

Wir schaffen Wissen – heute für morgen

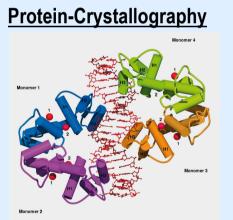
Paul Scherrer Institut

Volker Schlott on behalf of the E-XFEL project team at PSI

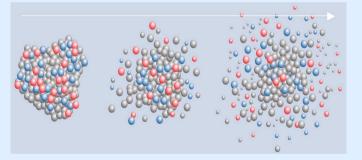
Swiss In-Kind Contribution to the European XFEL Project – Beam Position Monitor System and Intra-Bunchtrain Feedback

Swiss In-Kind Contributions to the European XFEL Project BPM System and Intra Bunchtrain Feedback

- Short Introduction to European X-FEL Project
- IK-Contributions, Project Partners and Work Distribution
- Status and Update on BPM System Components
 - Pick-Ups
 - Electronics
- Status and Update on Intra Bunchtrain Feedback

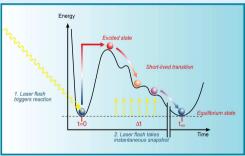


Introduction to the European XFEL Project – Scientific Impact


European XFEL is the 1st large scale XFEL user facility in Europe aiming for...:

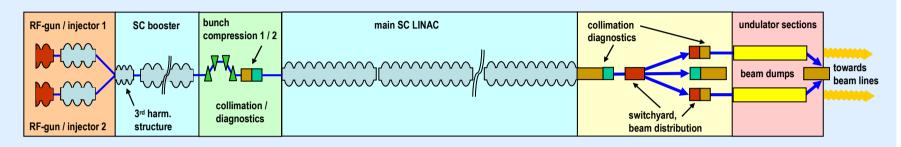
- ... hard X-rays at 1 Ångström wavelength (12 keV photon energy)
- ... ultra-short photon pulses of < 100 femto-seconds
- ... highest peak brilliances > 10¹³ photons per pulse (several tens of GW)

Some Examples of Research Areas



using the high number of photons to investigate large, multi-protein DNA complexes, which are hard to crystallize Explosion of Bio-Molecules

using the high number of photons and the ultra-short X-ray pulses to decipher the 3D structure of biomolecules and the functional processes at the molecular level


"Femto-Chemisty"

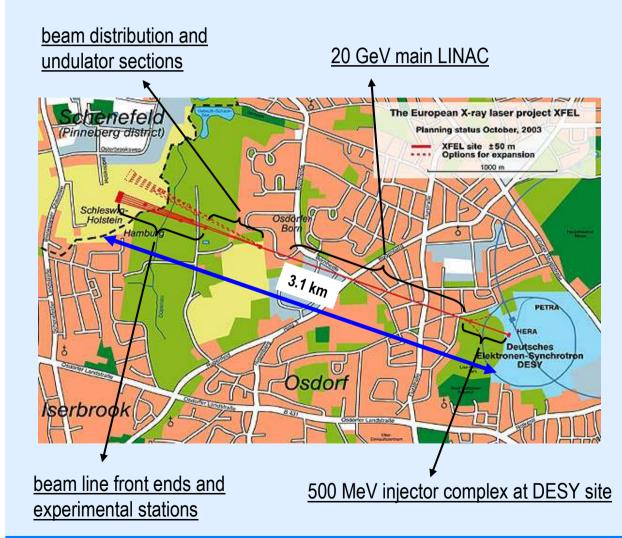
using ultra-short X-ray pulses and precise timing to "film" chemical reactions and mechamisms at the atomic level with pump-probe techniques

Introduction to the European XFEL Project – The Facility

A 1.7 km long <u>superconducting linear accelerator</u>, provides:

- ... an electron beam energy of 17.5 GeV
- ... long bunchtrains of up to 3000 electron bunches with 200 ns bunch to bunch spacing at 10 Hz repetition rate
- ... flexible beam distribution to several undulator lines for X-ray generation (0.1 6 nm)

