

The Swiss Light Source

Natalia Milas Paul Scherrer Institut March 2nd 2012

Overview

- Why SLS?
- History and Budget
- Some few concepts:
 - synchrotron light, brightness and emittance...
- Parameters and performance
- SLS features:
 - top-up, special modes...
 - FEMTO laser beam slicing
- Comparison to other light sources
- Summary

Why SLS?

Solid state physics and materials science: *pharmacy, biology, chemistry, physics....*

- Molecular scale ➡ Ångström
 - sample scale \Leftrightarrow probe size \Rightarrow wavelength $\lambda \sim 1 \text{ Å}$
 - particles for probing: de Broglie wavelength $\lambda = h/p$
 - momentum p = 10 keV
- high penetration depth of particles in matter
 neutral particles (no Coulomb)
- neutrons (SINQ) and photons (SLS and SwissFEL)
 - small sample size (e.g. protein cristal) < 0.1 mm
 - high resolution micro & spectroscopy
 - many samples: short measuring time
 - high flux density on sample = brightness

History...

1999 First ideas for a Swiss Light Source

1993 Conceptual Design Report

June 1997 Approval by Swiss goverment

June 1999 Finalization of the building

Dec. 2000 First stored beam

June 2001 Design current (400 mA) reached and top-up operation started

July 2001 First experiments

Jan. 2005 Laser beam slicing (FEMTO)

May 2006 3 Tesla superbends

2010 Completion of 18 beamlines

... and Budget

in **MCHF** (costs < 2002)

Total Project Budget	159	(no salaries included)
Building	63	("turn key", incl. infrastructure)
Accelerators pla	anned	spent
General	12	11
Linac	6	6
Booster	12	11
Storage Ring	42	40
total	96	92
4 initial beam lines	24	28
+ SLS related PSI buc	lget	~ 90

Synchrotron Radiation

from highly relativistic electrons: Lorentz factor $\gamma = E/mc^2 \sim 10^3 - 10^4$

• High photon energy:

$$E_{ph} = pc \approx \gamma^3 \Rightarrow E_{ph} > 10 keV$$

- continuos spectrum
- collimated in the forward direction, opening angle

 $\Theta\approx\gamma^{-1}\Rightarrow\Theta<0.1mrad$

high power ⇒ high photon flux

 $P(\approx \gamma^4)/R \approx \gamma^3 \Rightarrow P > 100 kW$ (light source) (R = bending radius of the dipoles, R $\approx \gamma$)

High Brightness

= 6-dimensional photon phase space density photons $(area) \times (solid angle) \times (time) \times (energy interval)$ area = (hor.size) × (vert.size) of photon beam $(size)^2 \approx (electron beam size)^2 + (diffraction blur)^2$ solid angle = (hor.) \times (vert.) photon beam opening angle $(op.angle)^2 \approx (e. beam divergence)^2 + (diffraction angle)^2$ Brightness unit of measurement:

 $[\mathcal{B}] = \frac{\text{photons}}{\text{s}\,\text{mm}^2\,\text{mrad}^2\,0.1\%\,\text{BW}} \qquad \text{BW} = \text{bandwidth}\,\,\frac{\Delta \tilde{E}}{\tilde{E}} \quad \text{(usually 0.1\%)}$

SLS brigthness

Emittance

 \boldsymbol{X}

 $\pi \epsilon$

SLS paramenters

- Beam Energy
- Circumference
- Emittances
 - horizontal
 - vertical
- Energy spread
- Current
 - top-up operation
- Stability
 - photon beam at front end

