- JUAS 2012 -

GUIDED STUDY AND TUTORIAL ON RF LINEAR ACCELERATORS

A. Lombardi, JB. Lallement

Problem 1: Pillbox cavity

Suppose that you have to design a TM_{010} mode pillbox cavity (see Fig. 1) with a square-wave electric field distribution and you are free to choose the length. If the length is too short, the voltage gain across the cavity is small; if it is too long, the transit-time factor is small.
a. Plot the transit-time factor versus the ratio of length to $\beta \lambda$ (for $0<\beta \lambda<2$).
b. Find the ratio of the length to $\beta \lambda$ that maximizes the value of the energy gain for the cavity.
c. Calculate the transit-time factor at this length.
d. What should be the length of the cavity to maximize the energy gain per unit length? Is it a practical solution?

Problem 2: Drift-tube linac (DTL)

Suppose that we want to design a CW room-temperature drift-tube linac to accelerate a 100 mA proton beam from 3 to 20 MeV . Assume for the RF power we can purchase 350 MHz klystrons of 1 MW capacity each. Suppose we run the SUPERFISH electromagnetic field-solver code and obtain for all β values the following results: transit-time factor $T=0.8$, effective shunt impedance $Z T^{2}=50$ $M \Omega / m$ and the ratio of the peak surface electric field to the average axial electric field $E_{\delta} / E_{0}=6$. We restrict the peak surface electric field at a bravery factor $b=E_{S} / E_{K}=1.2$ (see the Kilpatrick limit criterion plot). For adequate longitudinal acceptance we choose the synchronous phase $\phi_{s}=-30^{\circ}$.
a. Calculate the average axial electric field E_{0}.
b. Calculate the length of the linac assuming it consists of a single tank.
c. Calculate the structure power P_{S} (power dissipated in the cavity), beam power P_{B} and the total RF power required.
d. Calculate the structure efficiency ε_{s} (ratio of beam power to total RF power).
e. How many klystrons do we need for our structure?

Problem 3: Longitudinal phase advance

For the DTL of Problem 2 calculate the zero current longitudinal phase advance per focusing period $\sigma_{0 l}$ in degrees at the injection energy for a FODO focusing lattice (period $P=2 \beta \lambda$) and assuming that β does not change through one period.

Problem 4: Quadrupole gradient

For stability reasons we would like to have the zero current transverse phase advance per focusing period $\sigma_{0 t}=70^{\circ}$. For the DTL of Problem 2 calculate the quadrupole gradient $G(\mathrm{~T} / \mathrm{m})$ necessary to provide such phase advance at the injection energy. All the quadrupoles in the tank have the same length $l_{q}=45 \mathrm{~mm}$.

Problem 5: Energy acceptance

For the DTL of Problem 2 derive and calculate the maximum energy acceptance $\Delta W_{\max }$ (see Fig.3) for the synchronous phase $\phi_{s}=-30^{\circ}$ at the injection energy from the equation of the separatrix in the longitudinal phase-space:

$$
\frac{\omega}{2 m_{0} c^{3} \beta_{s}^{3} \gamma_{s}^{3}} \Delta W^{2}+q E_{0} T\left[\sin \left(\phi_{s}+\Delta \phi\right)+\sin \phi_{s}-\left(2 \phi_{s}+\Delta \phi\right) \cos \phi_{s}\right]=0 .
$$

Problem 6: Longitudinal acceptance

Suppose that for the designed DTL the longitudinal acceptance is an upright ellipse in the longitudinal phase-space and can be expressed as $A=\Delta \phi \Delta W$. Suppose it is smaller than the emittance of the beam. Which parameter and how should be changed to increase the longitudinal acceptance of the accelerator?

TM_{010} mode in a pillbox cavity

Square-wave electric field distribution

Fig. 1 Pillbox cavity

Fig. 2 Kilpatrick limit for RF electric breakdown

Fig. 3 Separatrix in the longitudinal phase-space

Constants

$$
\begin{aligned}
& \text { Proton rest mass } E_{r}=m_{0} c^{2}=938.27 \mathrm{MeV} \\
& \qquad c=299792458 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Useful expressions

$$
\begin{gathered}
f_{R F}=\frac{\omega}{2 \pi} \text { (RF frequency) } \\
\gamma=1+\frac{W}{E_{r}}, \beta=\sqrt{1-\frac{1}{\gamma^{2}}} \text { (relativistic factors) }
\end{gathered}
$$

Transit-time factor approximation for a square-wave electric field distribution: $T=\frac{\sin (\pi g / \beta \lambda)}{(\pi g / \beta \lambda)}$
Energy gain in a cavity: $\Delta W=q E_{0} T L \cos \phi_{s}$ Effective shunt impedance: $Z T^{2}=\frac{\left(E_{0} T\right)^{2}}{P_{S} / L}$

Beam power $(C W)$: $P_{B}=I \Delta W / q$
Transverse phase advance per period (FODO lattice):

$$
\sigma_{0 t} \approx \sqrt{\left(\frac{q G l_{q} L}{m_{0} c \gamma \beta}\right)^{2}-\frac{\pi q E_{0} T \sin (-\phi)(2 L)^{2}}{m_{0} c^{2} \lambda(\beta \gamma)^{3}}}
$$

FODO period $P=2 L$

Longitudinal phase advance per unit length: $k_{0 l}=\sqrt{\frac{2 \pi q E_{0} T \sin \left(-\phi_{s}\right)}{m_{0} c^{2} \beta_{s}^{3} \gamma_{s}^{3} \lambda}}$