700 m of undulators (3 SASE & 2 spontaneous radiators) divided in 5 beamlines


... requiring **micron level electron beam stability** for stable SASE operation

Two <u>user end-stations</u> per beamline requiring:

- ... newly developed X-ray optics for withstanding high heat load
- ... newly developed detector systems allowing ultra-fast data acquisition

Introduction to the European XFEL Project – The Site

Injector Building @ DESY

Beam Distribution Building

Main Experimental Building

Introduction to the European XFEL Project – Site & Status

Injector Building @ DESY Bahrenfels

Beam Distribution @ Osdorfer Born

Experimental Building @ Schenefeld

The European XFEL Accelerator Tunnel - Construction Work has been finished by 01. March 2012)

Introduction to the European XFEL Project – Organization

- 14 countries support the construction and operation of the European XFEL
- the realization of the project is organized through a company: <u>E-XFEL GmbH</u>
- the project is structured in 50 work packages combined into six groups
- the partner countries typically contribute in cash (~ 33%) and ...in-kind" (~ 67 %)
- the principle of <u>**"in-kind contributions"**</u> assures...:
 - ... that the project profits strongly from the expertise of the accelerator labs and science groups in the partner countries
 - ... that the partner countries profit from the technical developments and scientific opportunities of the project
- **PSI contributes** "in-kind" and in collaboration in 3 major fields of expertise:
 - ... electron beam position monitors (BPM) and fast beam orbit stabilization (IBFB)
 - ... pixel detector development
 - ... contributions to various scientific experiments (not presented in this talk)

Stability Requirements for Stable Accelerator and SASE Operation

\rightarrow single bunch position resolution in accelerator and transfer lines:	50 µm *
\rightarrow single bunch position resolution in undulator sections:	1 μm*
\rightarrow high resolution BPMs in transfer lines and IBFB BPMs:	1 μm*

* for extended bunch charge range: 20 pC to 1 nC															
	Type	Quantity	Beam Pipe Diameter	Vacuum length	Single Bunch RMS Resolution	Averaged RMS Resolution over 1000 bunches of identiccal trains	Drift per 1 deg C, min 0.1 µm	Operation range for maximum resolution	Operation range providing reasonable signal	Linearity	x/y Crosstalk	Charge Dependence (dQ=10%)	Bunch to Bunch Crosstalk	Transverse Alignment Tolerance (RMS)	Pipeline Latency
			mm	mm	μm	μm	μm	mm	mm	%	%	μm	μm	μm	ms
Cold BPM	Button/Re- entrant	102	78	170	50	10	10	± 3.0	± 10	10	1	50	10	300	10
Gun BPM	Button	3	40.5	100	100	10	10	± 3.0	±10	5	1	100	10	200	10
Standard BPM	Button	219	40.5	200/ 100[1]	50	10	10	± 3.0	± 10	5	1	50	10	200	10
Standard BPM	Button	6	100	200	100	10	10	± 5.0	± 20	10	1	100	10	200	10
Cavity BPM Beam Transfer Line	Cavity	12	40.5	255	10	1	1	± 1.0	± 2	2	1	10	1	200	10
Cavity BPM Undulator	Cavity	117	10	100	1	0.1	1	± 0.5	±2	2	1	1	0.1	50	10
^[1] warm button: flanged	^[1] warm button: flanged version & welded version (where flanged is too long)														

BPM System and Intra Bunchtrain Feedback – **Deliverables**

BPM System (E-XFEL WP 17) consists of...:

- ... pick-ups: cold and warm buttons for *"standard BPMs"* cold re-entrant and warm dual resonator cavities for *"high resolution BPMs"*
- ... electronics: BPM type specific RF front ends for signal conditioning only two types of A/D converters for digitization generic processor boards for data processing and transmission mainly generic firmware & software for system integration

Intra Bunchtrain Feedback System (E-XFEL WP 16) consists of...:

... high resolution BPMs:for bunch-by-bunch beam position measurement... stripline kickers:for high bandwidth (intra bunchtrain) correction of beam offsets... electronics and FW:for high speed data processing, data transfer and
application of correction algorithms... beam optics:for efficient integration of IBFB in EXFEL accelerator lattice

