

Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours distance of particles travelling at about $v \approx c$ $L=10^{10}-10^{11} \mathrm{~km}$
... several times Sun - Pluto and back
intensity (10 ${ }^{11}$)

3	\square					3500
		-				
	$\sqrt{ }$					-2500 s
2						-2000
						-1500
1	-					$-1000{ }^{-1}$
						500
	17:00	20:00	23:00	02:00	05:00	

\rightarrow guide the particles on a well defined orbit („,design orbit")
\rightarrow focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.

I.) Introduction and Basic Ideas

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever
„... in the end and after all it should be a kind of circular machine" \rightarrow need transverse deflecting force
Lorentz force $\quad \vec{F}=q *(\vec{v} \times \vec{B})$
typical velocity in high energy machines: $\quad v \approx c \approx 3 * 10^{8} \mathrm{~m} / \mathrm{s}$

Example:

$$
\begin{gathered}
B=1 T \rightarrow F=q * 3 * 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} * 1 \frac{\mathrm{Vs}}{\mathrm{~m}^{2}} \\
F=q * \underbrace{300 \frac{M V}{m}}_{E} \\
\text { equivalent el. field ... }
\end{gathered}
$$

technical limit for el. field

$$
E \leq 1 \frac{M V}{m}
$$

it is possible.

The ideal circular orbit

circular coordinate system condition for circular orbit

1.) The Magnetic Guide Field

Dipole Magnets:
define the ideal orbit
homogeneous field created
by two flat pole shoes

Normalise magnetic field to momentum:

$$
\frac{p}{e}=B \rho \quad \longrightarrow \quad \frac{1}{\rho}=\frac{e B}{p}
$$

Example LHC:

$$
\left.\begin{array}{l}
\boldsymbol{B}=8.3 \boldsymbol{T} \\
\boldsymbol{p}=7000 \frac{\boldsymbol{G e V}}{\boldsymbol{c}}
\end{array}\right\} \begin{aligned}
& \frac{1}{\rho}=\boldsymbol{e} \frac{8.3 \mathrm{Vs} / \boldsymbol{m}^{2}}{7000 * 10^{9} \mathrm{eV} / \mathrm{c}}=\frac{8.3 \boldsymbol{s} * 3 * 10^{8} \mathrm{~m} / \mathrm{s}}{7000 * 10^{9} \boldsymbol{m}^{2}} \\
& \frac{1}{\rho}=0.333 \frac{8.3}{7000} 1 / \mathrm{m}
\end{aligned}
$$

The Magnetic Guide Field

$\rho=2.53 \mathrm{~km} \longrightarrow \quad 2 \pi \rho=17.6 \mathrm{~km}$
\qquad
rule of thumb: $\quad \frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[G e V / c]}$
$\boldsymbol{B} \approx 1 \ldots 8 \boldsymbol{T}$

„normalised bending strength"

2.) Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit

linear increasing Lorentz force

linear increasing magnetic field $\quad \boldsymbol{B}_{\boldsymbol{y}}=\boldsymbol{g} \boldsymbol{x} \quad \boldsymbol{B}_{\boldsymbol{x}}=\boldsymbol{g} \boldsymbol{y}$
normalised quadrupole field:

3.) The equation of motion:

Linear approximation:

* ideal particle
\rightarrow design orbit
* any other particle \rightarrow coordinates x, y small quantities
$x, y \ll \rho$
\rightarrow magnetic guide field: only linear terms in x \& y of B have to be taken into account

Taylor Expansion of the B field:

$\boldsymbol{B}_{\boldsymbol{y}}(\boldsymbol{x})=\boldsymbol{B}_{\boldsymbol{y} 0}+\frac{\boldsymbol{d} \boldsymbol{B}_{\boldsymbol{y}}}{\boldsymbol{d} \boldsymbol{x}} \boldsymbol{x}+\frac{1}{2!} \frac{\boldsymbol{d}^{2} \boldsymbol{B}_{\boldsymbol{y}}}{\boldsymbol{d} \boldsymbol{x}^{2}} \boldsymbol{x}^{2}+\frac{1}{3!} \frac{\boldsymbol{d}^{3} \boldsymbol{B}_{\boldsymbol{y}}}{\boldsymbol{d} \boldsymbol{x}^{3}} \boldsymbol{x}^{3}+\ldots \quad$| $\begin{array}{c}\text { normalise to momentum } \\ \text { p/e }=B \rho\end{array}$ |
| :---: |

