RADIOISOTOPES in **MEDICINE**:

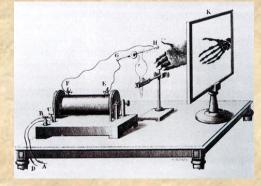
Requirements - Production - Application and Perspectives

History

Gerd-Jürgen BEYER

Prof.Dr.rer.nat.habil. Cyclotron Unit, University Hospital of Geneva, Switzerland GSG-Int. GmbH, Switzerland gerd.beyer@cern.ch gerd.beyer@gsg-int.com

Lecture JUAS Joint University Accelerator School Archamps (France) March 08, 2012


NUCLEAR MEDICINE – HOW IT BEGAN

- 1789 Klaproth
- 1895 Conrad Roentgen
- 1896 Henry Becquerel
- 1898 M.&P.Curie
- 1923 G.Hevesy
- 1932 Lawrence
- 1934 I.&F.Juliot-Curie
- 1938 Hahn / Strassmann

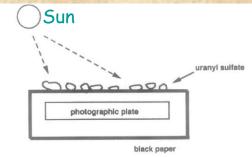
Uran X-Ray Radioactivity Po und Ra **Tracer Principle** Cyclotron Artif.Radiactivity **U-Fission**

W.C. Roentgen discovers X-rays

Nov.8, 1895

W.C.Roentgens experiment in Würzburg

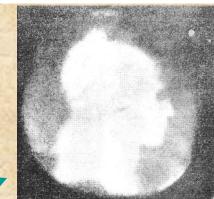
An early XXth century X-ray tube Radiograph of Mrs.Roentgens hand, the first x-ray image ever taken, 22.Dec.1895, published in The New York Times January 16, 1896


The Académie of Sciences in Paris Monday Meetings in early 1896:

Monday, January 20: Poincaré's Hypothesis:

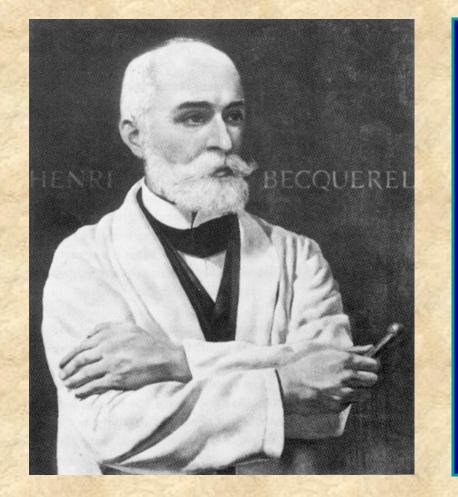
"... Since Roentgen rays seem to emerge from the fluorescence of the wall of the Crookes tube, other fluorescent substances may emit both visible and invisible X-rays."

Monday, February 24: First Becquerel Note:


first experiments to verify Poincare's hypothesis: "On radiation emitted by phosphorescence", Comptes Rendus 122 (1896) 420

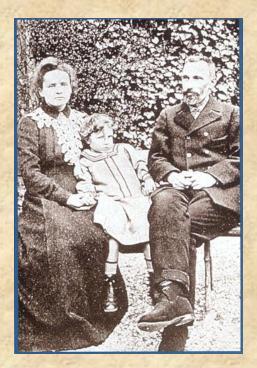
Monday, March 2: second Becquerel Note: "On the invisible radiation emitted by phosphorescent substances",

Comptes Rendus 122 (1896) 501


"I had prepared some plates on Wednesday, February 26 and some more on Thursday February 27. Because the sun appeared only intermittently on those days, I had saved the experiments, completely assembled,

and returened the plateholders to the darkness of a drawer, leaving the uranium crystals in place. Sinse the sun did not reappear during the following days, I did develop the plates on March 1, expecting to find very week images. On the contrary, the silhouettes appeared with great intensity..."

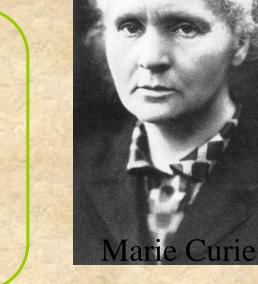
1896


RADIOACTIVITY

First image of potassium uranyldisulfate on **24 February 1896** was the discovery of natural radioactivity

Repair hois - Going De Course Durang & d. D. Polinis Repair hois - Course De Course Inine -Expension Alle & 27. of and home hitten to be -Diveloper to Taman.

Antoine Henry Becquerel


Marie and Pierre Curie with their daughter Irene

RADIOACTIVITY

Marie Curie Pierre Curie (1867 – 1934) (1859 – 1906)

Polonium
Radium
Nobel Prize
together with Pierre
and H.Bequerel
Nobel Prize

alone

1897 Becquerels friend, Pierre Curie, also Prof. of physics in Paris suggested to his young wife, Marie, that she study the phenomena discovered by H.Becquerel for her thesis. She found soon that some components of Uranium minerals were much more radioactive than Uranium itself. "We shall call the mysterious rays 'radioactivity'," she told to her husband Pierre, and the substances that produce the rays "radioelements".

1898 Pierre started to join Marie in the study of the mysterious rays. In **July** that year they reported the discovery of **Polonium** (²¹⁰Po) and in **December** they announced the discovery of the **Radium** (²²⁶Ra)

THE TRACER PRINCIPLE 1923

G.V.Hevesy: The Absorption and Translocation of Lead (ThB) by Plants [ThB = 212 Pb] Biochem.J. **17**, 439 (1923)

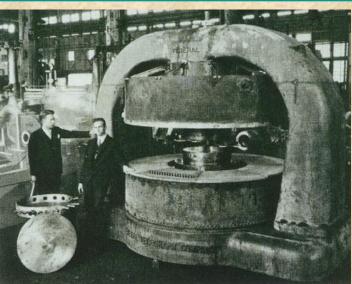
Measurements of the tracer's Radioactivity provided thousand fold increases in sensitivity and accuracy over existing chemical assays. The foundation and basic rationale of much of Hevesy visualized that a radioactive atom might be used as a "representative" tracer of stable atoms of the same element whenever and wherever it accompanied them in biological systems.

1943 Nobel Prize Chemistry

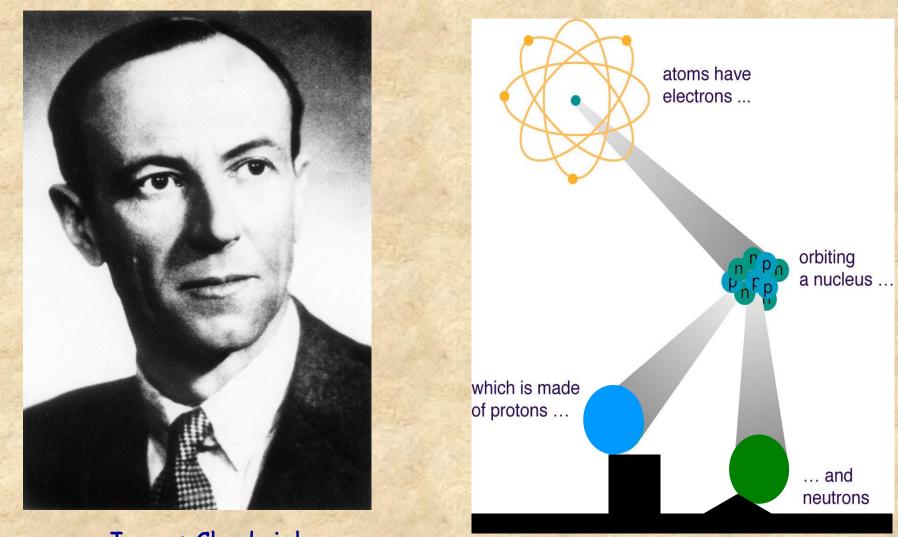
G.V.HEVESY

the father of Nuclear Medicine

INVENTION of the CYCLOTRON



Ernest O Lawrence and his First cyclotron 1932


1932

E.O.Lawrence and M.S. Livingston "The production of high speed Light ions without the use of High voltages", A milestone in the production of usable quantities of radionuclides.

E.O Lawrence and M.S.Livingston with the 27-inch cyclotron at Berkeley 1933, the first cyclotron that produced radioisotopes

Discovery of the neutron 1932

James Chadwick (1891 - 1974)

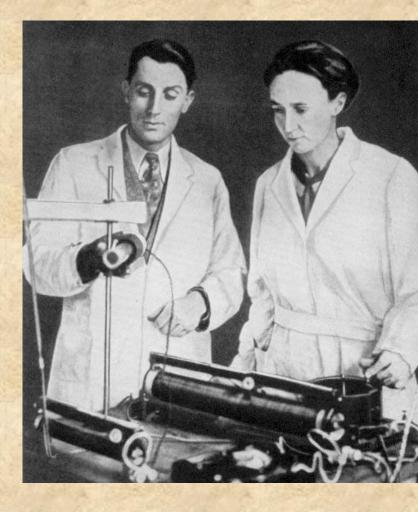
1932 Discovery of the Positron

Slown-down

particle

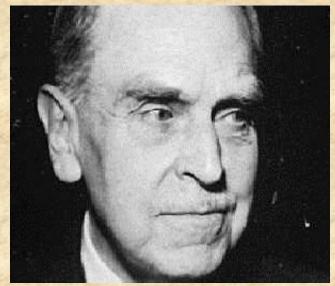
C. D. Anderson

Layer of lead Inserted in a cloud chamber


Fast positive particle coming from below

1934 Artificial RADIOACTIVITY Irene and Frédéric Joliot-Curie

1934 Nature, February 101935 Nobel Prize


"Our latest experiments have shown a very striking fact: when aluminum foil is irradiated on a polonium preparation, the emission of positrons does not cease immediately when the active preparation is removed. The foil remains radioactive and the emission of radiation decays exponentially as for an ordinary radioelement. We observed the same phenomena with boron and magnesium."

 $^{27}Al(\alpha,n) \,^{30}P$ and $\,^{10}B(\alpha,n) \,^{13}N$

The discovery of artificial radioactivity in combination with the cyclotron opened the door to the production of a variety of useful radio-indicators. Practically any element could be bombarded in the cyclotron to generate radioactive isotopes.

Nature 136, 754 O.Chievitz and G.V.Hevesy 1935 Radioactive indicators in the study of phosphorus metabolism in rats (³²P) Radiology 28, 178 J.G.Hamilton, R.S.Stone: 1937 The administration of radio-sodium (²⁴Na) Proc.Soc.Exp.Biol.Med. 38, 510 S.Hertz, A.Roberts, R.D.Evans 1938 Radioactive iodine (1281) – Study of thyroid physiology Proc.Soc.Exp.Biol.Med. 40, 694, J.H.Lawrence, K.G.Scott: 1939 Metabolism of phosphorus (³²P) in normal and lymphomatous animals Am.J.Physiol. 131, 135 J.G.Hamilton, M.H.Soley: 1940 Studies of iodine metabolism by thyroid in situ J.Biol.Chem. 134, 543 J.F.Volker, H.C.Hodge, H.J.Wilson 1940 The adsorption of fluoride (18F) by enamel, dentine, bone and hydroxyapatite Am.J.Physiol. 145, 253 C.A.Tobias, J.H.Lawrence, F.Roughton 1945 The elimination of 11-C-Carbon monoxide from the human body

Otto Hahn, 1944 Nobel Prize

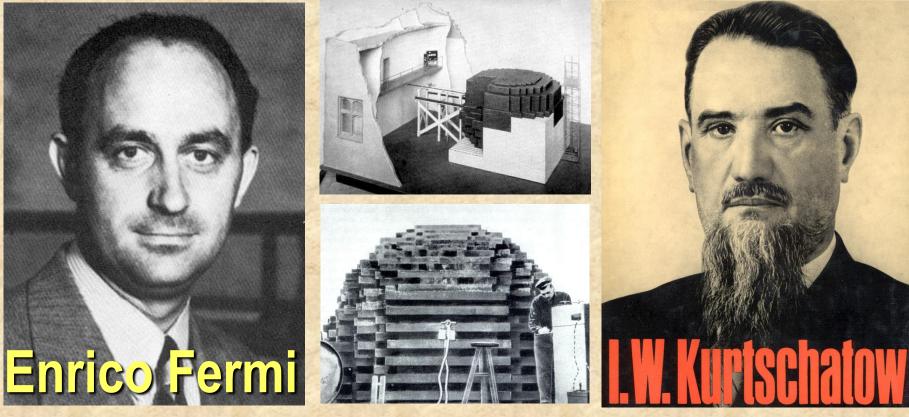
Als Chemiker müßten wir ... statt Ra, Ac und Th die Symbole Ba, La und Ce einsetzen. Als der Physik in gewisser Weise nahestehende Kernchemiker können wir uns zu diesem, allen bisherigen Erfahrungen der Kernphysik widersprechenden Sprung noch nicht entschließen. Es könnten doch vielleicht eine Reihe seltsamer Zufälle unsere Ergebnisse vorgetäuscht haben.

