace with RF.

Relativity in high-E cyclotrons

$$T_{circle} = \frac{2\pi m}{q.B}$$

$$m = \frac{1}{\sqrt{1 - v^2/c^2}} m_0$$

Remedies when T_{circle} increases with radius:

- decrease f_{RF} with radius.
 (synchro-cyclotron; pulsed)
- 2) increase B with radius

Relativity in high-E cyclotrons

Radial variation of field (field index):

$$n(R) = - [R/B(R)] [dB(R)/dR]$$

When B decreases with radius:

Automatic vertical stability

When B increases with radius:

No vertical stability

$$n(R) = -[R/B(R)][dB(R)/dR] = -(\gamma^2 - 1)$$

Vertical focussing: Azimuthally Varying Field

Vertical focussing: Azimuthally Varying Field

Flutter function

$$F(R) = \overline{\left[(B_z(R,\theta) - B_o(R))/B_o(R) \right]^2}$$

Thomas focusing:
$$v_z^2(R) = n(R) + F(R)$$

Vertical focussing

Azimuthally Varying Field cyclotron

$$\upsilon_z^2(R) = n(R) + F(R).(1 + 2\tan(\psi(R)))$$

to **compensate**:

- increasing $B\rho$
- Increasing defocussing by main field

=> increase angle Ψ with radius => spiral shape

Extraction from cyclotron

Resonant extraction: use $V_r=1$

resonant extraction

Extraction from cyclotron

(ACCEL / Varian)

Advantages of a cyclotron

=> a cyclotron provides:

- continuous beam
- any intensity
- very fast adjustable intensity
- accurate intensity control
- great reliability
- + range change of 5 mm < 50 ms
 (with fast degrader and good magnets + power supplies)