$\frac{\boldsymbol{B}(\boldsymbol{x})}{\boldsymbol{p} / \boldsymbol{e}}=\frac{\boldsymbol{B}_{0}}{\boldsymbol{B}_{0} \rho}+\frac{\boldsymbol{g}^{*} \boldsymbol{x}}{\boldsymbol{p} / \boldsymbol{e}}+\frac{1}{2!} \frac{\boldsymbol{e} g^{\prime}}{p / \boldsymbol{e}}+\frac{1}{3!} \frac{\boldsymbol{e g}^{\prime \prime}}{p / e}+\ldots$

$\boldsymbol{F}=\boldsymbol{m} \frac{\boldsymbol{d}^{2}}{\boldsymbol{d} \boldsymbol{t}^{2}}(\boldsymbol{x}+\rho)-\frac{\boldsymbol{m} \boldsymbol{v}^{2}}{\boldsymbol{x}+\rho}=\boldsymbol{e} \boldsymbol{B}_{\boldsymbol{y}} \boldsymbol{v}$
(1)

s
(1) $\frac{d^{2}}{d t^{2}}(x+\rho)=\frac{d^{2}}{d t^{2}} x$
(2) remember: $x \approx m m, \rho \approx m \ldots \rightarrow$ develop for small x

$$
\begin{gathered}
\frac{1}{x+\rho} \approx \frac{1}{\rho}\left(1-\frac{x}{\rho}\right) \quad \left\lvert\, \begin{array}{c}
\text { Taylor Expansion } \\
f(x)=f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)}{1!} f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+ \\
m \frac{d^{2} x}{d t^{2}}-\frac{m v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=e B_{y} v
\end{array}\right.
\end{gathered}
$$

guide field in linear approx.
$\boldsymbol{B}_{y}=\boldsymbol{B}_{0}+\boldsymbol{x} \frac{\partial \boldsymbol{B}_{y}}{\partial \boldsymbol{x}}$

$$
\begin{array}{l|l}
m \frac{d^{2} x}{d t^{2}}-\frac{m v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=\boldsymbol{e v}\left\{B_{0}+x \frac{\partial B_{y}}{\partial x}\right\} & : m \\
\frac{d^{2} x}{d t^{2}}-\frac{v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=\frac{e v B_{0}}{m}+\frac{e v x \boldsymbol{g}}{m}
\end{array}
$$

independent variable: $t \rightarrow s$
$\frac{d x}{d t}=\frac{d x}{d s}$
$\overline{d t}=\frac{d x}{d t} \frac{d}{d t}$
$\frac{d^{2} x}{d t^{2}}=\frac{d}{d t}\left(\frac{d x}{d s} \frac{d s}{d t}\right)=\frac{d}{d s} \underbrace{\left(\frac{d x}{d s}\right.} \underbrace{\left.\frac{d s}{d t}\right)} \frac{d s}{d t}$
$\frac{d^{2} x}{d t^{2}}=x^{\prime \prime} v^{2}+\frac{d x}{d s} \frac{d y}{d s} v$

$$
\left.x^{\prime \prime} v^{2}-\frac{v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=\frac{e v B_{0}}{m}+\frac{e v x g}{m} \right\rvert\,: v^{2}
$$

$$
\begin{array}{r}
x^{\prime \prime}-\frac{1}{\rho}\left(1-\frac{x}{\rho}\right)=\frac{e B_{0}}{m v}+\frac{e x g}{m v} \\
x^{\prime \prime}-\frac{1}{\rho}+\frac{x}{\rho^{2}}=\frac{B_{0}}{p / e}+\frac{x g}{p / e} \\
x^{\prime \prime}-\frac{1}{\rho}+\frac{x}{\rho^{2}}=-\frac{1}{\rho}+\boldsymbol{k} x \\
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}-k\right)=0
\end{array}
$$

Equation for the vertical motion:

$$
\begin{array}{cc}
\frac{1}{\rho^{2}}=0 & \text { no dipoles ... in general } \ldots \\
\boldsymbol{k} \leftrightarrow-\boldsymbol{k} & \text { quadrupole field changes sign } \\
\boldsymbol{y}^{\prime \prime}+\boldsymbol{k} \boldsymbol{y}=0
\end{array}
$$

Remarks:

* $\quad x^{\prime \prime}+\left(\frac{1}{\rho^{2}}-k\right) \cdot x=0$

$$
k=0 \quad \Rightarrow \quad x^{\prime \prime}=-\frac{1}{\rho^{2}} x
$$

coseres
.. there seems to be a focusing even without a quadrupole gradient
„weak focusing of dipole magnets"
even without quadrupoles there is a retriving force (i.e. focusing) in the bending plane of the dipole magnets
... in large machines it is weak. (!)