Niels Bor (Jan.1939) Mein Gott, wie haben wir das nur so lange übersehen können

FISSION of Uranium 1938, 17. Dec. Naturwissenschaften <u>1</u>, (1939) 1

O.Hahn und F.Straßmann Über den Nachweis und das Verhalten der bei

der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle


Lise Meitner and O.R Frisch described the Explanation and defined the terminus "FISSION"

FISSION of Uranium

 $^{235}U + n = [^{236}U] \longrightarrow ^{140}Ba + ^{94}Kr + 2n + \gamma + Energy$

1942 Dec.2, first graphite miler in Chicago

1946 Dec.25, first graphite miler in Moscow Note: first A-Bomb 1945/1949, first atomic E-power station 1954

10 MW swimming pool reactor, Geesthacht (D)

Foto: G.Beyer, 1973

CONSTANTS and DIMENSIONS (1)

Radioactivity	1 B	q = 1 dec	cay / sec	
old dimension	1 Ci	= 3.7 10	¹⁰ Bq	
$1 \text{ kBq} = 10^3 \text{ Bq} =$	27 nCi	1 nCi =	37 Bq =	1 ng ²²⁶ Ra
$1 \text{ MBQ} = 10^6 \text{ Bq} =$	27 µCi	1 µCi =	37 kBq =	1 µg 226Ra
$1 \text{ GBq} = 10^9 \text{ Bq} =$	27 mCi	1 mCi =	37 MBq =	1 mg ²²⁶ Ra
$1 \text{ TBq} = 10^{12} \text{Bq} =$	27 Ci	1 Ci =	37 GBq =	1 g ²²⁶ Ra
Atom	d	~ 10 ⁻¹⁰	m	
Nucleus	d	~ 10-14	m	and the second
e-charge	е	= 1.6021	10 ⁻¹⁹ C	
Cross section	1 b	arn (b) = 1	10 ⁻²⁸ m ²	a state of

CONSTANTS and DIMENSIONS (2)

Specific Radioactivity =

Radioactivity / mass unit [Bk / kg] or [Bq / Mol]

Radioactivity Concentration = Radioactivity / volume unit

[Bk / cm³]

CONSTANTS and DIMENSIONS (3)

DOSE = delivered lon charges per mass unit symbol: J or X 1 C / kg = 1 A s / kg old: 1 R (Röntgen) = $0.258 * 10^{-3} C/ kg$ Energy Dose (equivalent dose) symbol: D $= 1 J/kg = 1 m^2 s^{-2}$ 1 Gy (Grey) ~ 0.01 Gy old: 1 Rad or Rem **Biological Dose (energy dose)** 1 Sv (Sievert) 0.01 R ~ **Dose Rate** Dose per time unit 1 mSv/h 100 mR / h

Radioactivity:

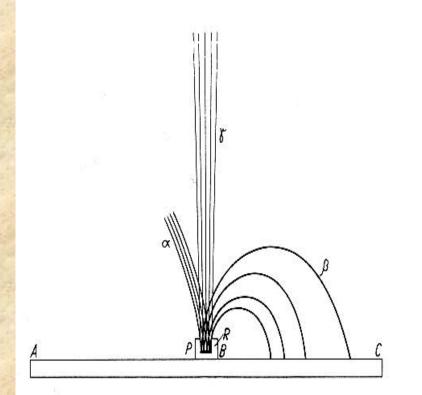
Decay Law

	(radio)activity	=	desintegrations per s
$A = \left(\frac{dN}{dt}\right)$	1 Bq	=	1 desintergration/sec

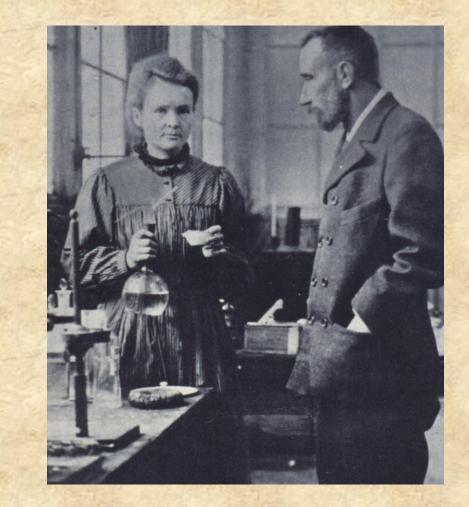
 $A_{o} = \lambda N_{o}$ $N_{t} = N_{o} \cdot e^{-\lambda t}$ $A_{t} = A_{o} \cdot e^{-\lambda t}$ $\lambda = \ln 2 / t_{\frac{1}{2}}$

 $\begin{array}{ll} N_o & \text{number of atoms at } t = 0 \\ N_t & \text{number of atoms at } t \\ t_{\frac{1}{2}} & \text{decay half time} \\ A_o & \text{radioactivity in [Bq] at } t = 0 \\ A_t & \text{radioactivity in [Bq] at } t \\ \lambda & \text{decay constant} \end{array}$

Mother – Daughter Ratio

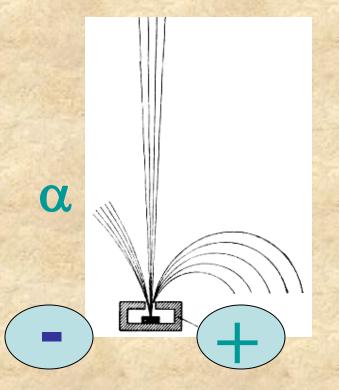

 99m Tc (6 h) ⁹⁹Mo (66 h) $\mathbf{N_1} \qquad \stackrel{\lambda_1 = 2.9 \ 10^{-6} \ \mathrm{s}^{-1}}{\longrightarrow} \mathbf{N_2} \qquad \stackrel{\lambda_2 = 3.2 \ 10^{-5} \ \mathrm{s}^{-1}}{\longrightarrow} \mathbf{N_{stab}}$ $\text{if } \underset{t_1}{\lambda_1} \underset{>>}{<} \underset{t_2}{\lambda_2} \quad \text{than} \\$ A1 = A2if $\lambda_1 < \lambda_2$ than $A_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} \cdot A_1$

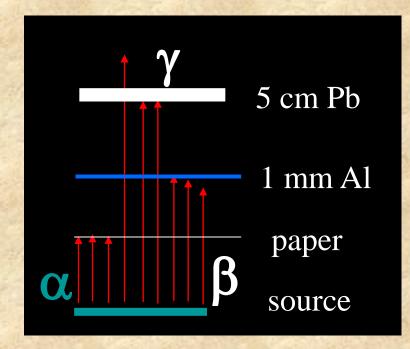
NOTE:


In radioactive equilibrium: ^{99m}Tc is 10 % higher than ⁹⁹Mo! But the ⁹⁹Mo decay goes only with 93 % into the ^{99m}Tc

RADIOACTIVITY

Marie Curie Pierre Curie (1867 – 1934) (1859 – 1906)




Hundred years ago

RADIOACTIVITY

The radiation characteristics of an isotope determines where and how it can be used in medicine

DECAY MODES

	Energy	Rai	nge	e in wa	ter /	Pb
ß-, ß+ -	~ 0.2 – 4 MeV		~	1 cm		
EC, X-ray f(Z)	Fe: 7 keV	d _{1/2}	~	1 mm		A 1/2
	Ra: 100 keV	d _{1/2}	~	4 cm		
α	4 - 8 MeV	28	-	80 µm	a state	
γ	50 keV	d _{1/2}	~	3 cm	0.0	1 mm
	140 keV	d _{1/2}	~	5 cm	0.4	mm
	1 000 keV	d _{1/2}	~	10 cm	1	cm
	2 000 keV	d _{1/2}	~	15 cm	1.5	cm
conversion electrons	Eγ - Ee	~	mn	n range	Aut In	
Auger electrons		~	μm	range		
П	like y	Sec. 5		ALC: N		The Real
exotic decay modes, s	spontaneous fission					

1946, June 14 Nuclear Medicine's modern era began

Availability of Radioactive Isotopes,

Announcement from Headquarters, Manhatten Project, Washington D.C.:

Production of tracer and therapeutic radioisotopes has been heralded as one of the greatest peacetime contributions of the uranium chain-pile. This use of the uranium pile will unquestionably be rich in scientific, medical, and technological application.

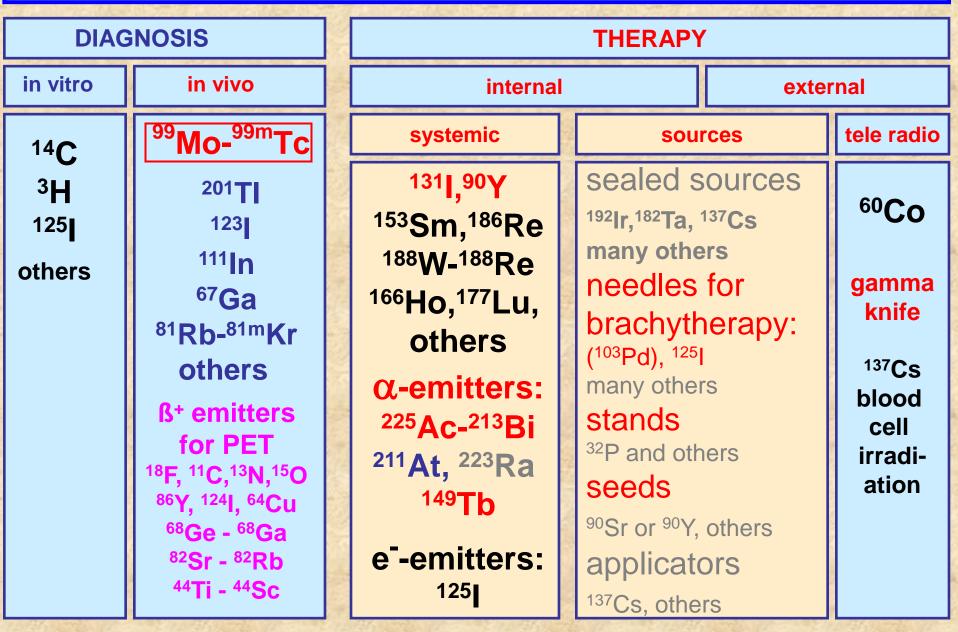
> On 1.Aug.1946 the Atomic Energy Act passed the congress, releasing radioisotopes from military control.

RADIOISOTOPES in **MEDICINE**:

Requirements - Production - Application and Perspectives

Imaging with Radiotracers

Gerd-Jürgen BEYER


Prof.Dr.rer.nat.habil. Cyclotron Unit, University Hospital of Geneva, Switzerland GSG-Int. GmbH, Switzerland gerd.beyer@cern.ch gerd.beyer@gsg-int.com

Lecture JUAS Joint University Accelerator School Archamps (France) March 08, 2012

ISOTOPES IN MEDICINE

G.J.BEYER, Geneva, 2011

THE TRACER PRINCIPLE 1923

G.V.Hevesy: The Absorption and Translocation of Lead (ThB) by Plants [ThB = 212 Pb] Biochem.J. **17**, 439 (1923)

Measurements of the tracer's Radioactivity provided thousand fold increases in sensitivity and accuracy over existing chemical assays. The foundation and basic rationale of much of Hevesy visualized that a radioactive atom might be used as a "representative" tracer of stable atoms of the same element whenever and wherever it accompanied them in biological systems.

1943 Nobel Prize Chemistry

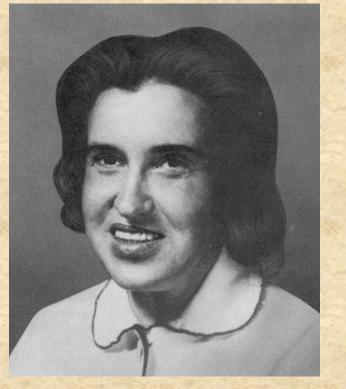
G.V.HEVESY

the father of Nuclear Medicine

NUCLEAR MEDICINE = in vivo APPLICATION of RADIOTRACERS

- 1923 First tracer study with ²¹⁰Pb/²¹⁰Bi G.Hevesy
- 1925 ²¹⁴Bi arm-to-arm circulation time, H.Blumgart
- 1935 ³²P renewal of mineral constituents of bone, O.Chieivitz & G.Hevesy
- 1937 dynamics of sodium transport in vivo, J.G.Hamilton
- 1937¹²⁸I, thyroid physiology, R.Hertzs, A.Roberts, R.Evans
- 1938 ¹³¹I discovered by G.T.Seeborg, 1939 first diagnostic use J.G.Hamilton et al.
- 1947 ¹³¹I Fluorescine, 1950 ¹³¹I HSA, 1955 ¹³¹I-rose bengale & hippurane, ...
- 1957 ⁹⁹Mo-^{99m}Tc generator (1960 first sale), ¹³³Xe for lung ventilation
- 1969 ⁶⁷Ga accumulation in cancer, C.L.Edwards
- 1970 Instant KIT's for ^{99m}Tc
- 1973 ²⁰¹Tl, ¹²³I, ¹¹¹In, many other isotopes and tracer compounds 1978 first ¹⁸FDG PET scan

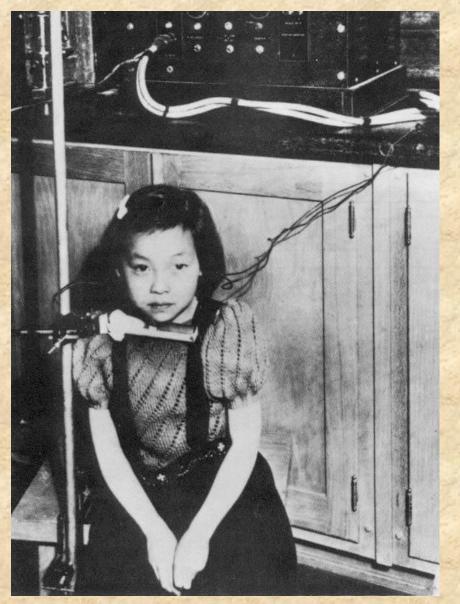
> 30 million individuals receive every year a radiotracer for diagnosis


ISOTOPES in **MEDICINE**


Application Requirement Isotope

DIAGNOSIS in vitro	T _{1/2} = long biogenic behavior	³ H, ¹⁴ C ¹²⁵ I
DIAGNOSIS In vivo SPECT	single photons no particles biogenic behavior $T_{\frac{1}{2}}$ = moderate	99m Tc, ¹²³ I, ¹¹¹ In, ²⁰¹ TI,
DIAGNOSIS in vivo PET		¹¹ C, ¹³ N, ¹⁵ O, ¹⁸ F

Diagnostic in vitro


Rosalyn S.YALOW S.A.BERSON Nobel Prize 1977 Introduced the radioimmunoassay (RIA) assay for insulin based on the principle of competitive binding by antibody of natural and radioactive labeled hormone)

ISOTOPES in **MEDICINE**

Application Requirement Isotope

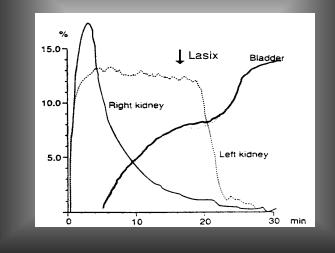
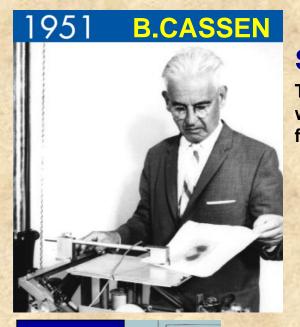
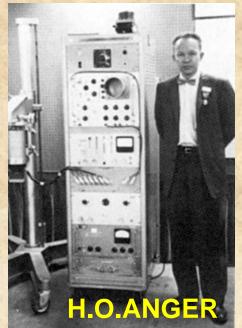

DIAGNOSIS In vitro	$T_{\frac{1}{2}} = long$ biogenic behavior	³ H, ¹⁴ C ¹²⁵ J
DIAGNOSIS	single photons	^{99m} Tc,
In vivo	no particles	¹²³ I, ¹¹¹ In,
SPECT	biogenic behavior	A CAMPANE AND A PARAMETERS AND A CAMPA
	$T_{\frac{1}{2}}$ = moderate	²⁰¹ TI,
DIAGNOSIS	ß+-decay mode	¹¹ C,
in vivo	biogenic elements	¹³ N, ¹⁵ O,
PET	$T_{1/2}$ = short	¹⁸ F

Photo published 1942



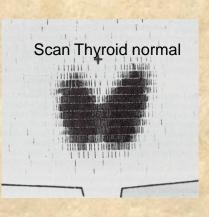
J.G.Hamilton, M.H.Soley: "Studies of iodine metabolism by thyroid in situ" 1940, Am.J.Physiol. <u>131</u>, 135

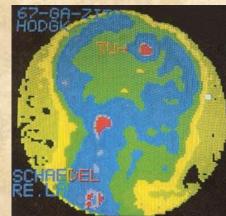
Kidney Isotope Nephrogram

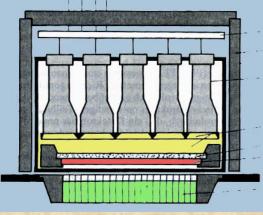

How it began – the detection systems 1958

1951: SCANNER

The scanner was designed for 131-I 1958: GAMMA CAMERA The camera is "taylor-made" for 99m-Tc


The basic concept of the gamma camera remained without major changes and represents today the basic principles for all SPECT instrumentation.