Work Distribution between Project Partners

modular BPM system with common "generic" digital back end and software / firmware

- $\rightarrow\,$ overall BPM and IBFB system design and lead of BPM collaboration
- \rightarrow BPM electronics development and fabrication
- \rightarrow BPM firmware / software development and control system integration
- $\rightarrow\,$ IBFB system design, simulations and beam optics optimization
- \rightarrow IBFB electronics, kicker concept and amplifier development
- \rightarrow IBFB correction algorithms and control system integration
- \rightarrow BPM system and IBFB commissioning

- \rightarrow BPM pick-up development and fabrication
- \rightarrow IBFB integration in E-XFEL accelerator lattice
- \rightarrow IBFB stripline kicker fabrication
- \rightarrow BPM and IBFB infrastructure, installation and integration in E-XFEL facility

- $\rightarrow\,$ cold "re-entrant BPM" pick-up design and fabrication
- \rightarrow "re-entrant BPM" RF front end design, fabrication and commissioning

The Project Teams and Main Competences

PAUL SCHERRER INSTITUT

- Boris Keil \rightarrow Project Leader
- Markus Stadler \rightarrow RF-Engineer
- Daniel Trever \rightarrow RF-Engineer
- Markus Roggli \rightarrow HW-Engineer
- Robin Ditter \rightarrow Technician
- Martin Rohrer \rightarrow Mech. Engineer

- Goran Marinkovic
- Waldemar Koprek
- Raphael Baldinger
- Carl Beard
- Hisham Kamal Sayed → Physicist
- Volker Schlott

- \rightarrow FPGA-Engineer → **FPGA-Engineer**
- \rightarrow Technician
- \rightarrow Physicist
- - \rightarrow **IK** Coordinator

and strong support from PSI Administration and Infrastructure Departments

- Dirk Nölle \rightarrow WP-17 Leader
- Silke Vilcins \rightarrow Mech. Engineer
- - Winnie Decking
- Dirk Lipka \rightarrow Physicist
 - \rightarrow WP-16 Leader

- Maike Siemens \rightarrow Mech. Engineer

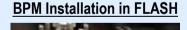
and strong support from DESY Accelerator and Infrastructure Departments

- - Claire Simon \rightarrow Electrical Engineer
 - Pascal Contrepois \rightarrow Mech. Engineer

and strong support from CEA Accelerator and Infrastructure Departments

Standard BPM Pick-Ups – Cold and Warm Buttons (DESY contribution)

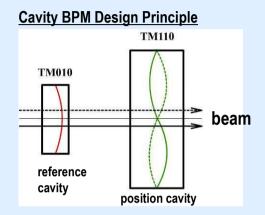
Cold Button BPM Pick-Ups

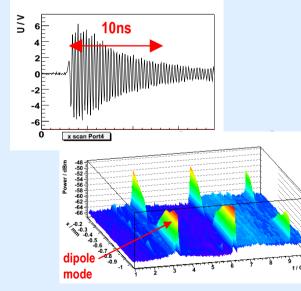


- 78 mm beam aperture
- signal level and spectrum match simulations and electronics requirements
- production readiness review passed
- qualification process: pre-series BPM blocks different companies
- next step: series order of feedthroughs

