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   The generalized Panofsky-Wenzel theorem
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is valid for any ω-periodic field map with vanishing field at entry and exit of the particle
path and holds for any particle speed v (provided v is constant, stiff beam).
Due to its general validity (1) is also valid for any ‘infinitely’ short cavity. For a
newcomer this might then lead to the erroneous conclusion that (1) is trivially true since
it is always locally true, i.e. the ‘local’ transverse momentum kick δpx induced on any
slice δz is simply –i·e/ω times the x-gradient of the ‘local’ acceleration Ez(x)·δz and (1)
means simply adding up δz-slices with always the same proportionality factor.
   However, in ‘macroscopic’ cavities such a local proportionality is not true at all and it
is just the ‘miracle’ of PW that – whatever the details of the field map – the integrated
momentum kick is identical to the gradient of the integrated longitudinal voltage. PW
means that the cavity can be treated as a black-box: measuring the longitudinal voltage at
two different (close) offset paths will exactly predict the deflection of another particle
without knowing what is really in the black-box (with the above restrictions for (1)).
   To demonstrate this non-locality, we use a simple to handle field-map but having both
local electric and magnetic deflection: a coaxial λ/2 TEM-resonator with a particle path
parallel but off axis, see Fig. 1.
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Fig. 1: The λ/2 resonator: At the particle path at r=r0 (green) Bφ=By and Er=Ex.

   The electric and magnetic field on the particle path, starting at z=0, are
(2a)     
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Ex = E0 sin(2π / λ ⋅ z)  cos(ω ⋅ t )     ⋅r0 / r{ }
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By = B0 cos(2π / λ ⋅ z)  sin(ω ⋅ t )     ⋅r0 / r{ }
while all other field components are zero, especially Ez. From this and (1) one concludes
immediately that the net deflection of any particle with any speed should be zero !
   We will show now that locally there is no zero deflection at all but both electric and
magnetic deflection enforce non-zero local deflection. However we will see that physics
constraints are such that, whatever the conditions for speed and starting phase, the net
deflection adds up to zero. Both fields scale radial as r0/r. Hence to fulfill Maxwell’s
equation we have to constrain E0 and B0 by
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   Furthermore ω and λ are constrained so that (2) can be expressed by a wave-length λ
and a common excitation constant E0 as
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Ex = E0 sin(2π / λ ⋅ z)  cos(2π ⋅ c / λ ⋅ t )
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By = −E0 / c ⋅ cos(2π / λ ⋅ z)  sin(2π ⋅ c / λ ⋅ t )
   The ‘local’ deflection caused by the Lorentz force (particle charge e) on a slice of width
δz is in full generality
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δp  =  e(E + v × B) ⋅ δt  =  e(E + v × B) ⋅ δz / | v |
and specially for the present field map with the deflection direction ‘⊥’ = ’x’ and the
(constant) speed v in z-direction
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δp⊥  =  e ⋅ (Ex / v − By ) ⋅ δz
   On purpose we keep the deflection contribution from the electric and magnetic field
separate, i.e.
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δp⊥,E  =  e ⋅ E0 / v ⋅ sin(2π / λ ⋅ z)  cos(2π ⋅ c / λ ⋅ t ) ⋅ δz
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δp⊥,B  =  e ⋅ E0 / c ⋅ cos(2π / λ ⋅ z)  sin(2π ⋅ c / λ ⋅ t ) ⋅ δz
   Here one sees already that the local deflection of both components at any z and any t is
not zero individually, nor that both parts add up locally to zero!
   A particle sees the field at its present location z at the present time t, but z and t are
constrained here by t=z/v+ψ/ω, where ψ expresses the common phase of the E- and B-
fields when the particle enters the cavity, a completely free parameter. From this one gets
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   These integrals can be executed straightforward and we get with β=v/c
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Δp⊥  =  Δp⊥,B  +  Δp⊥,B  ≡  0
   We see that neither the integrated Δp⊥,E nor the integrated Δp⊥,B are individually zero
but both add up under any condition for β or ψ to perfectly zero as required by PW.

Conclusion:
   In arbitrary ω-proportional field-maps (single mode) the local deflection along the (stiff
beam) particle path as well as the local transverse acceleration gradient are not
proportional at all. But, provided that the field vanishes at entry and exit of the path, local
deflection and longitudinal acceleration always add up such that PW is respected,
irrespectively of the particle speed and any other details of the field map

  (9) remains also finite and valid for the limiting case β→1, i.e. v→c.
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Panofsky Wenzel Theorem(s) for Pedestrians

   The theorem

(1)

€ 

Δpx x,y, t0( )  =  − i ⋅ e
ω

⋅
d
dx

dz ⋅
−∞

+∞

∫ Ez x,y,z,t = z /v + t0( )

is very useful e.g. to determine transversal impedances from longitudinal measurements1.
It relates the transversal gradient of the accelerating voltage and the transversal
momentum kick; generally is cited ‘Panofsky-Wenzel’ [1]. To verify the assumptions, the
validity range and definition of variables of (1) the author of these lines has consulted the
original paper and found to his surprise that the original theorem (PW) does not tell
anything about longitudinal components and is restricted to pure TE or pure TM modes.
   The ‘enlarged’ theorem (1) was e.g. derived by Browman [2], but [2] takes a detour in
expressing fields by the vector and scalar potentials A and V. Chao [3] and
Vaganian/Henke [4] have given other proofs following completely different approaches
but delivering as byproduct other interesting relations.
   On the remainder of this page we will derive (1) in a very straightforward way. Also we
will at the same time highlight the necessary conditions and assumptions.
   Very generally the Lorentz force is
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   We assume that fields are ω-periodic (with the convention of [2] exp(-i·ω·t)), i.e. we
consider one mode but NO SYMMETRY whatsoever is assumed concerning fields or
cavity geometry. Then, using Maxwell’s equation curl(E)=-dB/dt we have
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   We assume v in z-direction. Then the transversal force in x-direction (y similar) is
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and hence for a stiff beam with z=v·(t-t0) and x and y constant we get the transversal
momentum kick
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   We have the mathematical identity
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1 The sign depends on the convention for the fields, exp(–iωt) is used here following [2], not exp(+iωt)
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The field is assumed to vanish at both ends of the considered volume; hence the first term
is zero. In the second term we replace the t-integration by a z-integration with v·dt=dz
and infinite limits in z yielding in fact theorem (1).
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