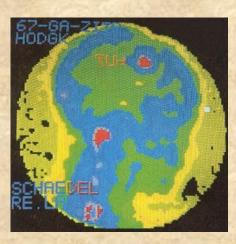


1951

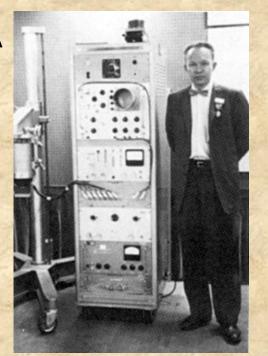
ifier ube ding ctor ator ject

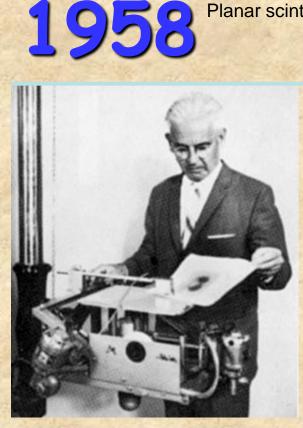
GAMMA CAMERA

electronics Pb shielding **PM tubes**


light gide window

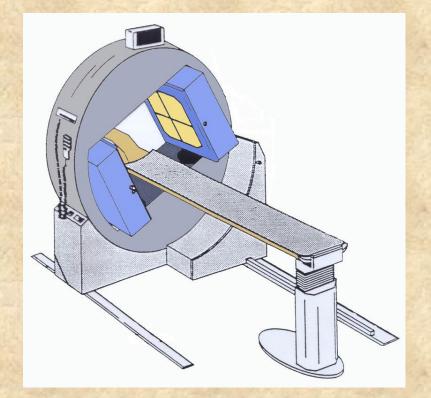
collimator

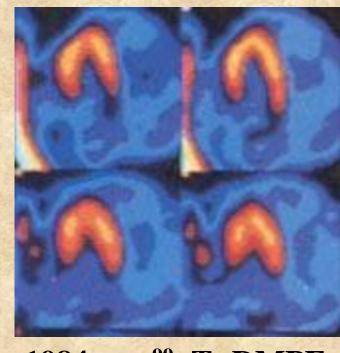

NaI-Detector


Planar scintigram

H.O.ANGER

Scan Thyroid normal


B.CASSEN SCANNER

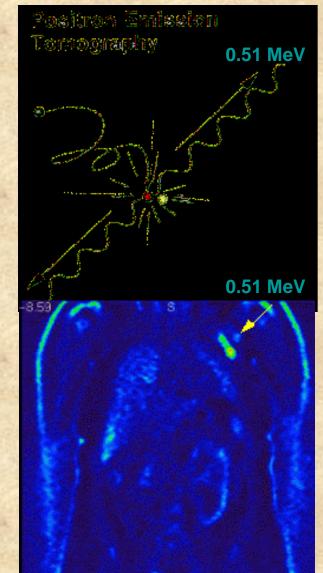

Pre-amplifier PM-tube **Pb-shielding Nal-Detector** Collimator Object

Single Photon Emission Computed Tomography

1984 99mTc DMPE

Nuclear Medicine Instrumentation

	DETECTOR's are	
Point sensitive	Place sensitive	combined
stationary moving	stationary moving	
Point collimator	multi-hole collimatuers	with / without septa
single detector	Nal + many PM's	Multi-ring systems
GM / Nal -PM Nal-PM	single head 1-3 heads	Block detectors BGO
Probe Scanner	γ-Camera SPECT	PET
	6 ⁷ GaCIT ⁹⁹ mTc DMPE	
1 D 2 D	2 D 3 D	2 D and 3 D
dynamic static	dynamic dynamic	dyn.& quantitative



Modern SPET Cameras (GE Medical Systems)

PET = Positron Emission Tomography

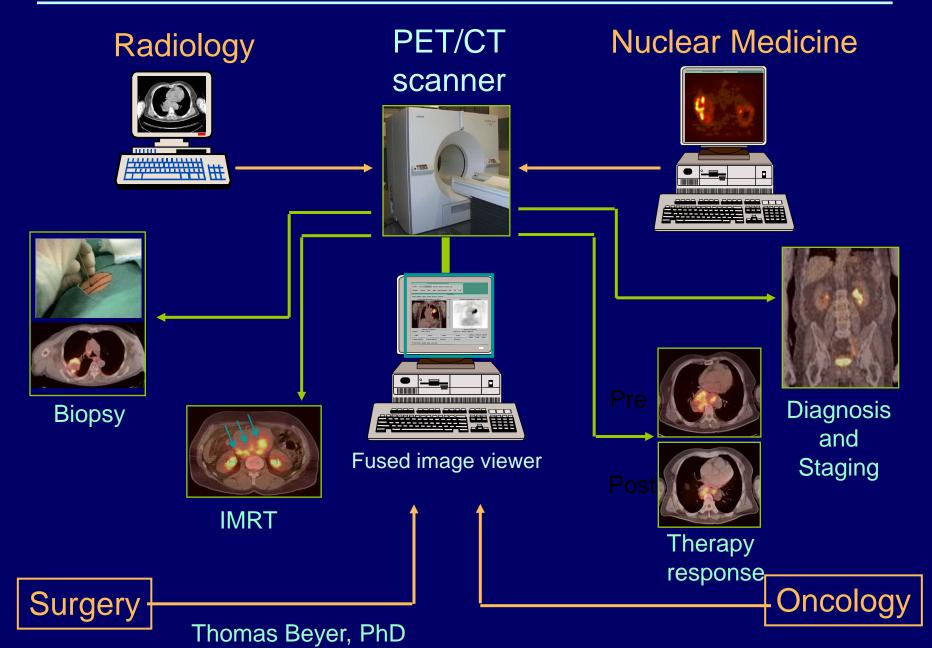
10.31

ECAT HR+

ECAT ACCEL

SIEMENS

25 year-old male with Melanoma, 50 year-old male with colon CA 71 kg, 178 cm, 625 MBq FDG, 45 min p.i. 91 kg, 183 cm, 720 MBq FDG, 162 min p.i.


year 2000

Emission scan time: 54 min Transmission scan time: 18 min

Data courtesy of Kettering Memorial Hospital, Kettering, USA Emission scan time: 27 min Transmission scan time: 18 min Data courtesy of NC PET Imaging Center, Sacramento, USA

Fused Image Tomography

PET/CT concepts 1998-2000

¹⁸FDG-PET/CT of a patient w/ ENT

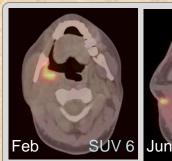
TIME, 04-Dec-2000

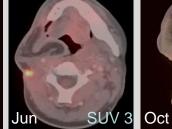
PET/CT today

Discovery ST, STE, RX

Gemini GXL, TF

Biograph HiRez, TruV

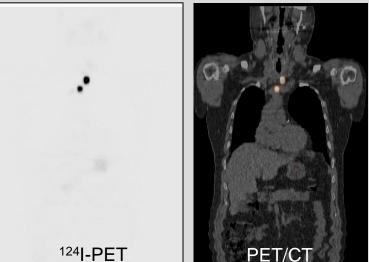

CI



Trend: New PET components in combination w/ high-performance CT

PET/CT 2009: routine application

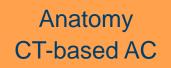
Oncology



35 y/o M w/ malignancy in mandibula

Feb: ¹⁸FDG-PET/CT identified disease Mar: right mandibulectomy and maxillectomy Jun: PET/CT identified recurrent disease Jun: Extensive surgery Oct: PET/CT showed recurrent disease UPMC, Pittsburgh

Anatomy **CT-based AC**


Oncology - Specific tracer

45 y/o M w/ papillary thryorid CA (pT4) ¹²⁴I-PET/CT

 \rightarrow mediastinal LN metastasis w/o CT correlate

UH Essen-Duisburg

Structure without function is a corpse, ... function without structure is a ghost.

Stephen Wainwright, Duke Dept Biology

RADIOISOTOPES in **MEDICINE**:

Requirements - Production - Application and Perspectives

Medical Isotope Production

Gerd-Jürgen BEYER

Prof.Dr.rer.nat.habil. Cyclotron Unit, University Hospital of Geneva, Switzerland GSG-Int. GmbH, Switzerland gerd.beyer@cern.ch gerd.beyer@gsg-int.com

Lecture JUAS Joint University Accelerator School Archamps (France) March 08, 2012

NUCLEAR MEDICINE 2009

DIAGNOSIS

THERAPY (RIT)

SPECT (SINGLE PHOTON EMISSION TOMOGRAPHY)

- \rightarrow ^{99m}Tc still working horse
- → Increase of diagnostic value
- \rightarrow New radiopharmaceuticals
- → New instrumentation & quantification

PET became a clinical tool

- [1%F] FDG is the working horse
 ONCOLOGY (80 %)
- → Neurology
- → Cardiology

PET is a powerfull R&D too

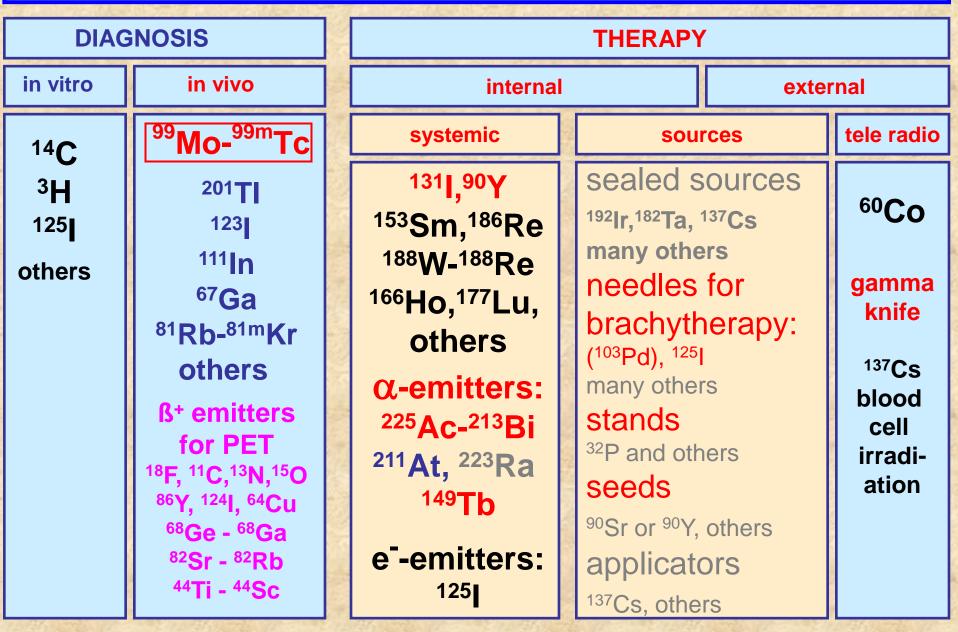
- → clinical research
- → Drug development
- → invivo biochemistry

Multi-Modality Imaging

- → SPECT PET
- \rightarrow PET CT, SPECT CT
- → PET MRI
- → Animal PET-CT, SPECT-CT, PET-MRI

New Approaches in Radionuclide Therapy

- → free chelates (EDTMP, others)
- → bio-selective antibody conjugates (mab)
- → bio-specidfic peptide conjugates
- → Lyposomes
- → Nanoparticles
- → others

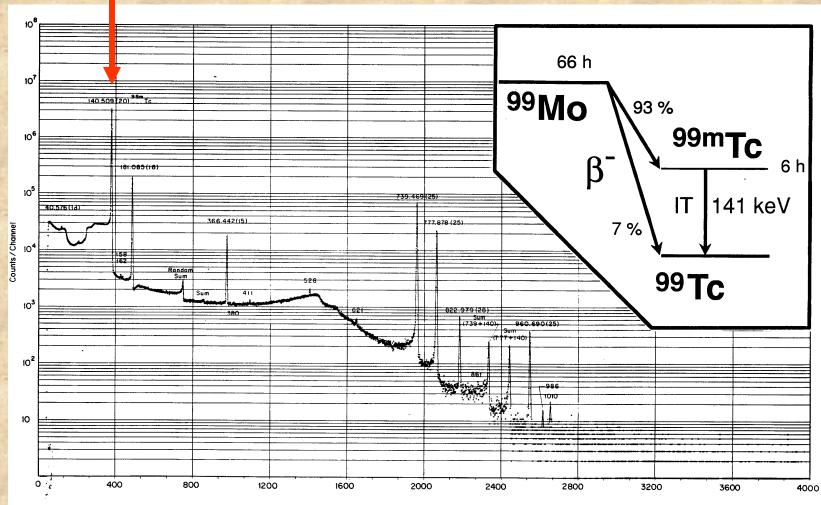

New Radionuclides for Therapy:

- → Beta-Emitters with different energies
- → Alpha emitters
- → Auger electron emitters
- → Research isotopes

PET for individual invivo dosimetry

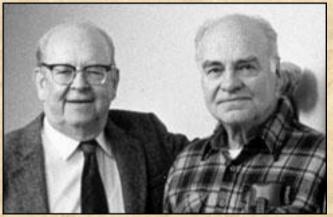
- → Quest for metallic positron emitters
- → longer lived positron emitters
- → PET imaging with "durt" isotopes
- → Simmulate Multi-tracer studies

ISOTOPES IN MEDICINE


G.J.BEYER, Geneva, 2011

Three Aspects:

- 1. Nuclear properties
- 2. Generator principle (availability)
- 3. Sn(II) as reducing agent opened the door for KIT Technology


141 keV photons - the strength of ^{99m}Tc

Channel Number

Discovery of ^{99m}Tc generator in 1957 in BNL

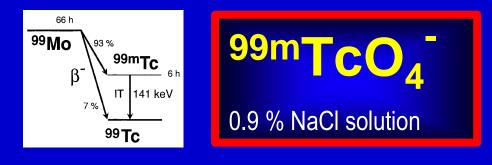
^{99m}Tc detected while refining ¹³²I from ¹³²Te → ⁹⁹Mo-^{99m}Tc generator → Stang, Tucker, Greene,

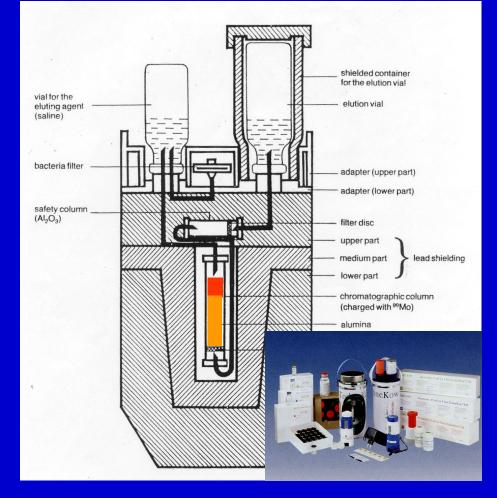
Richards BNL declined to file a patent for this device - ^{99m}Tc generator!