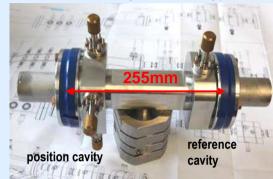
Warm Button BPM Pick-Ups

BPM Block and Feedthrough

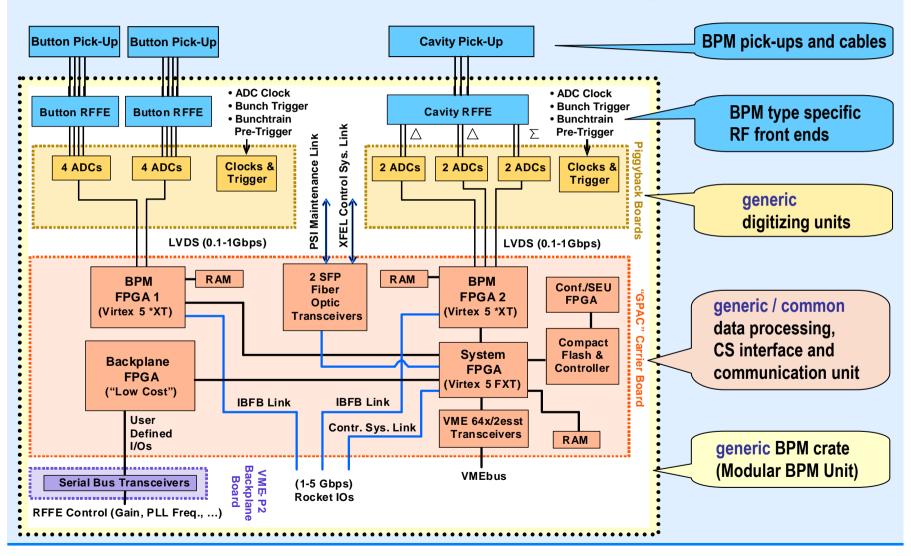



- 40.5 mm beam aperture
- beam tests with prototypes at FLASH and PSI
- production readiness review in preparation
- qualification process: contacts with companies
- performance: position resolution 3x better than cold BPMs at low charges (aperture 2x, button size 1.5x)

High Resolution BPM Pick-Ups – Dual Resonator Cavity (DESY contribution)

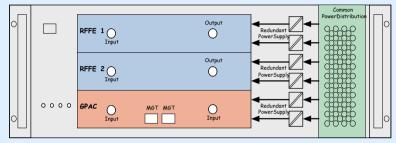


Transfer Line Cavity BPM Prototype



Design Considerations and Status

- 10 mm beam aperture for undulator cavity BPM
- 40.5 mm beam aperture for transfer line cavity BPM
- common resonance frequency at 3.3 GHz \rightarrow <u>same electronics</u>
- "low Q" design to allow 200 ns bunch spacing
- prototypes installed in FLASH and SwissFEL Test Injector
- lab and beam measurements agree with simulations
- qualification process: pre-series of cavity body and cavity body "ok" from different companies
- production readiness review passed \rightarrow start series production


BPM Electronics – Modular Concept for all BPM Types (PSI Contribution)

BPM Electronics – Modular BPM Unit (PSI Contribution)

MBU Schematic Layout

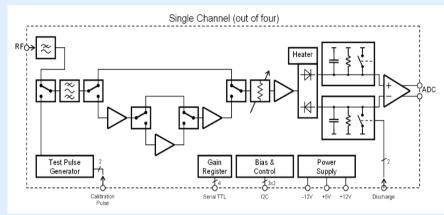
Design Considerations and Status

- 19" housing including power supply, fans, temperature control...
- contains: 4 button BPM RF front ends or
 - 2 cavity BPM RF front ends
 - 1 common digital back end FPGA processor board (GPAC)
 - 2 ADC mezzanine boards
- prototypes fabricated \rightarrow MBU used for beam tests
- next step:

MBU Prototype (fully assembled for two undulator cavity BPMs)

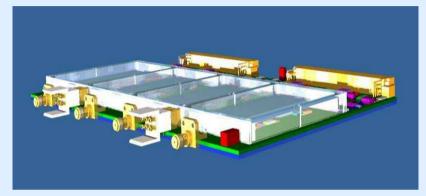
finish production readiness review

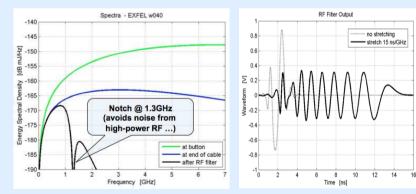
BPM Electronics – Undulator Cavity BPM RF Front End (PSI Contribution)


Design Considerations and Status

- IQ demodulation of 3.3 GHz cavity pick-up signal to baseband
- 4 gain ranges (> 20 dB) to cover all E-XFEL operation modes (1 nC 20 pC)
- 3 programmable LOs (phase and frequency) and on-board ADC clock synthesis
- 1st version (2010) $~\rightarrow~$ 0.35 0.75 μm RMS noise ~ @ 0.1 1 nC
- 2nd version (2011) \rightarrow active temperature stabilization, solid RF shielding, more gain ranges...
- next steps: lab and beam tests at FLASH and SwissFEL Test Injector ongoing final cavity RFFE version by end of 2012 production readiness review and CFT for series production in 2013