5..6 nm rad 1..10 pm rad (g < 0.1 %) 0.09% 400 mA

2.4 GeV

288 m

Performance

Beam Time Statistics	200	1	200	02	20	03	20	04	20	05	20	06	20	07	20	80	20	09	20	10	20	11
Swiss Light Source	[h]	[%]	[h]	[%]	[h]	[%]	[h]	[%]	[h]	[%]	[h]	[%]	[h]	[%]	[h]	[%]	[h]	[%]	[h]	[%]	[h]	[%]
o total beam time	3576	41	6044	69	6792	77	6616	75	6608	75	6768	77.3	6912	78.9	6824	77.7	6704	76.5	6720	76.7	6824	77.9
+ user operation	1016	12	4472	51	5288	60	5116	58	4952	56	5160	58.9	5200	59.3	5160	58.9	5007	57.1	5191	59.3	5000	57.1
- incl. compensation time	-	-	-	-	-	-	175	2	175	2	144	1.6	144	1.6	144	1.6	144	1.6	227	2.5	160	1.8
+ beamline commissioning	256	3	992	7	696	8	696	8	792	9	696	8.0	880	10.0	848	9.7	896	10.2	680	7.8	976	11.1
+ setup + beam development	2304	26	576	11	808	9	804	9	864	10	804	10.3	832	9.5	816	9.3	800	9.1	845	9.7	848	9.7
o shutdown	5184	59	2720	31	1968	23	2168	25	2152	25	2168	22.7	1856	21.2	1968	22.4	2064	23.6	2048	23.3	1944	22.2
o downtimes at user operation			149		115		85		67		84		95		78		68		76		53	
+ unscheduled outage	no data		258 h	6%	307 h	5.8%	190 h	3.7%	82 h	1.6%	236 h	4.8%	138 h	2.6%	218 h	4.2%	66 h	1.3%	214 h	4.1%	65 h	1.3%
+ injector outage (non top-up)	no data		54 h	1%	30 h	0.6%	46 h	0.9%	30 h	0.6%	26 h	0.5%	28 h	0.5%	22 h	0.4%	14 h	0.3%	9 h	0.2%	22 h	0.4%
Total beam integral	247 A	h	1030	Ah	1567	' Ah	1845	ō Ah	212	9 Ah	1775	ōAh	234	5 Ah	2448	3 Ah	246	0 Ah	2349	Ah	2506	5 Ah
Availability	no da	ta	949	%	94.2	2%	96.3	3%	98.	4%	95.4	1%	97.	4%	95.8	3%	98.	7%	95.9	9%	98.7	7%
Availability after Compensation			(949	%)	(94.2	2%)	99.7	7%	101	.6%	98.2	2%	100	.1%	98.5	5%	101.	.6%	100.	3%	101.	.9%
MTBF	no da	ta	30	h	46	h	60	h	74.	.1 h	61.4	4 h	54.	7 h	66.	1 h	73.	6 h	67.4	4 h	94.3	3 h
MTTR	no da	ta	1.7	h	2.7	h	2.2	h	1.2	2 h	2.8	3 h	1.5	ōh	2.8	h	1.0) h	2.8	h	1.2	h

SLS beamlines

Sector	Beamline	Methods	Source	Energy range	Polarization
X01DC	IRS		bend	1 meV – 1.5 eV	\leftrightarrow
X02DA	TOMCAT		superbend	8 – <mark>45 ke</mark> V	\leftrightarrow
X03MA	ADRESS	ARPES, RIXS	UE44	0.4 – <mark>1.8 ke</mark> V	$\leftrightarrow \updownarrow \bigcirc \bigcirc \bigcirc$
X04SA	MS	PD, SD, XTM	W61	5 – 40 keV	\leftrightarrow
X04DB	VUV		bend	5 – 30 eV	\leftrightarrow
X05LA	μXAS/FEMTO	XAS	U19	5.7– 19.5 keV	\Leftrightarrow
X06SA	PX-II		U19	5.7 – 17.5 keV	\leftrightarrow
X06DA	PX-III		superbend	6 – 17.5 keV	\leftrightarrow
X07MA	LUCIA	XAS	UE54	0.8 – 8 keV	$\leftrightarrow \bigcirc \bigcirc$
X07DA	PolLux	STXM	bend	0.2 – 1.2 keV	$\leftrightarrow \bigcirc \bigcirc$
X09LA	SIS/XIL	HR-PES, XES / EUV-IL	2xUE212	10 – 800 eV	$\leftrightarrow \updownarrow \bigcirc \bigcirc \bigcirc$
X10SA	PX-II		U19	6.5 – 20 keV	\leftrightarrow
X10DA	superXAS	XAS	superbend	5 – 35 keV	\leftrightarrow
X11MA	SIM	PEEM, XCD	2xUE56	90 eV – 2 keV	$\leftrightarrow \updownarrow \bigcirc \bigcirc \bigcirc$
X12SA	cSAXS	cSAXS	U19	5.5 – 19.5 keV	\leftrightarrow

Beamline a	acronyms	Method a	icronyms
ADRESS	Advanced resonant spectroscopies	ARPES	Angle resolved photoelectron emission spectroscopy
FEMTO	(Femto-second laser beam slicing for sub-ps X-ray pulses)	cSAXS	coherent small angle X-ray scattering
LUCIA	Line for ultimate characterisations by imaging and absorption	EUV-IL	Extreme ultraviolet interference lithography
MS	Materials sciences	HR-PES	high resolution photoemission spectroscopy
ΡΧ	protein crystallography	IRS	Infra red spectroscopy
SIM	Surfaces and interfaces microscopy	PEEM	photo emission electron microscopy
SIS	Surfaces and interfaces spectroscopy	RIXS	resonant inelastic X-ray scattering
TOMCAT	Tomographic microscopy and coherent radiology experiments	STXM	Scanning transmission X-ray micro-spectroscopy
VUV	Vacuum ultraviolet	XAS	X-ray absorption spectroscopy
		XCD	X-ray magnetic circular dichroism
		XES	X-ray emission spectroscopy
		XIL	X-ray interference lithography
		ХТМ	X-ray tomography

SLS features:

- The booster synchrotron and top-up operation
- The storage ring
- Special operation modes: low-α mode
- The FEMTO laser slicing beamline
- SLS beam stability
- Coupling correction and control

Top-up operation

- Reason: low lifetime
- refill: 1-2 minutes
- current: ±1 mA

- Benefit: thermal stability and constant BPM gain
- Top-up is a prerequisite for sub-µm stability!!