BNL memo in 1958:

"We are not aware of a potential market for technetium-99 great enough to encourage one to undertake the risk of patenting in hopes of successful and rewarding licensing."

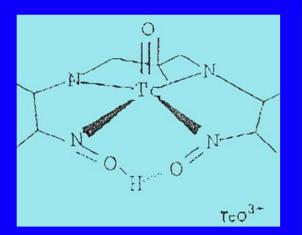
Sn(II) as reducing agent

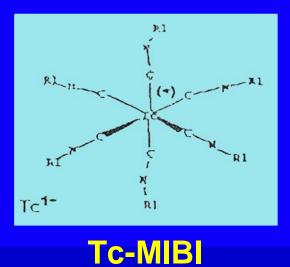

1962: The 99-Mo / 99m-Tc Generator introduced into clincal practice: Harper P.V., G.Autors, K.A.Latrhrop, W siemens, L Weiss: Technetium-99m as a biological tracer, J.Nucl.Med. **3** (1962) 209

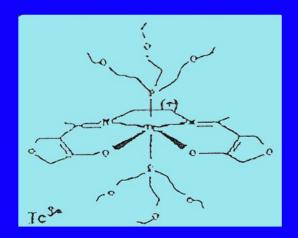

1969: Introduction of Sn(II) as reducing agent:

Dreyer R. & Muenze R. (Dresden, Germany); Markierung von Human Serum Albominw with 99m-Tc Wiss.Z.K-Marx Uni Leipzig Nat.Wiss.R. **18** (1969) 629-633 Zur Tc-99m-Markierung von Serumalbumin; Isotopenpraxis **5** (1969) 296

2009: Eckelmann W.C.: JACC cardiovascular Imaging 2, (2009) 364-368:

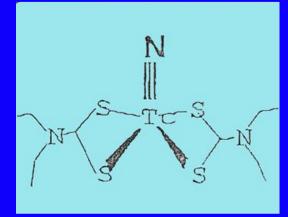

"...On a practical level, the use of stannous ion was a key development and current radiopharmaceutical kits employ the stannous reduction technique. With the advent of the Mo-99/Tc-99m generator in the 1960s followed by the development of "instant" kits, the use of Tc-99m–labeled compounds expanded rapidly"

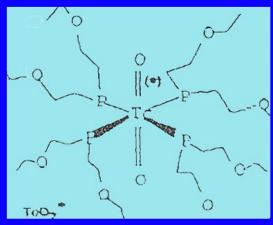


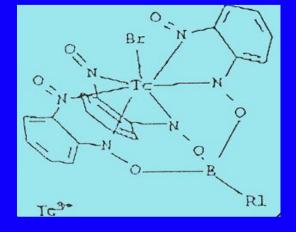


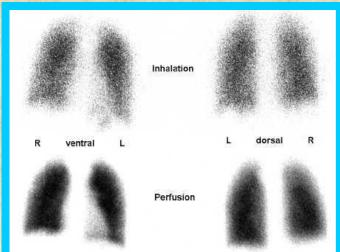
many different 99mTc-tracer for imaging of many different organ and tissue functions

Tc-HMPAO

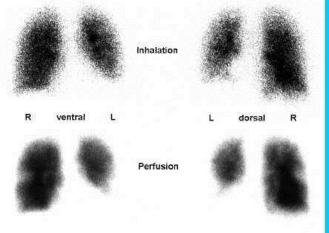

Tc-O12


^{99m}Tc Perfusion Tracers


Tc-NOEt



Tc-BATO



Ventilation study LUNG Function Perfusion Study

99mTc TRACER Examples

HEART

Perfusion

BONE metabolic activity

Belastung

D R

The FIRST FDG SYNTHESIZER

J. Fowler, BNL

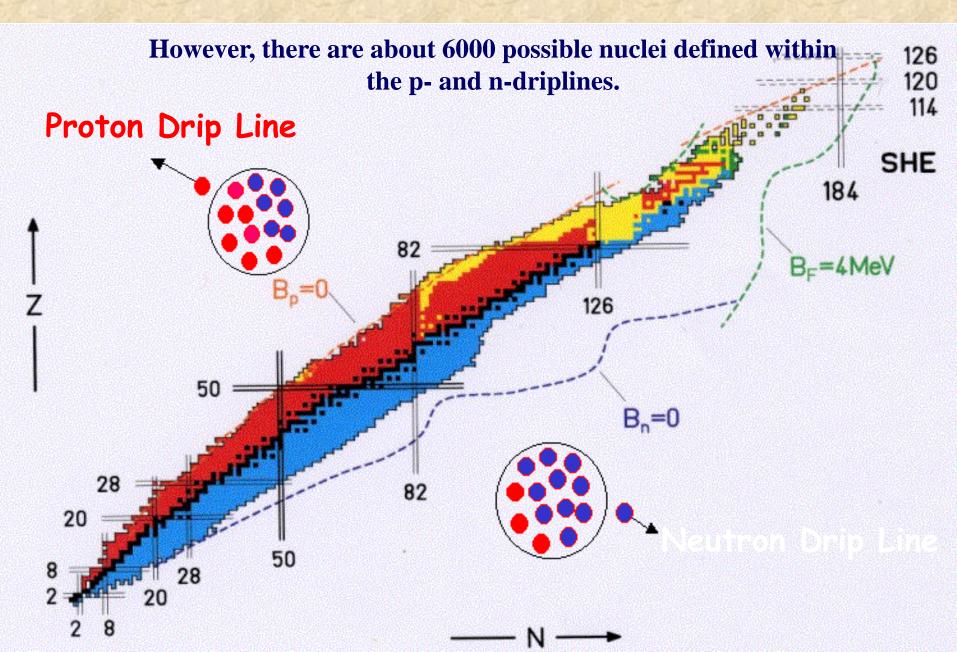
"NAKED"

FLUORIDE

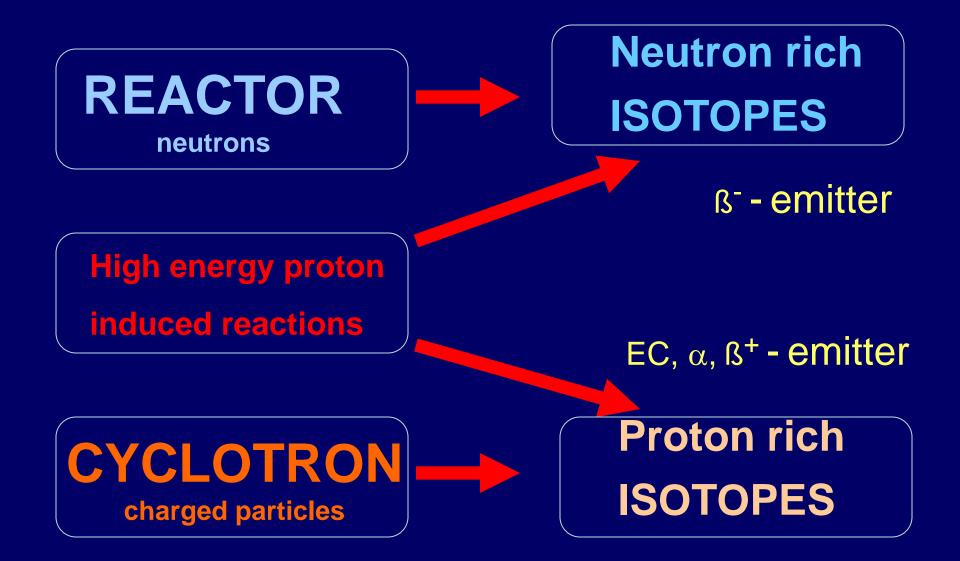
SYNTHESIS OF [¹⁸F]FDG

Nuclear Interface

[¹⁸F]FDG


PRECURSOR

Nucleophilic substitution


INTERMEDIATE

De-protection

Naturally found on our planet are 265 stable plus 60 radioactive nuclei About 3000 isotopes are synthesised in laboratories

ISOTOPE PRODUCTION

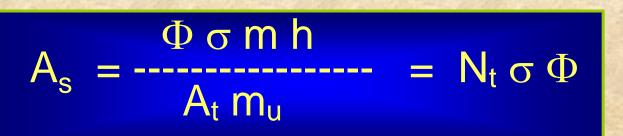

10 MW swimming pool reactor, Geesthacht (D)

Foto: G.Beyer, 1973

Reactor: Activation Equation

$$A = \frac{\Phi \sigma m h}{A_t m_u} [1 - \exp(-\lambda t)]$$

activity of the generated radioisotope at end of irradiation in [Bq] A saturation activity As neutron flux density in [cm⁻² s⁻¹] Φ reaction cross section in barn $(1 b = 10^{-28} m^2)$ σ target mass in [kg] m relative branching of the target isotope h atomic mass number A_t 1.6606 10⁻²⁷ kg mu decay constant ($\lambda = \ln 2 / t_{1/2}$) λ irradiation time in [sec] t

REACTOR: Problems of RI Production

- Radiation dose
- Temperature
- Heat production
- Burn out
- N-depression
- Side reactions
- Irradiation time
- Targets

- targets: elements, oxides, carbonates only, no organic compounds, material requirements for capsules
 - research reactors usually 60 °C, reactors in power stations useful for special activations only (⁶⁰Co)
- duction nuclear reaction energy heats up the targets, fission energy, large target masses low heat transfer
 - losses of product and generation of impurities, significant, when $\sigma > 1000$ b
 - must be considered when $\sigma > 10$ b, lower yield
 - impurities with high σ , other reactions
 - me can be long
 - large

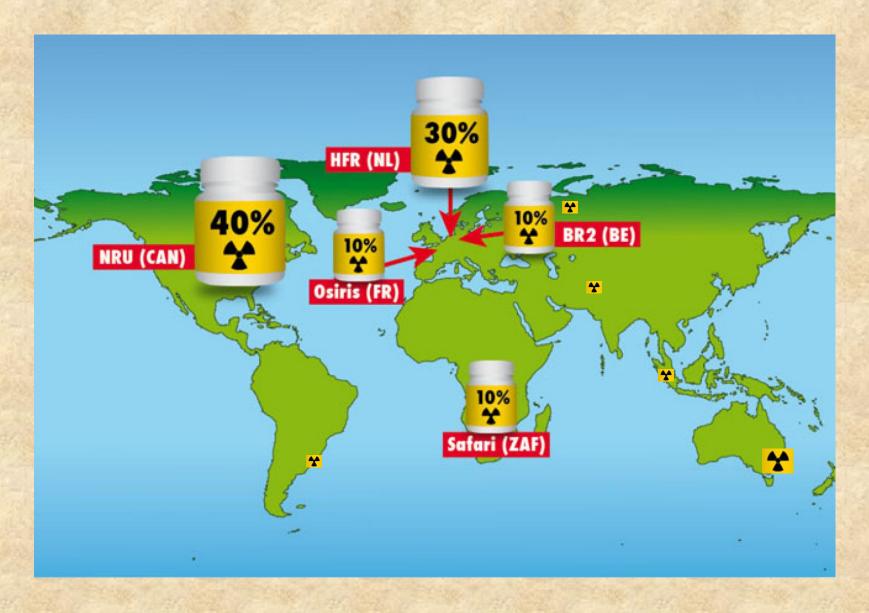

⁹⁹Mo: PRODUCTION ROUTES

⁹⁸Mo (n, γ) ⁹⁹Mo σ = 0.130 b 1 g ⁹⁸ Mo, Φ_{nth} = 1 * 10¹³ cm⁻²s⁻¹ 8 GBq ⁹⁹Mo/g ⁹⁸Mo (low specific activity)

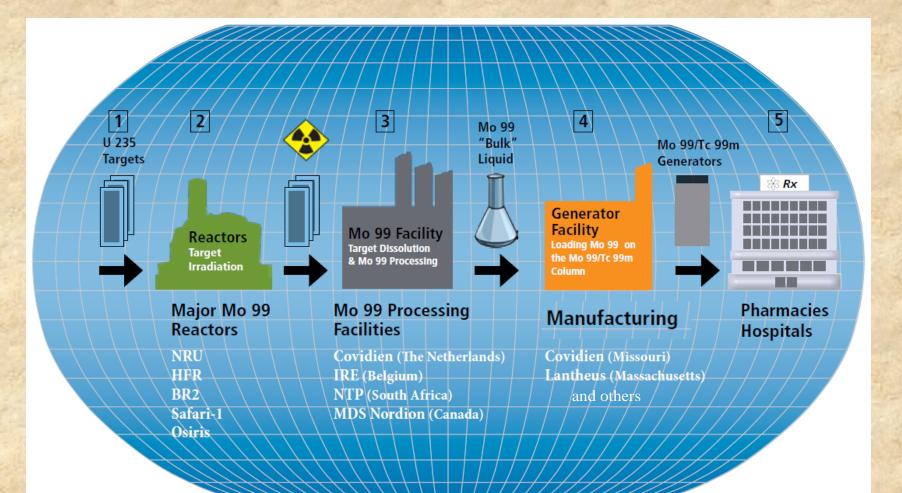
²³⁵U (n; f) ⁹⁹Mo $\sigma = 586 \text{ b}$ ⁹⁹Mo - fission yield = 6.15 % 1 g²³⁵ U, $\Phi_{n^{h}} = 1 \times 10^{13} \text{ cm}^{-2}$ 914 GBq ⁹Mo/ mg Mo(high specific activity)

