[R. Alemany]
 [CERN BE/OP]
 [Engineer In Charge of LHC]
 Lectures JUAS (19.01.2012)

The Large Hadron Collider

Basic layout of the machine

Beam parameters (nominal)

		Injection	Collision
Proton energy	GeV	450	7000
Particles/bunch		1.15×10^{11}	
Num. bunches		2808	
Longitudinal emittance (4б)	eVs	1.0	2.5
Transverse normalized emittance	$\mu \mathrm{mrad}$	3.5	3.75
Beam current $\quad \beta=10 \mathrm{~m}$	A	0.582	
Stored energy/beam $\quad \varepsilon=0.5 \mathrm{~nm} \mathrm{rad}$	MJ	23.3	362
$\beta=0.55 \mathrm{~m}$	Peak luminosity related data		
RMS bunch length $\quad \varepsilon=0.5 \mathrm{~nm}$ rad	cm	11.24	7.55
RMS beam size @IPI \& IP5 $\rightarrow \sigma_{x, y}=\sqrt{ } \varepsilon \beta$	$\mu \mathrm{m}$	375.2	16.7
RMS beam size @IP2 \& IP8 $\rightarrow \sigma x, y=\sqrt{ } \varepsilon \beta$	$\mu \mathrm{m}$	279.6	70.9
Geometric luminosity reduction factor (F)			0.836
Instantaneous lumi @IPI \& IP5 (IP2Pb-Pb, IP8)	$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$		$10^{34}\left(10^{27}, 10^{32}\right)$
Instantaneous lumi/bunch crossing @IPI \& IP5	$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$		3.56×10^{30}

Basic layout of the machine: the arc

LHC arc cells = FoDo lattice* with

$\sim 90^{\circ}$ phase advance per cell in the V \& H plane

Beam

The FoDo-Lattice * BH lectures (tomorrow)

MQ: main quadrupole
MQT: Trim quadrupole
MQS: Skew trim quadrupole
MO: Lattice octupole (Landau damping)
MSCB: Skew sextupole +
Orbit corrector (lattice chroma+orbit)
MCS: Spool piece sextupole
MCDO: Spool piece octupole +
Decapole
BPM: Beam position monitor

Superconducting magnets

- Superconducting cables of $\mathrm{Nb}-\mathrm{Ti}$

LHC $\sim 27 \mathrm{~km}$ circumf. with 20 km of superconducting magnets operating @8.3 T. An equivalent machine with normal conducting magnets would have a circumference of 100 km and would consume 1000 MW of power \rightarrow we would need a dedicated nuclear power station for such a machine. LHC consumes $\sim 10 \%$ nuclear power station
$6 \mu \mathrm{~m} \mathrm{Ni}-\mathrm{Ti}$ filament

- Superfluid helium

Basic layout of the machine: main cryodipoles (two dipoles in one)

- The geometry of the main dipoles (Total of 1232 cryodipoles)

VERTICAL PLANE

The theoretical shape of the beam ${ }_{\left(10^{15} \mathrm{H} / \mathrm{m}^{3}\right)}^{\text {Beam pipe }}$ channels is a straight line, while the natural shapevessel has $\sim 0.3 \mathrm{~mm}$ deflection between two supports at 5.4 m distance

LHC DIPOLE : STANDARD CROSS-SECTION
Heat exchanger

The active part of the cold mass is bent in the horizontal plane with an angle of 5.09 mrad with $\rho=2.8 \mathrm{~km}$. The shape of the two beam channels is identical.

Basic layout of the machine: main dipoles

- The magnetic field of the main dipoles:

the stability of the geometry of the superconducting coils is essential to the field homogeneity.
Mechanical stress during coil assembly, thermal stresses during cool-down and electromagnetic stresses during operation are the the sources of deformations of the coil geometry. Additional sources of field-shape errors are the dimensional tolerances of the magnet components and of the manufacturing and assembling tooling.
The relative variations of the integrated field and of the field shape imperfections must not exceed $\sim 10^{-4}$ and their reproducibility better than 10^{-4}. This is possible if the coil geometry is accurate, reproducible and symmetric and if the structural stability of the magnet assembly during powering is guarantee.

I.I. Basic layout of the machine: main quadrupoles

LHC quadrupole cross section

I.I. Basic layout of the machine: dipole corrector magnets

I.I. Bacir lavaut of tha morhina. 20.) Chromaticity: A Quadrupole Error for $\Delta p / p \neq 0$

I.I. Basic layout of the machine: quadrupole corrector magnets

I.I. Basic layout of the machine: Dispersion suppression

The dispersion suppression is located at the transition between the arc and the straight section. The schema above applies to all DS except the ones in IR3 and IR7.
Functions:
I. Adapts the LHC reference orbit to the LEP tunnel geometry
2. Cancels the horizontal dispersion generated on one side by the arc dipoles and on the other by the separation/recombination dipoles and the crossing angle bumps
3. Helps in matching the insertion optics to the periodic solution of the arc

It is like an arc cell but with one missing dipole because of lack of space. If only dipoles are used they cannot fully cancel the dispersion, just by a factor 2.5. Therefore individual powered quadrupoles are required (Q8-Q I I with I ~ 6000 A).