Top-up booster

• Concept:

- Large circumference, many cells:
- Combined function magnets {B, B', B"}
- Digital power supplies (on/off for top-up shot)
- High injection efficiency (emittance ~ 10 nm rad)
- Low building costs (same tunnel ring)
- Low operating costs (total power ~ 30 kW)
- High reliability (simplicity and relaxed optics)

The booster synchrotron

3 FODO arcs:
48 BD (+SD) 6.4410°
45 BF (+SF) 1.1296°
3 × 6 quads for tuning
30 × 20 mm beam pipe

Energy	0.1→ 2.4 [2.7] GeV	Mom. compaction	0.005
Repetition rate	3 .125 Hz	Tunes	12.41 / 8.38
Circumference	270 m	Chromaticities	-15 / -12
Radio frequency	500 MHz	Radiation loss*	233 keV
Magnet power	205 kW	Damping times*	11/19/14 ms
Beam current	1 mA	Emittance*	9 nm rad

* Equilibrium at 2.4 GeV

Main ring design history

all data before FEMTO upgrade, without insertion devices and without harmonic cavities

FEMTO tunable sub-picosecond X-ray source

Research: reaction kinectics, protein folding etc.

⇒ time resolved experiments, resolution < 1ps
 short pulse and X-ray and high brightness:
 ⇒ Free electron laser SwissFEL ! → 2016
 ...until then... :

FEMTO

- 50 fs FWHM high power laser (2 mJ pulse energy)
- resonant wiggler
 for coupling laser to electron beam
- dispersive chicane translating energy modulation to horizontal separation
- o in-vacuum undulator (U19) where core beam and modulated satellite beams radiate
- horizontal apertures to extract satellite radiation
- ⇒ 150 fs FWHM X-ray pulses

FEMTO components Pumb & probe experiment

Beam Stability

- Top up operation: thermal stability
- Beam position monitors: resolution < 0.3 μ m
- Digital power supplies: stability and reproducability < 30 ppm
- Frequent beam based BPM calibration ("beam based alignment")
- Insertion Device feed forward tables
- Fast orbit feedback system (<100 Hz)
- Photon-BPM integration in FOFB
- Filling pattern feedback system

Photon beam stability 1 µm rms (at frontend)

Coupling correction and control: Dynamic alignment

- Magnets fixed to girders:
 - rail precision: 15 m
 - magnet axis: 30 m
- Girders movable in 5 degrees of freedom.
- Coupling control: 36 skew quadrupoles and 12 aux. sextupoles + diagnostics (emittance monitor using vertically polarized light)

Beam lifetime (normalized to σ_y and single bunch current) as a function of RF voltage

250

200

150

100

50

Dynamic alignment components

World-record vertical emittance $\varepsilon_y = 1 \text{ pm rad}$

- Comparison of a survey from 2010 with the BPMs readings
- Shift from December 6th 2011:
 - Systematic correction using ORM
 - Correction using RACC (Random walk coupling correction)

Comparison with other light sources

		SLS	SOLEIL	DIAMOND	ALBA	MAX-IV	NSLS-II
Start of operation		2001	2006	2007	2010	2015	2015
Energy	GeV	2.40	2.75	3.00	3.00	3.00	3.00
Circumference	m	288	354	562	267	528	792
Emittance ε	nm	5.50	3.70	2.70	4.30	0.34	2.00
effective	nm	5.50	6.29	2.95	5.84	0.34	2.00
with IDs	nm	5.00				0.17	0.60
Current	mA	400	500	300 (500)	400	500	500
Lattice type		12xTBA	16xDBA	24xDBA	16xDBA	20x7-BA	30xDBA

"SLS-generation"

- $\varepsilon_{eff} \sim 3..10 \text{ nm}$
- insertion devices have little effect

next generation

- < 1 nm effective emittance
- large circumference: $\epsilon \sim (N_{bend})^{-3}$
- strong insertion devices effects

Summary

- More than 10 years of positive experience with **SLS**:
 - Experimental program
 - Accelerator operation
 - Stability and coupling: world record!
 - Upgrade potential (still a competitive source)
- Innovations have proven useful: top-up, digital BPMS and PS, FOFB, booster, ...

• FEMTO:

- successful operation since 5 years
- unique source: tunable, sub-picosecond X-ray (next step *SwissFEL*)