NRU Reactor, Canada

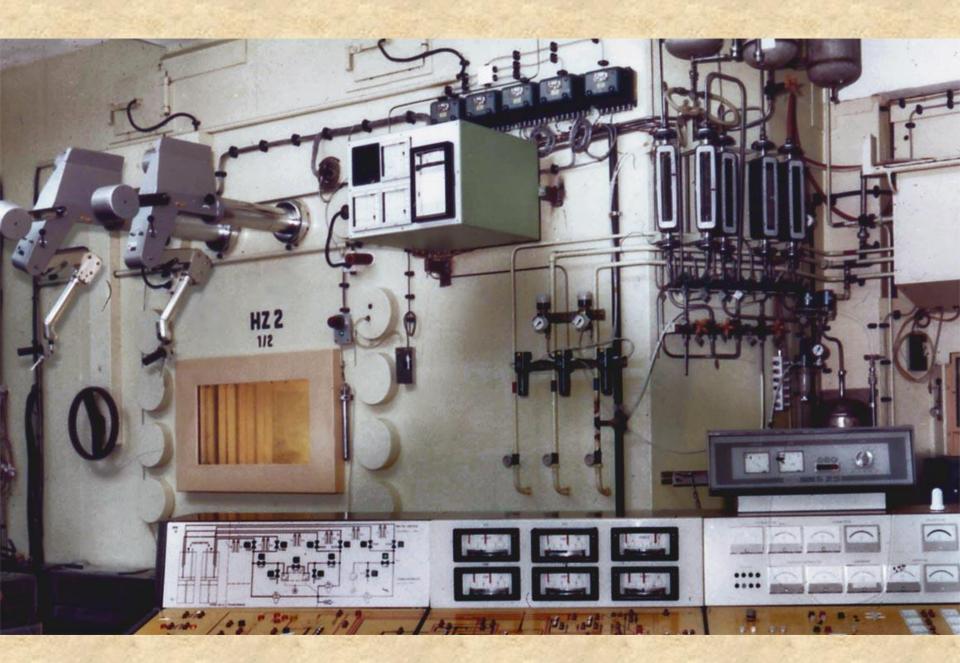
- 15 May 2009: D₂O leak
- stopped till spring 2010+
- license till October 2011


HFR Petten, NL

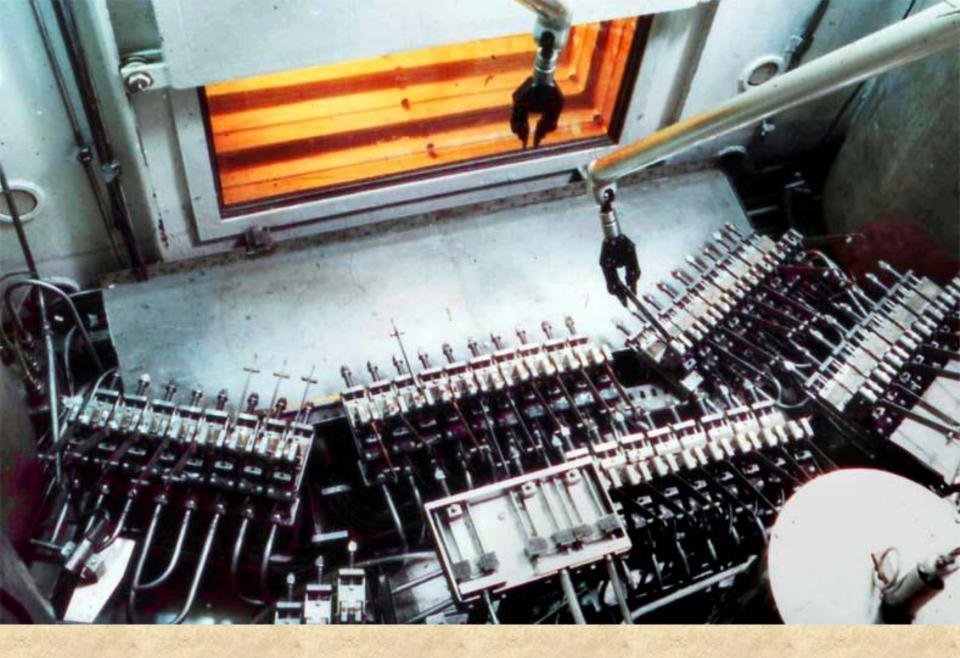
extended maintenance stop from 19 February 2010

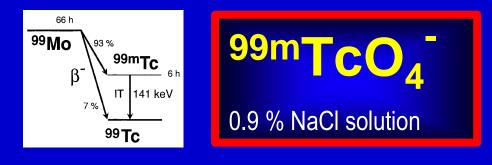


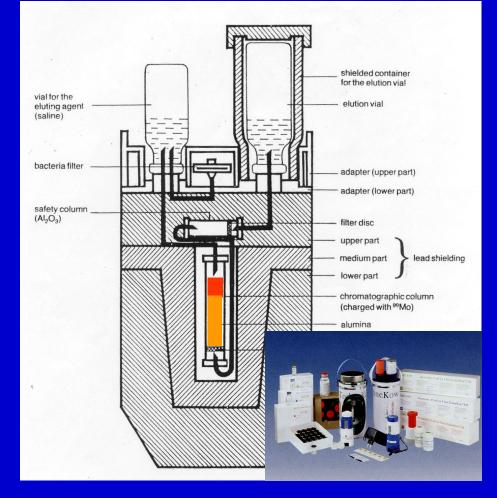
Main ⁹⁹Mo-Production Sites



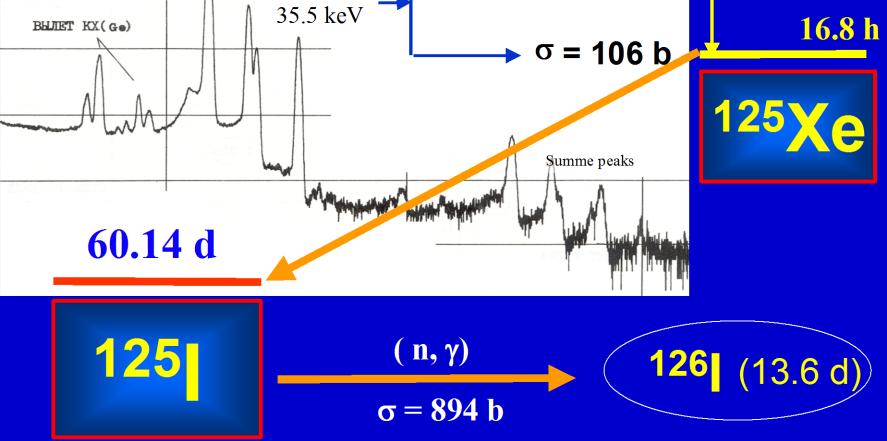
Complex Supply-Utilisation Chain of ⁹⁹Mo

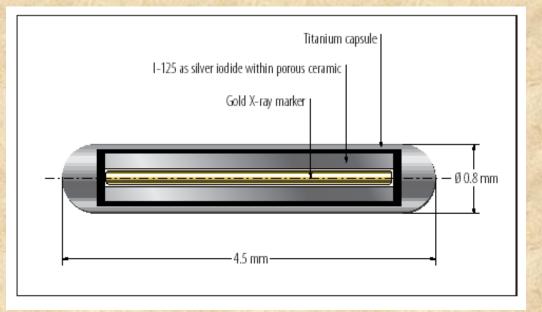

(source: from Covidien web site; modified to show generator producers)


Slide from Ramamoorthy, IAEA Vienna



Fission ⁹⁹Mo Process Rossendorf (AMOR) 1988

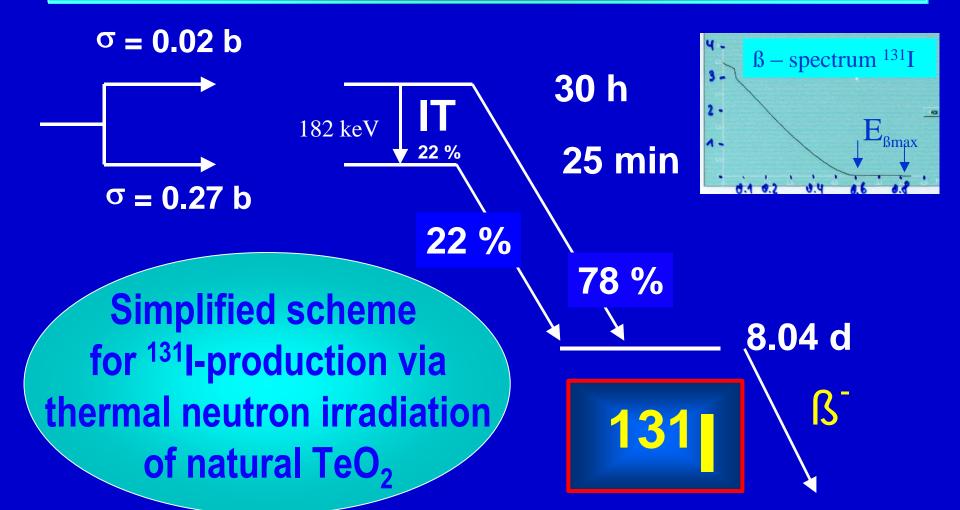

Fission ⁹⁹Mo Process Rossendorf (AMOR) 1988



many different 99mTc-tracer for imaging of many different organ and tissue functions $\frac{124 \text{Xe}(n,\gamma)}{125 \text{Xe}} \xrightarrow{\text{EC}} 125 \text{I}$

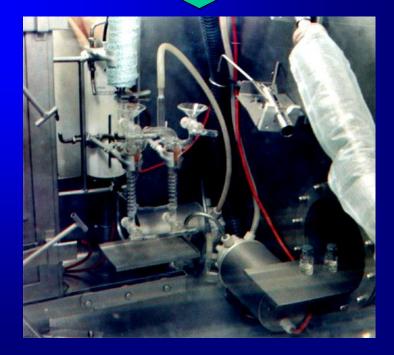
IsoSeed J-125

BEBIG An Eckert & Ziegler Company



The IsoSeed is equipped with a high-density gold marker providing excellent CT visibility. The full-length marker allows easy and precise location of each seed and produces minimal artefacts. This enhances the precision of the post-implant quality control.

¹³⁰Te (n, γ) ¹³¹Te $\stackrel{R^-}{\longrightarrow}$ ¹³¹I



¹³¹I Production Technology

Hot Cell Facility

Target Processing Iodine Trapping

Problems of medical RI Production with CYCLOTRONS

Short range of the particle beam

Range:

30 MeV pabout 1 mm15 MeV dabout 0.3 mm30 MeV aabout 0.1 mm

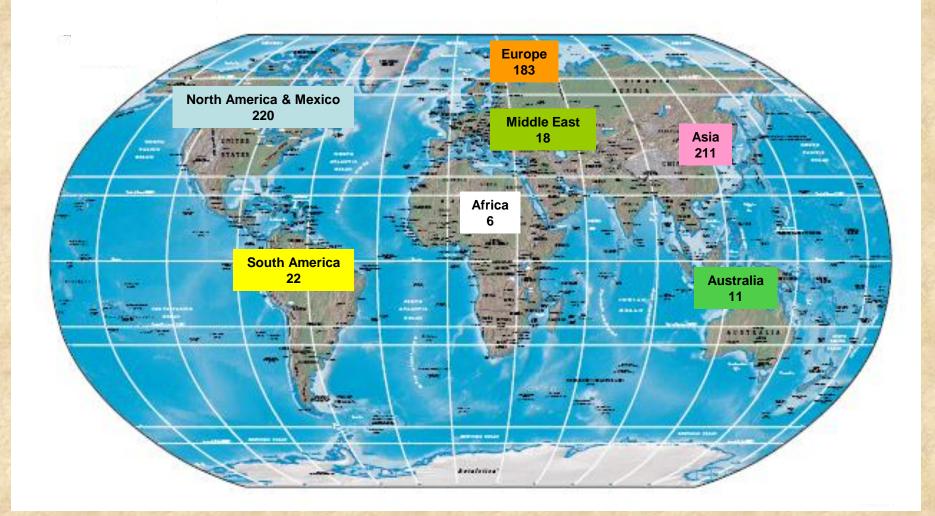
small target - high thermic energy deposition!

Small cross sections

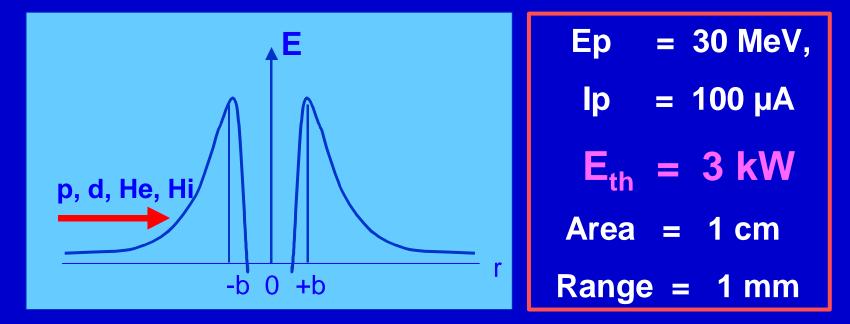
Low productivuity

Limited and expensive target material

enriched isotopes

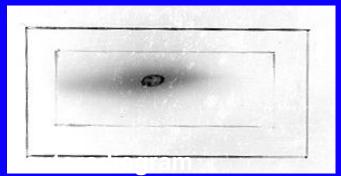

Vacuum

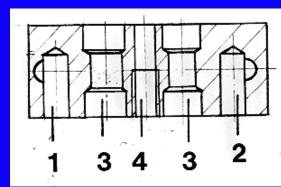
Target window problems, sensitive target material


Single target – one isotope

Distribution of cyclotrons for production of PET tracers (2008)

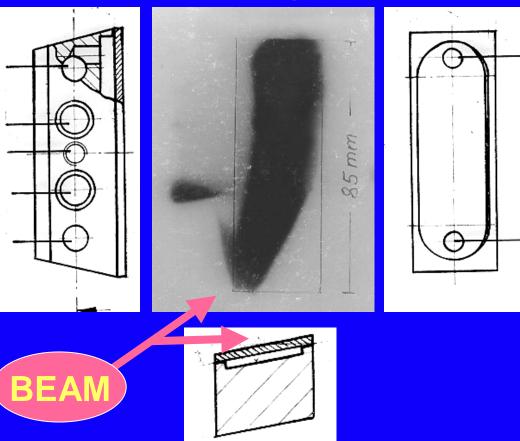
(source: D. Schlyer, BNL/USA, based on inputs of 4 major manufacturers)




Particle Beam Energy

- at "b" strong nuclear force
- only one particle out of 10⁴.....10⁷ reacts in reality
- full particle beam is stopped inside the target material
- the whole particle energy is transformed into thermic energy (heat)

ω

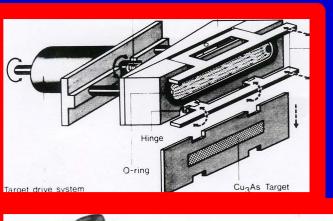

4

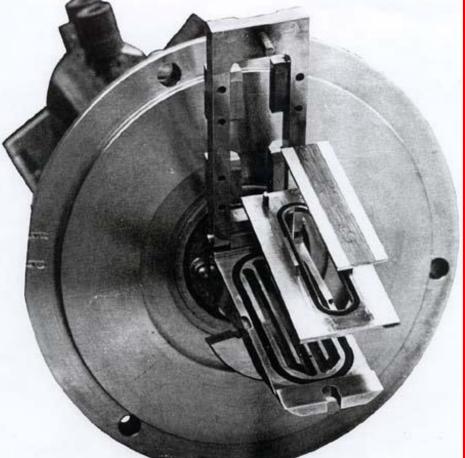
ω

N

- 1 water in
- 2 water out
- 3 openings
- 4 winding A8

autoradiogram


Zn on Cu Backing


0

14 MeV d, 50 μA U-120 Cyclotron Rossendorf 1979

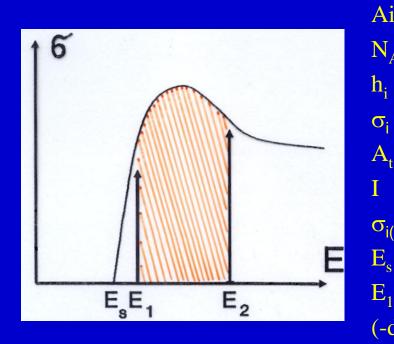
Target system for irradiation of Sensitive target materials inside the vacuum chamber of a cyclotron