Mass spectrometer: particles are separated
according to their energy and focused due to the $1 / \rho$ effect of the dipole

Hard Edge Model:

$$
\begin{aligned}
& x^{\prime \prime}+\left(\frac{1}{\rho^{2}}-k\right) \cdot x=0 \\
& x^{\prime \prime}(s)+\left\{\frac{1}{\rho^{2}(s)}-k(s)\right\} * x(s)=0
\end{aligned}
$$

this equation is not really correct !!!
bending and focusing forces - even inside a magnet depend on the position " s "

But still: Inside a magnet the focusing properties are constant!

[^0]
"effective magnetic length"

*** Multipoles

Taylor Expansion of the B field:
$\left.\boldsymbol{B}_{y}(\boldsymbol{x})=\boldsymbol{B}_{y 0}+\frac{\boldsymbol{d} \boldsymbol{B}_{y}}{\boldsymbol{d x}} x+\frac{1}{2!} \frac{d^{2} \boldsymbol{B}_{y}}{d x^{2}} \boldsymbol{x}^{2}+\frac{1}{3!} \frac{d^{3} \boldsymbol{B}_{y}}{\boldsymbol{d} x^{3}} \boldsymbol{x}^{3}+\ldots \quad \right\rvert\,: B_{y 0}$

divide by the main field

to get the relative error
contribution
\rightarrow definition of multipole coefficients.

Multipole contributions to the HERA s.c. dipole field

4.) Solution of Trajectory Equations

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz:
 $$
x(s)=a_{1} \cdot \cos (\omega s)+a_{2} \cdot \sin (\omega s)
$$

general solution: linear combination of two independent solutions
$x^{\prime}(s)=-a_{1} \omega \sin (\omega s)+a_{2} \omega \cos (\omega s)$
$x^{\prime \prime}(s)=-a_{1} \omega^{2} \cos (\omega s)-a_{2} \omega^{2} \sin (\omega s)=-\omega^{2} x(s) \quad \longrightarrow \quad \omega=\sqrt{K}$
general solution:

$$
x(s)=a_{1} \cos (\sqrt{K} s)+a_{2} \sin (\sqrt{K} s)
$$

determine a_{1}, a_{2} by boundary conditions:

$$
s=0 \quad \longrightarrow \quad\left\{\begin{array}{lll}
x(0)=x_{0} & , a_{1}=x_{0} \\
x^{\prime}(0)=x_{0}^{\prime} & , & a_{2}=\frac{x_{0}^{\prime}}{\sqrt{K}}
\end{array}\right.
$$

Hor. Focusing Quadrupole $K>0$

$$
\begin{aligned}
& x(s)=x_{0} \cdot \cos (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s) \\
& x^{\prime}(s)=-x_{0} \cdot \sqrt{|K|} \cdot \sin (\sqrt{|K|})+x_{0}^{\prime} \cdot \cos (\sqrt{|K|})
\end{aligned}
$$

For convenience expressed in matrix formalism:

$$
\begin{aligned}
& \binom{x}{x^{\prime}}_{s 1}=M_{f o c} *\binom{x}{x^{\prime}}_{s 0} \\
& \boldsymbol{M}_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|\boldsymbol{K}|}) & \frac{1}{\sqrt{|\boldsymbol{K}|}} \sin (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) \\
-\sqrt{|\boldsymbol{K}|} \sin (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) & \cos (\sqrt{|\boldsymbol{K}|} \mid)
\end{array}\right)
\end{aligned}
$$

hor. defocusing quadrupole:
$\boldsymbol{x}^{\prime \prime}-\boldsymbol{K} \boldsymbol{x}=0$

Remember from school:

$$
f(s)=\cosh (s) \quad, \quad f^{\prime}(s)=\sinh (s)
$$

Ansatz: $\quad x(s)=a_{1} \cdot \cosh (\omega s)+a_{2} \cdot \sinh (\omega s)$

$$
M_{\text {def } o c}=\left(\begin{array}{cc}
\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|} \\
\sqrt{|K|} \sinh \sqrt{|K|} l & \cosh \sqrt{|K|} l
\end{array}\right)
$$

drift space:

$$
M_{\text {drif } t}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

with the assumptions made, the motion in the horizontal and vertical planes are independent , ... the particle motion in $x \& y$ is uncoupled"