I.I. Basic layout of the machine: Dispersion suppression

- Quadrupole types: MQ, MQM, MQTL

III.III. The experiments: High luminosity insertions

III.III. The experiments: High luminosity insertions
 ATLAS

CMS

III.III. The experiments: Low luminosity insertions

LHCINJ.B1

ALICE

LHCb

LHCb experiment

Center of the exp cavern

(c) Bam 1. collision optics

III.III. The experiments: Low luminosity insertions

III.IV. Squeeze

Squeeze the beam size down as much as possible at the collision point to increase the chances of a collision

Relative beam sizes around IP1 (Atlas) in collision

- So even though we squeeze our 100,000 million protons per bunch down to 16 microns ($1 / 5$ the width of a human hair) at the interaction point. We get only around 20 collisions per crossing with nominal beam currents.
- The bunches cross (every 25 ns) so often we end up with around 600 million collisions per second - at the start of a fill with nominal current.
- Most protons miss each other and carry on around the ring. The beams are kept circulating for hours $\rightarrow 10$ hours

III.IV. Squeeze

$\beta_{c}(m), \beta_{\text {I }}(m)$

Beta function at top energy and after squeeze

III.IV. Squeeze

First turn trajectory (Beam I)

YASP DV LHCRING / INJ-TEST-NB / beam 1

FT - P 450.12 GeV/c - Fill \# 827 INJDUMP - 10/09/08 10-41-34

Beam threading (MCBM)

Threading by sector:

- One beam at the time
- Beam through 1 sector ($1 / 8$ ring), correct trajectory, open collimator and move on.

Beam 2 threading

YASP DV LHCRING / INJ-TEST-NB / beam 2

FT - P $450.12 \mathrm{GeV} / \mathrm{C}$ - Fill \# 830 INJPROT - 10/09/08 15-01-58

Monitor H
FT - P $450.12 \mathrm{GeV} / \mathrm{c}$ - Fill \# 830 INJPROT - 10/09/08 15-01-58

Beam threading (MCBM)

YASP DV LHCRING / NOM_1.2TeV / beam 2

CO - P 450.12 GeV/c - Fill \# 920 INJPROB - 15/12/09 10-48-46

Monitor H
CO - P $450.12 \mathrm{GeV} / \mathrm{c}$ - Fill \# 920 INJPROB - 15/12/09 10-48-46

Beam I on TDI screen $-\left.\right|^{\text {st }}$ and $2^{\text {nd }}$ turns

First turn trajectory (cont.)

Aperture scan

III.II Momentum and betatron cleaning insertions (IR3, IR7)

TCLI /TDI

TCS.TCDQ
Settings @7TeV and $\beta^{\star}=0.55 \mathrm{~m}$
S. Redaelli, OP WG on Checkout, 08-11-2007

Dispersion measurement (Beam 2 - first turn)

horizontal dispersion beam 2, 1st turn

Longitudinal Bunch Profile (Beam 2)

~ 200 turns

C1 $200 \mathrm{mV} / \mathrm{div}$	$50 \Omega \mathrm{~B}_{\mathrm{w}: 2.5 \mathrm{G}}$	A C1 $\int 172 \mathrm{mV}$	3.2 ms $2.5 \mathrm{GS} / \mathrm{s}$ Run Sample		400ps/pt		
			24 acqs		RL:	80	.0M
			Man	September			:46:01

Beta measurement (Beam 2)

Beta measurement (Beam 2) (cont.)

a quadrupol error leads to a shift of the tune:

$$
\Delta Q=\int_{s 0}^{s 0+l} \frac{\Delta k \beta(s)}{4 \pi} d s \approx \frac{\Delta k l_{\text {quad }} \bar{\beta}}{4 \pi}
$$

Example: measurement of β in a storage ring: tune spectrum

Reminder from BH lectures

Integer tunes (Beam 2)

YASP DV LHCRING / INJ-TEST-NB_V1@O_[START] / beam 2

Non-integer tunes (Beam 2)

Qx $=.279$
 Qy $=.310$

Beam 2 fast BCT (Beam Current Transformer)

Beam 2 captured - mountain range display

Emittance measurement (Wire scanner)

II. II. Injection mechanism: injection into LHC

How the injection affects the beam parameters

- SPS to LHC transfer line TI 8 - beta functions

Twis parameters at start and end of the transfer line are fixed

II. II. Injection mechanism:

How the injection affects the beam parameters

Filamentation

Injection errors (position or angle) dilute the beam emittance

Non-linear effects (e.g. magnetic field multipoles) introduce distort the harmonic oscillation and lead to ampl dependent effects into parti

Over many tu oscillation is t increase.
 pert