Cu₃AS-alloy as Target for the ⁷⁷Br production FZ Jülich, 1983 Qaim & Stöcklin

IBA Cyclone 18/9, Cyclotron in Geneva 9 MeV Deuteron beam spot on the Havar Window foil of the Ne(F₂) [¹⁸F]F₂ target

 $E_d = 9 \text{ MeV}, I_d = 18 \mu \text{A}, \text{ area few mm}^2$

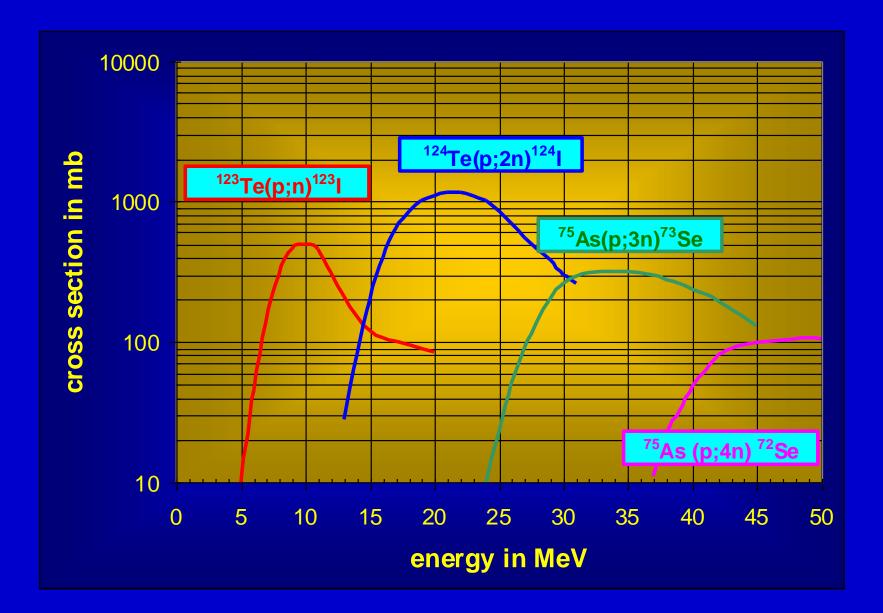
the target chamber

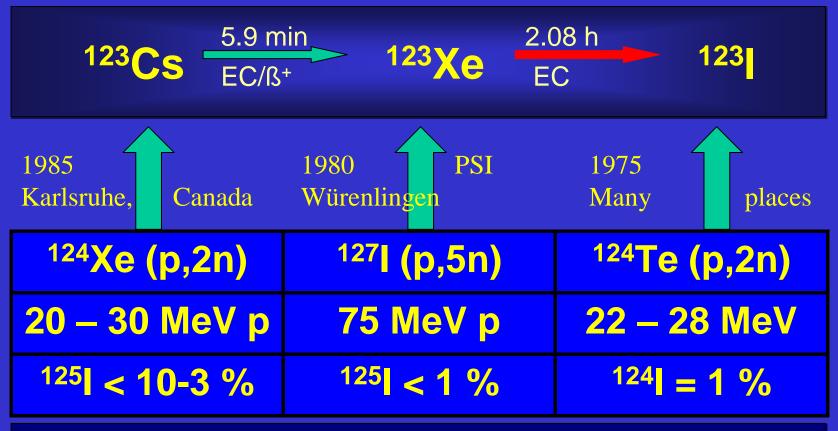

outside

ACTIVATION EQUATION

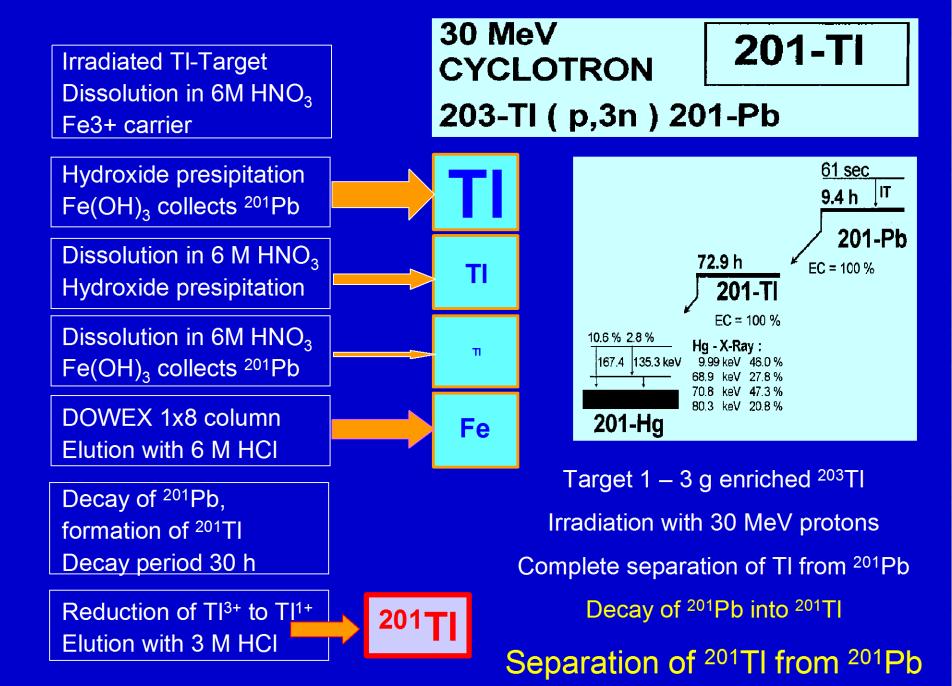
$$Ai = \frac{N_{A}hi\rho iI}{A_{t}} \times \left(1 - \exp\frac{\left(-t_{A}\ln 2\right)}{T_{1/2}}\right) \times \int_{E_{1}}^{E_{2}} \frac{\sigma(E)}{-\left(\frac{dE}{dx}\right)} \times dE$$

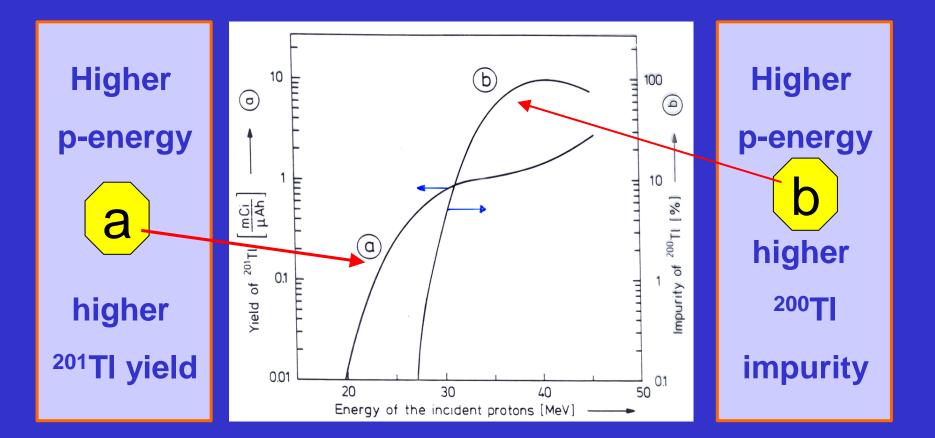
t_A


Т


EXCITATION FUNCTION

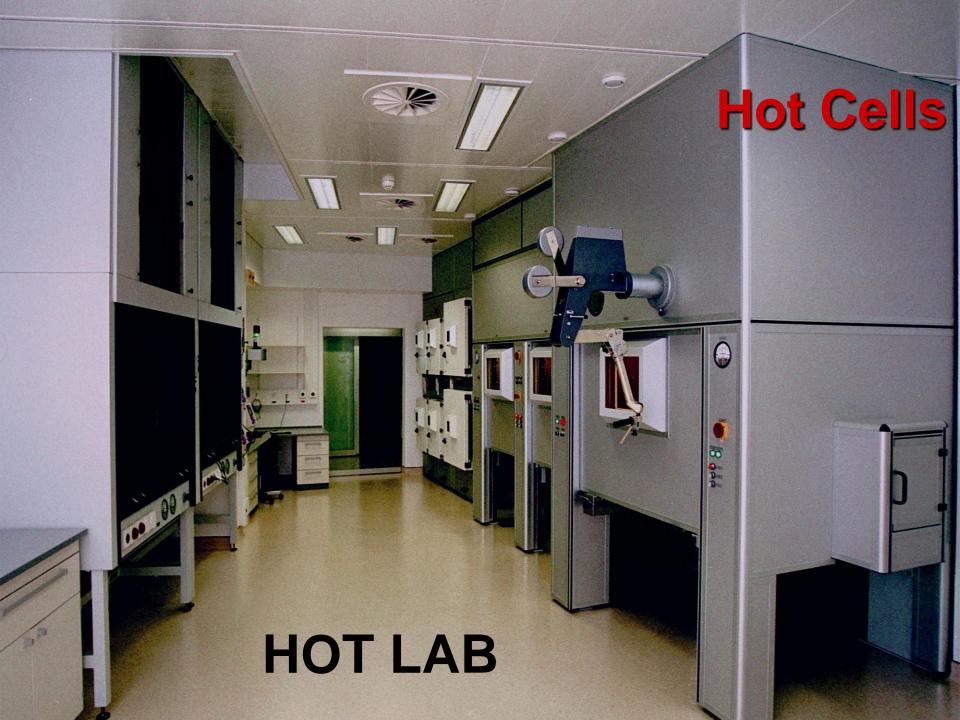
i	activity of isotope I at end of activation
A	Avogadro number
	relative branching of target isotope
	density of the target material
t	atomic mass number of target isotope
	particle beam intensity
(E)	cross section
}	threshold energy of the reaction
or E_2	defined energy of the reacting particles
dE/dx)	stopping power, energy dependent
	time of activation
1/2	radioactive decay half time


Excitation function for proton induced reactions


123-IODINE PRODUCTION ROUTES

ALTERNATIVES: local ¹²³ I production using PET cyclotrons ¹²³Te (p,n) ¹²³ I 15 MeV p, 150 MBq/µAh Fast, easy, reliable, clean product, suitable for direct labeling,

Why not use higher proton energy for ²⁰¹Tl production?


ISOTOPES for Tracer Synthesis

ISOTOPE	T _{1/2}	Reaction	Target	Product
¹¹ C	20 min	¹⁴ N (p,α) ¹¹ C	N ₂	unlimited
¹³ N	10 min	¹⁶ Ο (p,α) ¹³ N	H ₂ O	[¹³ N]NH ₃
¹⁵ O	2 min	¹⁴ N (d,n) ¹⁵ O	H ₂ O	[¹⁵ O]H ₂ O
¹⁸ F	110 min	¹⁸ O (p,n) ¹⁸ F ²⁰ Ne (d, α) ¹⁸ F	[¹⁸ O]H ₂ O ²⁰ Ne	[¹⁸ F]FDG [¹⁸ F]FDOPA

July.2000

THE

1

TRENDS

Therapy

fast growing demand mab, peptides, oligonucleaotides, nanoparticles, seeds

· PET

cost effective use of [¹⁸F] FDG new tracer molecules, diagnostic support of therapy

• ⁹⁹Mo/^{99m}Tc remains working horse in Nucl.Med. growing demand, presently shortage in supply

• Brachytherapy growing demand seeds (125I) spheres (90Y)

RADIOISOTOPES in **MEDICINE**:

Requirements - Production - Application and Perspectives

Isotopes for future Nuclear Medicine

4

Gerd-Jürgen BEYER

Prof.Dr.rer.nat.habil. Cyclotron Unit, University Hospital of Geneva, Switzerland GSG-Int. GmbH, Switzerland <u>gerd.beyer@cern.ch</u> gerd.beyer@gsg-int.com

Lecture JUAS Joint University Accelerator School Archamps (France) March 08, 2012

NUCLEAR MEDICINE 2009

DIAGNOSIS

THERAPIE

SPECT (SINGLE PHOTON EMISSION TOMOGRAPHY)

- increase of diagnostic value
- new radiopharmaceuticals
- * dedicated instrumentation & quantification

PET AS RESEARCH TOOL

- * Molecular in vivo biochemistry
- * Gene expression
- Clinical research

PET AS CLINICAL TOOL

- Oncology Reimbursement of FDG-studies
- * Neurology
- Cardiology

Multi - modality Imaging

- * combined SPECT -PET
- * Function and morphology (PET - CT, MRI - PET)

NEW APPROACHES IN RADIONUCLIDE THERAPY

- bio-selective antibodies (mab = monoclonal antibodies)
- bio-specific peptides
 - (Octreotides, others)
- * gene therapy
- * free chelators like EDTMP
- * Lyposomes
- * Nanoparticles

NEW RADIONUCLIDES for THERAPY

- * β emitters
- * α-emitters

α-THERAPY & AUGER THERAPY

PET FOR IN VIVO DOSIMETRY

- * metallic positron emitters
- * labelled drugs

*

dose localization

CANCER

~ 1 300 000

new cancer cases per year in EU 58 % local disease, 42 % generalized

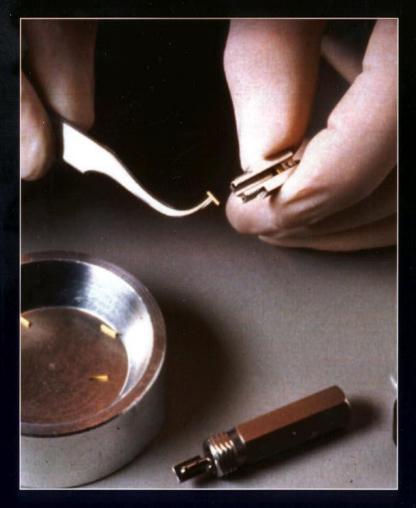
45 % cured (5 year survival)

22 % surgery alone

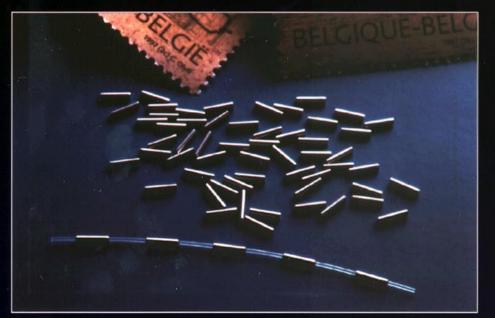
- 12% radiation therapy
 - 6% combination surgery + radiation
 - 5% chemo-therapy

just beginning of systemic radionuclide therapy

HOW:


expose cancer cells or cancer tissue with sufficient radiation doses?