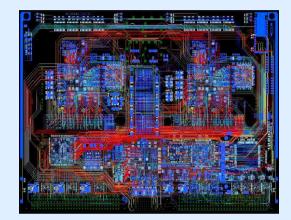
E-XFEL BPM Electronics – Button BPM RF Front Ends

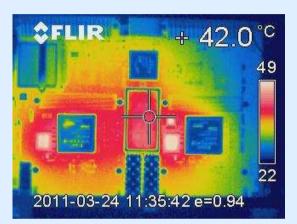

Schematic of Button BPM RFFE (single channel)


Design Considerations and Status

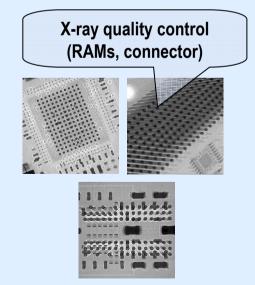
- **Button RFFE**
- → input filtering (bandpass and 1.3 GHz notch) avoids noise from high power RF and stretches button pick-up signal
- \rightarrow variable gain stage (> 40 dB) and online calibration pulser
- \rightarrow peak detection with hold capacitor
- \rightarrow PCB layout ready, prototype in fabrication, beam tests early 2012

Button BPM RFFE Electronics Board Concept



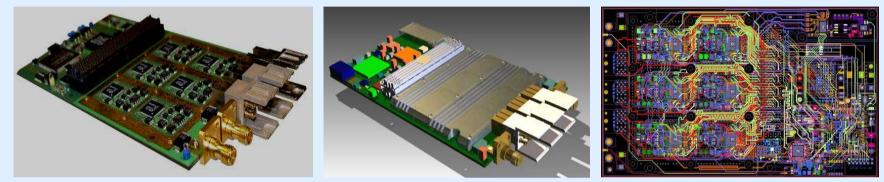

Button BPM RFFE Input Filtering

BPM Electronics – Digital Back End: GPAC FPGA Board (PSI Contribution)



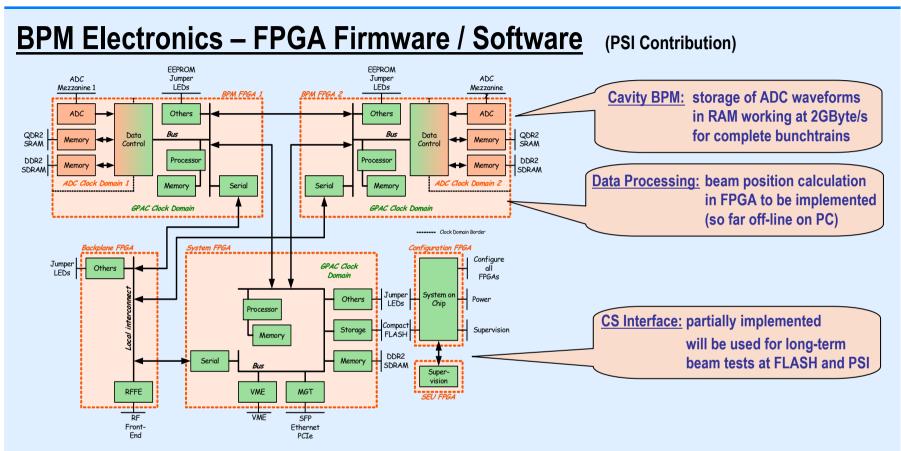
Design Considerations and Status

- common FPGA-based processor board for all BPM types
 - $\rightarrow\,$ allows the use of standardized ADC mezzanies
 - \rightarrow allows the use of standardized FPGA firmware
 - $\rightarrow\,$ single and standardized interface to E-XFEL control system
- first prototypes mid 2010 \rightarrow only few faults found and fixed
 - \rightarrow extensive test runs were successful
 - \rightarrow present focus on firmware / software