Thin Lens Approximation:
matrix of a quadrupole lens

$$
M=\left(\begin{array}{cc}
\cos \sqrt{|k|} l & \frac{1}{\sqrt{|k|}} \sin \sqrt{|k|} l \\
-\sqrt{|k|} \sin \sqrt{|k|} l & \cos \sqrt{|k|} l
\end{array}\right)
$$

in many practical cases we have the situation:
$f=\frac{1}{k l_{q}} \gg l_{q} \quad$... focal length of the lens is much bigger than the length of the magnet limes: $\boldsymbol{l}_{q} \rightarrow 0$ while keeping $\quad k l_{q}=$ const

$$
\boldsymbol{M}_{x}=\left(\begin{array}{cc}
1 & 0 \\
\frac{-1}{\boldsymbol{f}} & 1
\end{array}\right) \quad \boldsymbol{M}_{y}=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{\boldsymbol{f}} & 1
\end{array}\right)
$$

... useful for fast (and in large machines still quite accurate) „back on the envelope calculations" ... and for the guided studies !

Transformation through a system of lattice element.
combine the single element solutions by multiplication of the matrices

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator

Question: what will happen, if the particle performs a second turn?
... or a third one or ... 10^{10} turns

Résumé:

beam rigidity:	$B \cdot \rho=p / q$
bending strength of a dipole:	$\frac{1}{\rho}\left[m^{-1}\right]=\frac{0.2998 \cdot B_{0}(T)}{p(\mathrm{GeV} / \mathrm{c})}$
focusing strength of a quadrupole:	$k\left[\mathrm{~m}^{-2}\right]=\frac{0.2998 \cdot g}{p(\mathrm{GeV} / \mathrm{c})}$
focal length of a quadrupole:	$f=\frac{1}{k \cdot l_{q}}$
equation of motion:	$x^{\prime \prime}+K x=\frac{1}{\rho} \frac{\Delta p}{p}$
matrix of a foc. quadrupole:	$x_{s 2}=M \cdot x_{s 1}$

$$
M=\left(\begin{array}{cc}
\cos \sqrt{|K|} l & \left.\frac{1}{\sqrt{K \mid}} \sin \sqrt{|K|} \right\rvert\, \\
-\sqrt{|K|} \sin \sqrt{\mid K l} l & \cos \sqrt{|K|} l
\end{array}\right), \quad M=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right)
$$

6.) Bibliography:
1.) Edmund Wilson: Introd. to Particle Accelerators Oxford Press, 2001
2.) Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
3.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. school: $5^{\text {th }}$ general acc. phys. course CERN 94-01
4.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm.Acc.phys course http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm
5.) M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York, 1962
6.) The CERN Accelerator School (CAS) Proceedings
7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997
8.) Mathew Sands: The Physics of $e+e$ - Storage Rings, SLAC report 121, 1970
9.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990

Dipole Magnets:

homogeneous field created by two flat pole shoes

Field Calculation:

$3^{\text {rd }}$ Maxwell equation for a static field:

$$
\vec{\nabla} \times \vec{H}=\vec{j}
$$

according to Stokes theorem:
matter we get with $\mu_{r} \approx 1000$

$$
\oint \vec{H} d \vec{l}=H_{0} * h+\frac{H_{0}}{\not a_{r}} F_{e} \approx H_{0} * h
$$

Magnetic field of a dipole magnet:

$$
\boldsymbol{H}_{0}=\boldsymbol{B}_{0} / \mu_{0} \quad \longrightarrow \quad \boldsymbol{B}_{0}=\frac{\mu_{0} \boldsymbol{N} \boldsymbol{I}}{(\boldsymbol{h})}
$$

$h=$ gap height

Quadrupole Magnets:

Calculation of the Quadrupole Field:
$\oint H d s=N^{*} I$

$\left.\begin{array}{ll}\text { now we know that } & \boldsymbol{H}=\boldsymbol{B} / \mu_{0} \\ \text { and we require } & \boldsymbol{B}(r)=-g^{*} r\end{array}\right\} \longrightarrow \int_{0}^{1} H_{0} d s=\int_{0}^{a} \frac{B_{0}}{\mu_{0}} d r=\int_{0}^{a} \frac{g^{*} r}{\mu_{0}} d r=N^{*} \boldsymbol{I}$
$\begin{aligned} & \text { gradient of a } \\ & \text { quadrupole field: }\end{aligned} \quad g=\frac{2 \mu_{0} * N^{*} I}{r^{2}}$

[^0]: $\frac{1}{\rho}=$ const
 $k=$ const