ISOTOPES in Therapy = surgery with radiation


	Tissue surgery	Cell surgery	Molecular surgery
ISOTOPE	¹³¹ Ι, 90Υ, ¹⁵³ Sm, ¹⁶⁶ Ho, ¹⁷⁷ Lu Others E _β 1 – 3 MeV	^{212, 213} Bi, ²¹¹ At, ¹⁴⁹ Tb, ^{223, 224} Ra Eα 4–8 MeV	125 ¹⁶⁵ Er Ee few eV
Range	about 1 cm	30 - 80 µm	10 nm
	B-Knife	a-Knife	Auger Knife

LIBA

Brachytherapy

Local Eradication of a Tumor by Radioactive Implants

Theragenics

IBt

ION BEAM APPLICATIONS

RIT = RADIOISOTOPE THERAPY or RADIOIMMUNO THERAPY or systemic radionuclide therapy

- 1936 ³²P against leukemia, J.H.Lawrence
- 1939 ⁸⁹Sr uptake in bone metastases, C.Pecher
- 1946¹³¹I treatment of thyroid cancer, S.M.Seilin et al.
- 1963 Radioactive colloides, B.Ansell et al
- 1976⁸⁹Sr against pain from bone metastases, N.Firusian
- 1978 Radiolabelled mab, D.Goldenberg
- 1982 Treatment with ¹³¹I labelled mab, S.Larson et al.
- 1990 Somatostatine receptor binding tracers, E.Krenning
- 1993⁸⁹Sr, FDA approval
- 2000 FDA approval of ¹³¹I-CD20 against Lymphoma?

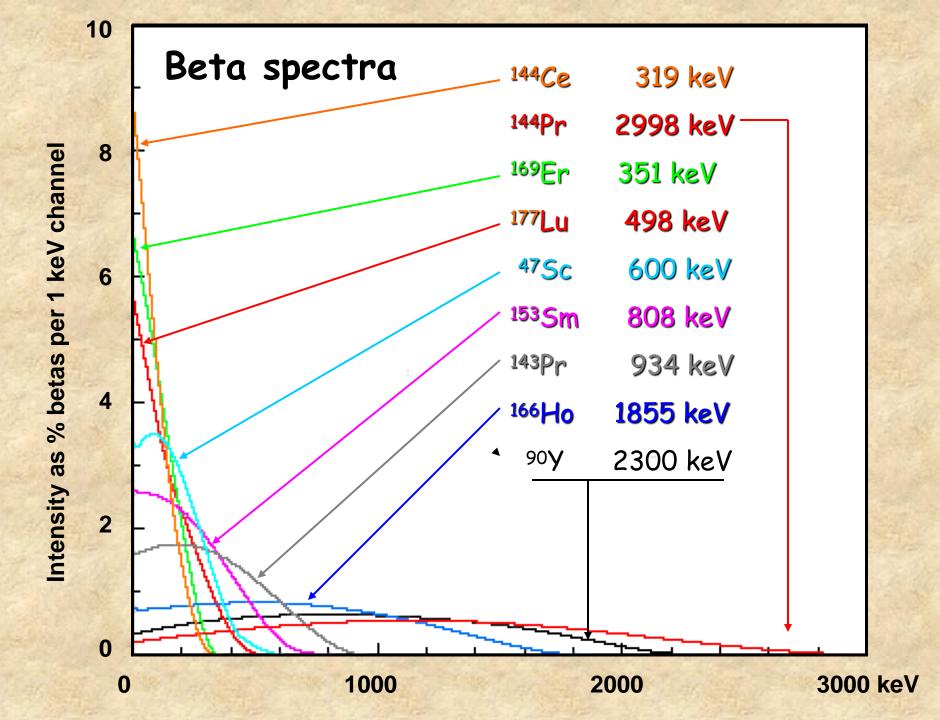
Development of therpeuticals delayed

Rats with SSR-positive tumours in liver model mimics disseminated disease ⇒ PRRT (PRRT = Peptide Receptor Radionuclide Therapy)

Questions to be answered:

- Realtionship between radiation dose delivered to a leason and the therapeutic response In vivo dosimetry by quantitative PET imaging need for ß*-emitting metallic radionuclides
- Relationship between beta energy and therapeutic response

Variation of radionuclides with different ß-energy need for metallic ß⁻-emitters with very different energy ß- emitter
for
for
therapy


RIT = RADIOISOTOPE THERAPY or RADIOIMMUNO THERAPY

Nuclide	E _{βmax} [MeV]	Range [mm]	Τ 1/2	photons _[keV]	comment		2 90 y
⁹⁰ Y	2.3	4.2	64.1 h	no	Easy available		•5-
¹⁸⁸ Re	2.1		17 h	155 keV	Difficult, generator	3	1 4 2 3 3 - 186 Re
¹⁶⁶ Ho	1.9	0.7	26.8 h	(81 keV)	difficult	1	2 -
⁸⁹ Sr	1.5		50.5 d	no	Palliation only		n : sr :
¹⁸⁶ Re	1.1		90.6 h	137	Carrier		ч. лзл <u>г</u>
¹⁵³ Sm	0.8	0.269	46.8 h	103 keV	Easy, carrier	3	3-
131I	0.8		8.04 d	(364keV)	Most common		2.
¹⁷⁷ Lu	0.5	0.147	6.7 d	113/208	Not easy		·
⁶⁷ Cu	0.4/0.6		61.9 h	185	Interesting	3	169 Er
⁴⁷ Sc	0.4/0.6		80.4 h	159	interesting	2	•
¹⁶⁹ Er	0.3	0.1	9.4 d	no	soft		

0.1

02 03

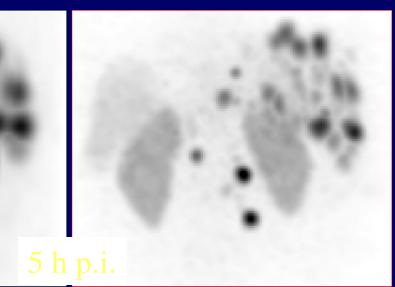
6.4

Why metallic radionuclides?

- ¹³¹I cannot fulfill all requirements (weak in vivo stability)
- We learnt to make bio-conjugates, that contain chelating groups
- Universality: the chelated bio-conjugates can be labelled practically with any metallic radionuclide of group III and group IV elements
- The radiolabeled bio-conjugates are stable in vivo
- The bio-selective ligands are mainly monoclonal antibodies or peptides

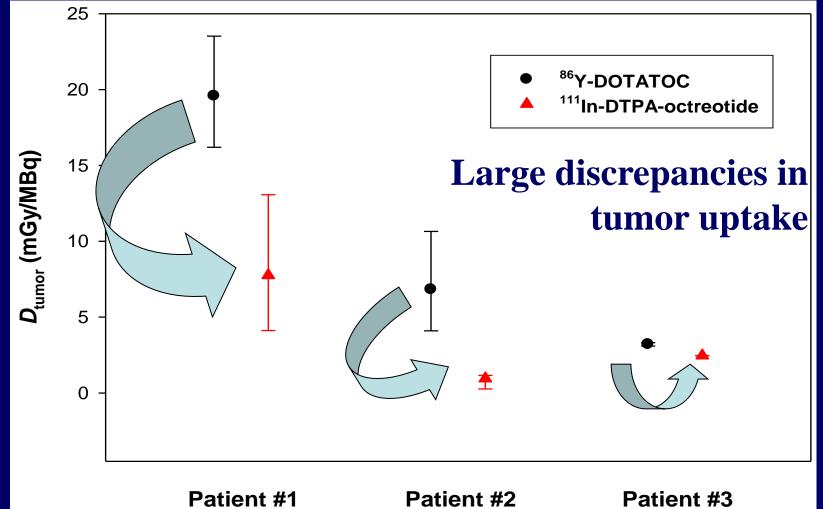
B* emitters for in vivo dosimetry

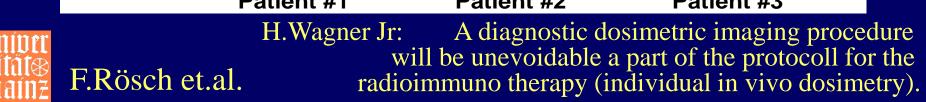
Scintigraphic abdominal images 5 & 24 h p.i. affected by carcinoid with extensive hepatic and paraaortal metastases.


Patients:

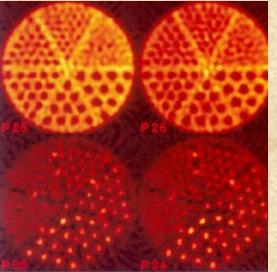
•

- 3 patients with metastases of carcinoid tumor (histologically confirmed)
 - No therapy with unlabeled somatostatin > 4 weeks
- Age: 46 67 years, male
- All were candidates for a possible ⁹⁰Y-DOTATOC therapy


[⁸⁶Y]DOTA-DPhe¹-Tyr³octreotide PET

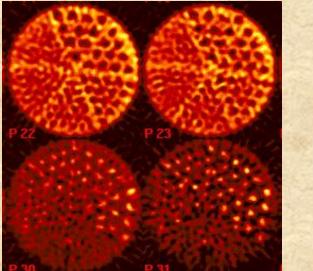


Radiation doses for [⁹⁰Y]DOTATOC therapy (based on [⁸⁶Y]DOTATOC-PET)

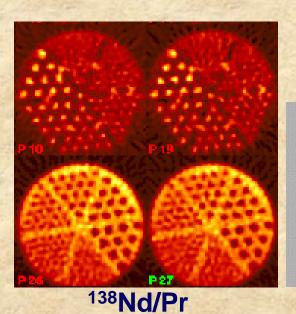


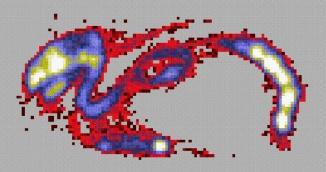
Rare Earth Elements:

Positron Emitters

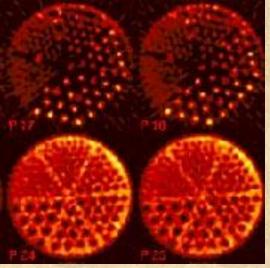

Nuclide	T 1/2	% ß+	MeV	MeV γ/%	Production Route	
⁴³ Sc	3.9 h	88	1.2		⁴³ Ca (p,n) ⁴³ Sc, ⁴⁴ Ca (p,2n) ⁴³ Sc	
⁴⁴ Sc	3.9 h	94	1.5		⁴⁴ Ti decay (generator), ⁴⁵ Sc (p,2n) ⁴⁴ Ti V, Ti (p,spall)	
85m Y	4.9 h	67	2.3	238 34	⁸⁶ Sr (p,2n) ^{85m} Y, ISOLDE	
86Y	14.7 h	32	1.2	637 33 1077 83	⁸⁶ Sr (p,n) ⁸⁶ Y ISOLDE	
¹³⁴ Ce ¹³⁴ Pr	75.9 h 6.7 m	EC 64	2.7	No 605	Ta, Er, Gd (p,spall) ¹³² Ba (α,2n) ¹³⁴ Ce	
¹³⁸ Nd ¹³⁸ Pr	5.2 h 1.5 m	EC 76	3.4	No 789 4	Ta, Er, Gd (p,spall) ¹³⁶ Ce (α,2n) ¹³⁸ Nd, ISOLDE	
¹⁴⁰ Nd ¹⁴⁰ Pr	3.4 d 3.4 m	EC 50	2.4	No No	Ta, Er, Gd (p,spall), ISOLDE ¹⁴¹ Pr (p,2n) ¹⁴⁰ Nd,	
¹⁴² Sm ¹⁴² Pm	72.4 m 40.5 s	6 78	1.5 3.9	No No	Ta, Er, Gd (p,spall), ISOLDE ¹⁴² Nd (α,4n) ¹⁴² Sm	
¹⁵² Tb	17.5 h	20	2.8	Div	Ta (p,spall) ISOLDE ¹⁵² Gd (p,4n) ¹⁴⁹ Tb, ¹⁴² Nd(¹² C,5n) ¹⁴⁹ Dy	


¹³⁴Ce/La





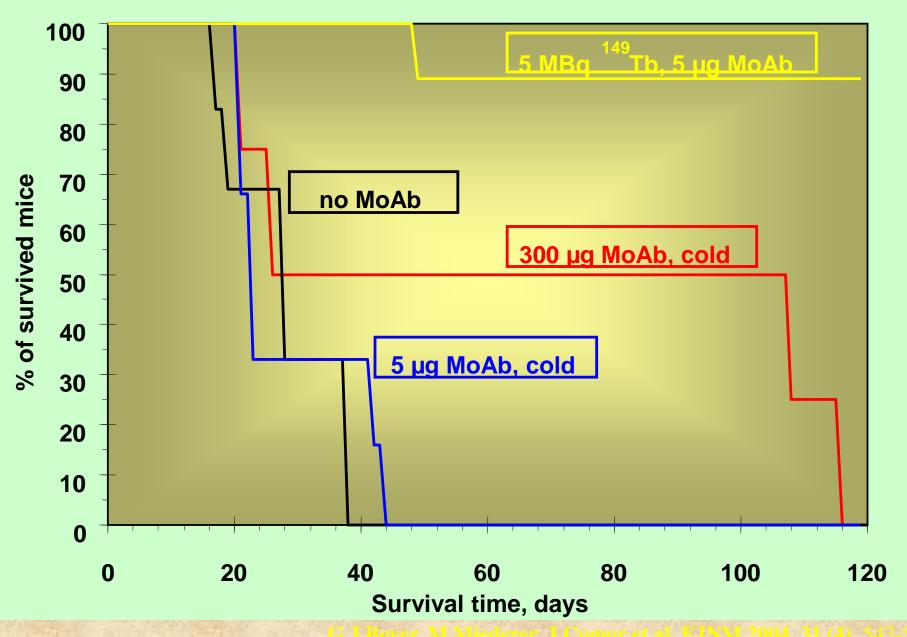
Positron emitting radiolanthanides



PET phantom studies

¹⁴²SmEDTMP in vivo study

¹⁵²**Tb**


ISOTOPES in Therapy = surgery with radiation

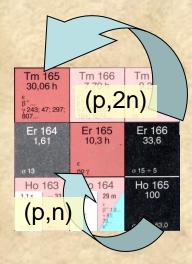
	Tissue surgery	Cell surgery	Molecular surgery
ISOTOPE	¹³¹ Ι, 90Υ, ¹⁵³ Sm, ¹⁶⁶ Ho, ¹⁷⁷ Lu Others E _β 1 – 3 MeV	^{212, 213} Bi, ²¹¹ At, ¹⁴⁹ Tb, ^{223, 224} Ra Eα 4–8 MeV	125 ¹⁶⁵ Er Ee few eV
Range	about 1 cm	30 - 80 µm	10 nm
	B-Knife	a-Knife	Auger Knife

a-emitters for therapy

Survival of SCID mice

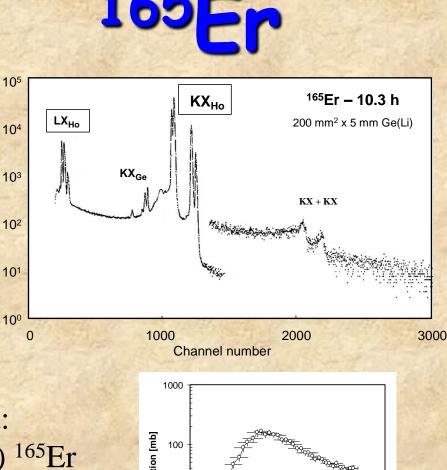
103 d p.i.