- next step: production readiness review

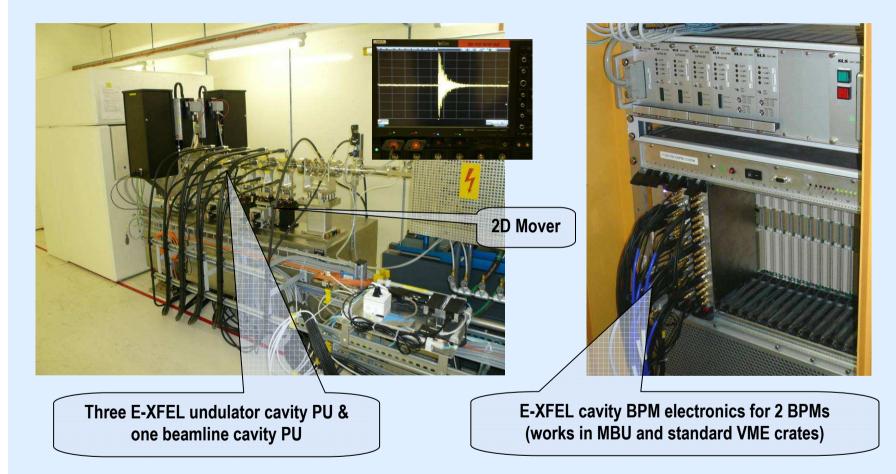
BPM Electronics – Cavity & Button BPM ADC Mezzanines (PSI Contribution)

<u>Cavity BPMs:</u> 6-channel, 16-bit, 160MSamples/s \rightarrow fabrication and performance tests "ok"



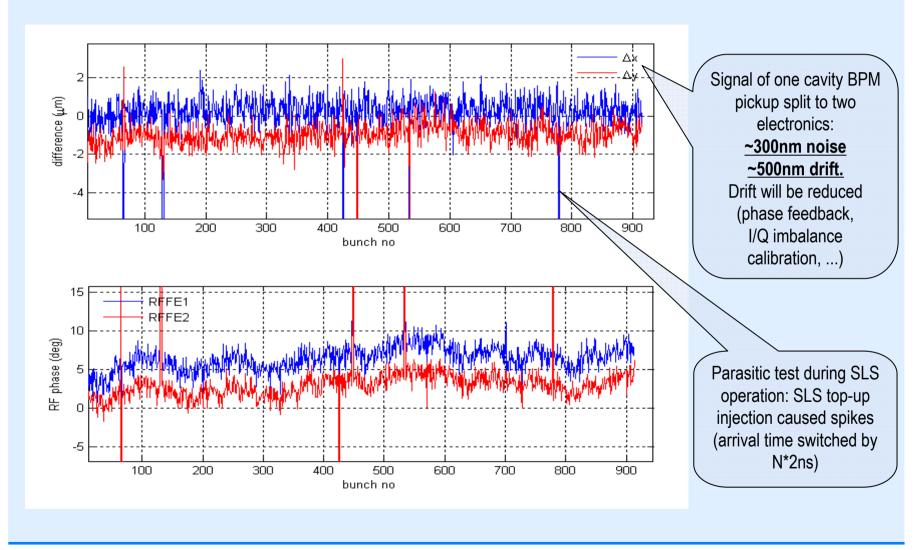
Button BPMs: 8-channel, 12-bit, 500MSamples/s → fabrication and performance tests "ok"

Both ADC types: differential coax inputs, 150 ps step clock phase adjustment per ADC.



