- JUAS 2012 -

GUIDED STUDY AND TUTORIAL ON RF LINEAR ACCELERATORS

A. Lombardi, JB. Lallement

Problem 1: *Pillbox cavity*

Suppose that you have to design a TM_{010} mode pillbox cavity (see Fig. 1) with a square-wave electric field distribution and you are free to choose the length. If the length is too short, the voltage gain across the cavity is small; if it is too long, the transit-time factor is small.

- **a.** Plot the transit-time factor versus the ratio of length to $\beta\lambda$ (for $0 < \beta\lambda < 2$).
- **b.** Find the ratio of the length to $\beta\lambda$ that maximizes the value of the energy gain for the cavity.
- **c.** Calculate the transit-time factor at this length.
- **d.** What should be the length of the cavity to maximize the energy gain per unit length? Is it a practical solution?

Problem 2: *Drift-tube linac (DTL)*

Suppose that we want to design a CW room-temperature drift-tube linac to accelerate a 100 mA proton beam from 3 to 20 MeV. Assume for the RF power we can purchase 350 MHz klystrons of 1 MW capacity each. Suppose we run the SUPERFISH electromagnetic field-solver code and obtain for all β values the following results: transit-time factor T=0.8, effective shunt impedance $ZT^2=50$ $M\Omega/m$ and the ratio of the peak surface electric field to the average axial electric field $E_s/E_0=6$. We restrict the peak surface electric field at a bravery factor $b=E_s/E_K=1.2$ (see the Kilpatrick limit criterion plot). For adequate longitudinal acceptance we choose the synchronous phase $\phi_s=-30^\circ$.

- **a.** Calculate the average axial electric field E_0 .
- **b.** Calculate the length of the linac assuming it consists of a single tank.
- **c.** Calculate the structure power P_S (power dissipated in the cavity), beam power P_B and the total RF power required.
- **d.** Calculate the structure efficiency ε_s (ratio of beam power to total RF power).
- e. How many klystrons do we need for our structure?

Problem 3: Longitudinal phase advance

For the DTL of Problem 2 calculate the zero current longitudinal phase advance per focusing period σ_{0l} in degrees at the injection energy for a FODO focusing lattice (period $P = 2\beta\lambda$) and assuming that β does not change through one period.

Problem 4: Quadrupole gradient

For stability reasons we would like to have the zero current transverse phase advance per focusing period σ_{0t} =70°. For the DTL of Problem 2 calculate the quadrupole gradient G (T/m) necessary to provide such phase advance at the injection energy. All the quadrupoles in the tank have the same length l_a =45 mm.

Problem 5: *Energy acceptance*

For the DTL of Problem 2 derive and calculate the maximum energy acceptance $\Delta W_{\rm max}$ (see Fig.3) for the synchronous phase $\phi_s = -30^{\circ}$ at the injection energy from the equation of the separatrix in the longitudinal phase-space:

$$\frac{\omega}{2m_0c^3\beta_s^3\gamma_s^3}\Delta W^2 + qE_0T[\sin(\phi_s + \Delta\phi) + \sin\phi_s - (2\phi_s + \Delta\phi)\cos\phi_s] = 0.$$

Problem 6: Longitudinal acceptance

Suppose that for the designed DTL the longitudinal acceptance is an upright ellipse in the longitudinal phase-space and can be expressed as $A = \Delta\phi\Delta W$. Suppose it is smaller than the emittance of the beam. Which parameter and how should be changed to increase the longitudinal acceptance of the accelerator?

TM₀₁₀ mode in a pillbox cavity

Square-wave electric field distribution

Fig. 1 Pillbox cavity

Fig. 2 Kilpatrick limit for RF electric breakdown

Fig. 3 Separatrix in the longitudinal phase-space

Constants

Proton rest mass
$$E_r = m_0 c^2 = 938.27 \text{ MeV}$$

 $c = 299792458 \text{ m/s}$

Useful expressions

$$f_{RF} = \frac{\omega}{2\pi} \ (RF \ frequency)$$

$$\gamma = 1 + \frac{W}{E_r}, \ \beta = \sqrt{1 - \frac{1}{\gamma^2}} \ (relativistic \ factors)$$

Transit-time factor approximation for a square-wave electric field distribution: $T = \frac{\sin(\pi g / \beta \lambda)}{(\pi g / \beta \lambda)}$

Energy gain in a cavity: $\Delta W = qE_0TL\cos\phi_s$

Effective shunt impedance: $ZT^2 = \frac{(E_0T)^2}{P_S/L}$

Beam power (CW): $P_B = I\Delta W / q$

Transverse phase advance per period (FODO lattice):

Longitudinal phase advance per unit length: $k_{0l} = \sqrt{\frac{2\pi q E_0 T \sin(-\phi_s)}{m_0 c^2 \beta_s^3 \gamma_s^3 \lambda}}$