Design Considerations and Status

- modular FPGA firmware / software design provides...:
 - → data processing and CS interface for all BPM types (cavity BPMs already implemented)
 - \rightarrow saves firmware / software development time (MP) and eases future upgrades


E-XFEL & SwissFEL Cavity BPM Test Area @ SwissFEL Test Injector

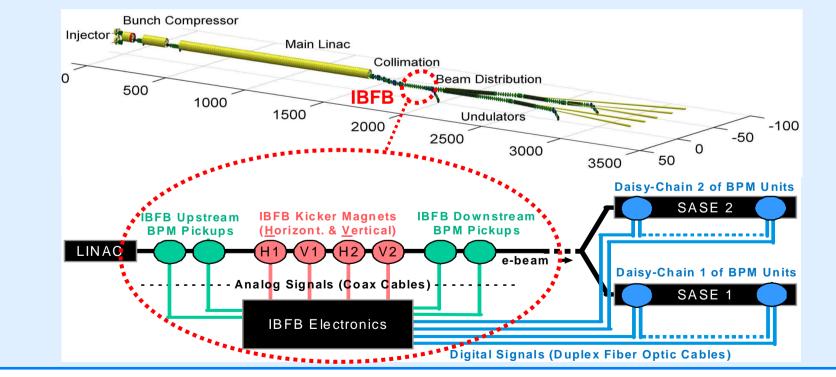
Status: beam time for multi-BPM noise correlation after February 2012 shutdown

E-XFEL Cavity BPM Electronics: Latest Tests @ SLS Injector LINAC

IBFB – E-XFEL Beam Stability Considerations (PSI and DESY Contributions)

examples of beam centroid motions (a.u.) Slow and medium term motions (< 30 µm) 0.3 - ground settlement, temperature drifts 60 s centroid 0.2 - girder / magnet excitation by ground motion, cooling water, He flow... beam Fast motions (few 100 µm) -0.1 10 20 30 <u>4</u>0 50 t [sec] - switching magnets, power supply jitter ٥. - RF transient, RF jitter beam centroid 1 s 0.05 - photocathode laser jitter - beam current variations -0.05 - long range wake fields -0.1 0.4 0.5 0 0.1 0.2 0.3 0.6 0.7 0.8 0.9 Leads to: t [sec] 0.1 - beam centroid motions 650 μs peam centroid 0.05 - beam shape variations 0 - beam arrival time jitter -0.05 ... affects SASE power and gain length ! -0.1 ⁻99.5 100 100.5 101 ... disturbs stable user operation ! t [msec]

60

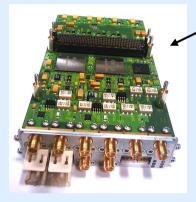

IBFB – Topology and Realization in E-XFEL (PSI Contribution)

A single IBFB will be located in front of the beam distribution section...:

- ... high resolution beam pick-ups: 3.3 GHz cavity BPMs with 40 mm diameter
- .. low latency (≤ 1 µs) IBFB electronics for beam position measurements,

calculation of corrections and distribution of FB data

... fast (high bandwidth) kickers and amplifiers for applying orbit corrections to the beam

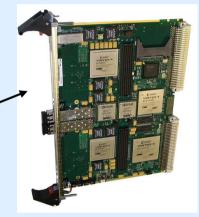


IBFB – Component Development and Status (PSI Contribution)

IBFB Beam Optics:

 \rightarrow lattice design optimized for most efficient IBFB performance \rightarrow reduction of IBFB correction kick strength

Status of IBFB Electronics



Two Stack Mezzanine Card

- low latency 4 channel,
 12 bit, 500 MS/s ADC
- 14 bit 1 GS/s DAC

PDC Board

FPGA & DSP realtime processor and communication board (similar to GPAC processor board of BPM system) basic firmware implemented

Status of IBFB Kickers and Amplifiers

IBFB Stripline Kicker

- length: 1 m

- bandwidth: > 50 MHz
- prototype installed and successfully tested at FLASH
- final version under design

Commercial Solid State

- Power Amplifier
- power: 2 8 kW bandwidth: 80 MHz
 < 30 ns latency
- final specs in preparation

BPM System and IBFB – Overall Status & Outlook

- → complete and compentent teams at PSI and collaborating IK partners established
- \rightarrow great communication and team spirit between teams of IK partner institutes
- \rightarrow BPM system and IBFB work in good progess and according to schedule
- \rightarrow successful prototype tests for almost all BPM system and IBFB components
- → final iterations and production readiness achieved for time critical components in order to achieve E-XFEL project milestones (2016 fully operational facility)

thank you for your interest and attention