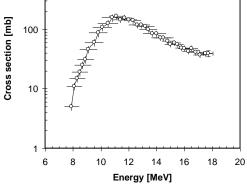
108 d p.i.



300 µg mab cold

5 MBq ¹⁴⁹Tb-mab (5 μg)


AUGER electron emitters for therapy


- Only very few radionuclides exists that decay exclusively by ECmode without any accompanying radiation
- ¹⁶⁵Er is one of them
- All labeling techniques used for the three-valent radionuclides can be adapted without modifications.
- Generated in the EC-decay of the mother isotope ¹⁶⁵Tm
- Production routes suitable for the TESLA accelerator:

Yield: ¹⁶⁵Ho (p,n) ¹⁶⁵Er 15 MeV p 50 μA 5 h **10 GBq**

Counts per channel

G. J. Beyer, S. K. Zeisler and D. W. Becker Radiochimica Acta 92 (4-6), 219, 2004

Isotope Production with Cyclotrons

- The classical SPECT isotopes are produced via the (p,2n) process, the related p-energy is ~25 MeV
- Because of the continuous high demand of ²⁰¹Tl, the (p,3n) is usually considered as a main product. The upper p-energy for producing ²⁰¹Tl is 30 MeV.
- The short-lived PET isotopes are based mainly on the (p,n) process, ~15 MeV is the preferable proton energy. Normally dedicated small cyclotrons are used for PET. However, due to the high standard of targetry and production technology a large scale FDG-production can be integrated economically today into the program of a larger cyclotron, because of the low beam time demand.
- New trends in radioimmuno therapy require alpha emitting nuclides. The ²¹¹At needs to be produced via the (α ,2n) Process. The related α -energy is 28 MeV.

A cyclotron, that can accelerate alpha particles to 28-30 MeV can principally accelerate p to energies higher than 30 MeV. Consequently, higher reaction processes such as (p,4n) or generally (p,xn) or even (p,xn,yp) processes are possible.

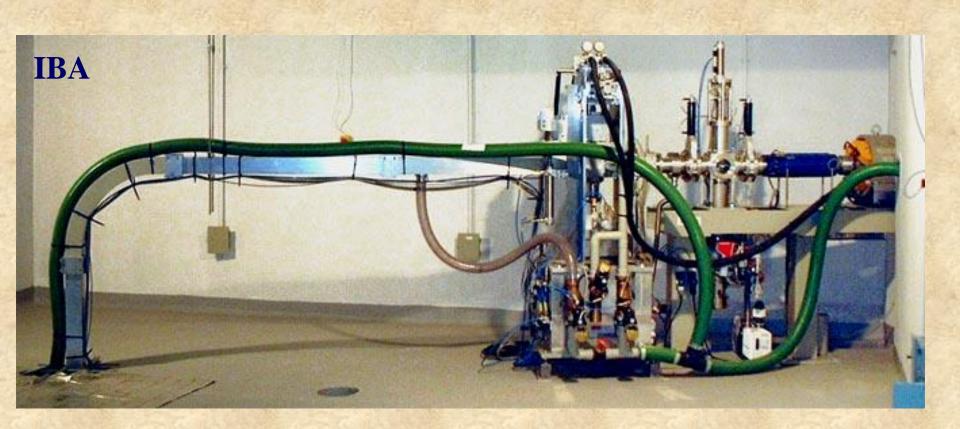
Such a multipurpose cyclotron with the option of high particle beam intensity and well developed tools for beam diagnosis and a certain variation of particle beam energy is an excellent universal instrument supporting commercial isotope production and R&D in the field of medical isotope application for diagnosis and therapy.

Commercial Isotope Production with cyclotrons ~30 MeV proton beam

• ²⁰¹TI: ²⁰³TI (p,3n) ²⁰¹Pb → ²⁰¹TI

most important SPECT isotope, commercialized by all radiopharmaceutical Co. The worldwide installed production capacity exceeds the demand

• ¹²³I: ¹²⁴Xe (p,2n) ¹²³Cs → ¹²³I


very important SPECT isotope, corresponding target design from Karlsruhe is installed worldwide. Batch size up to 10 Ci possible.

• ¹¹¹In: ¹¹²Cd (p,2n) ¹¹¹In

important for certain SPECT techniques, expensive because of low demand

• ⁶⁷Ga: ⁶⁸Zn (p,2n) ⁶⁷Ga

easy to make, low and decreasing demand

Target station for the production of ²⁰¹Tl with beam diagnosis elements and Automatic active target transport chain

Isotope Production with Cyclotrons (p,n) process with ~15 MeV protons

• ¹⁸**F:** ¹⁸O (p, n) ¹⁸F

most important PET isotope, commercialized by many centers using dedicated small cyclotrons, however also done at 30 MeV or even at 65 MeV cyclotrons as well (Nice)

• 124]: ¹²⁴Te (p,n) ¹²⁴I

very important PET isotope with commercial interest (in-vivo dosimetry), large scale production technology not yet available, same technology could be used for medium scale ¹²³I production based on ¹²³Te target material

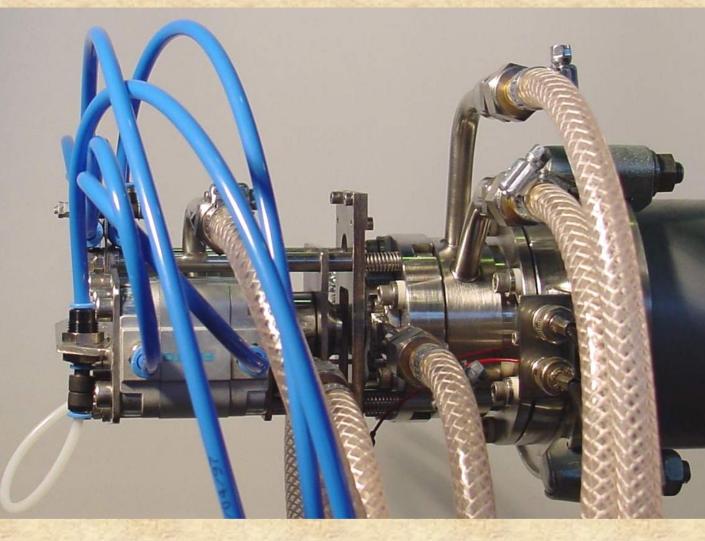
• 86Y: 86Sr (p,n) 86Y

very important PET isotope with commercial interest (in-vivo dosimetry)

• 64Cu: 64Ni (p,n) 64Ga

easy to make, therapeutic isotope for RIT, PET allows the measurement of the biodistribution in sito.

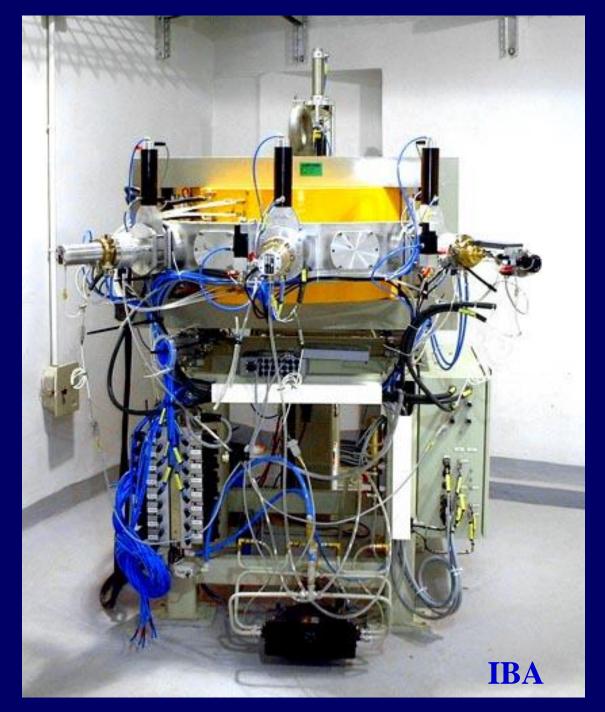
• 186Re: ¹⁸⁶W(p,n) ¹⁸⁶Re


¹⁸⁶Re (3.7 d) is one of the two important therapeutic isotopes of Re. The advantage over ¹⁸⁸Re (16 h) is the longer half-life, the advantage over the reactor based ¹⁸⁵Re(n,γ)¹⁸⁶Re process is the carrier free quality.

• **Remark:** The (p,n) process requires ~15 MeV only, and is performed normally at dedicated small PET cyclotrons. However, due to the high productivity of dedicated targets combined with a modern system for beam diagnosis allows to run these reaction under economical conditions at larger cyclotrons as well using only a small fraction of the available beam time.

COSTIS : Test Installation in Belgrade

COSTIS and its constructors at the low energy beam line of the mVINIS ECR ion source at the TESLA Accelerator Installation in Belgrade, Yugoslavia

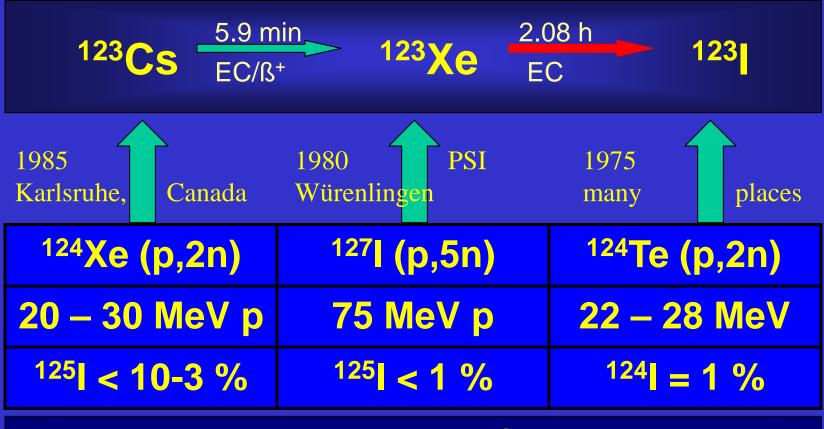

Production of other useful isotopes with < 20 MeV proton induced reactions

	and all all all			
Isotope	T _{1/2}	Reaction	Batch size	Application
⁴⁵ Ti	3.08 h	^{nat.} Sc (p,n) ⁴⁵ Ti	100 GBq	PET: bioconjugates
⁵⁵ Co	17.54 h	^{nat} Fe (p,2n) ⁵⁵ Co	50 GBq	PET, encymes, vitamines
⁶⁴ Cu	12.7 h	⁶⁴ Ni (p,n) ⁶⁴ Cu	100 GBq	PET & therapy,
⁶⁷ Cu	61.9 h	⁷⁰ Zn (p,α) ⁶⁷ Cu	50 GBq	therapy, bioconjugates
⁶⁶ Ga	9.4 h	66Zn (p,n) 66Ga	50GBq	PET
⁷⁶ Br	16 h	⁷⁶ Se (p,n) ⁷⁶ Br	10 GBq	PET
⁸¹ Rb/ ^{81m} Kr	4.58 h	⁸² Kr (p,2n) ⁸¹ Rb	20 GBq	Generator, SPECT
⁸⁶ Y	14.7 h	⁸⁶ Sr (p,n) ⁸⁶ Y	50 GBq	PET, bioconjugates
⁸⁹ Zr	78.4 h	⁸⁹ Y (p,n) ⁸⁹ Zr	20 GBq	PET, bioconjugates
⁹⁰ Nb	14.6 h	⁹⁰ Zr (p,n) ⁹⁰ Nb	20 GBq	PET, bioconjugates
⁹⁴ Tc	4.9 h	⁹⁴ Mo (p,n) ⁹⁴ Tc	20 GBq	PET
¹¹⁰ In	69.1 m	¹¹⁰ Cd (p,n) ¹¹⁰ In	20 GBq	PET
¹²⁰ I	1.35 h	¹²⁰ Te (p,n) ¹²⁰ I	10 GBq	PET
¹²³ I	13.2 h	¹²³ Te (p,n) ¹²³ I	20 GBq	SPECT
¹²⁴ I	4.15 d	¹²⁴ Te (p,n) ¹²⁴ I	2 GBq	PET
¹⁶⁵ Er	10.3 h	^{nat} Ho (p,n) ¹⁶⁵ Er	40 GBq	Auger Therapy
¹⁸⁶ Re	90.6 h	¹⁸⁶ W (p,n) ¹⁸⁶ Re	20 GBq	Therapy

The irradiation of solid materials requires much better beam quality parameters than gas targets. Consequently, beam homogenisation and beam manipulation is needed, usually not possible at the PET cyclotrons.

External beam lines, known from classical isotope production at cyclotrons, will take this function over.

The new generation of multi-purpose cyclotrons will be equipped with hightech diagnostic tools and provide higher beam current than in the past.

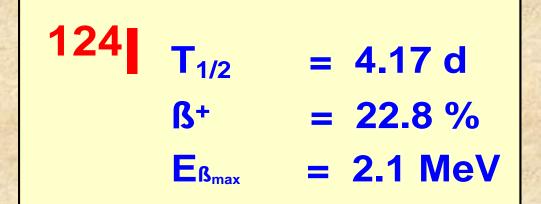


PET-isotope production at the IBA 30 MeV cyclotron:

> Target station at the end of one beam line equipped with 5 target ports

¹⁸F: H₂¹⁸O target
¹¹C: N₂-target
¹⁵O: N₂-target
2 positions free

123-IODINE PRODUCTION ROUTES

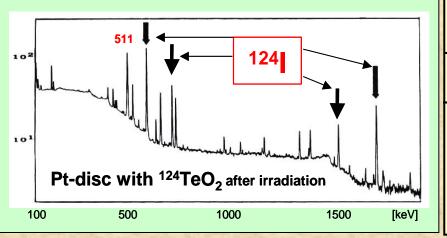


ALTERNATIVES:

local ¹²³ I production using PET cyclotrons ¹²³Te (p,n) ¹²³ I 15 MeV p, 150 MBq/µAh

Fast, easy, reliable, clean product, suitable for direct labeling,

¹²⁴TeO₂ (p,n) ¹²⁴I

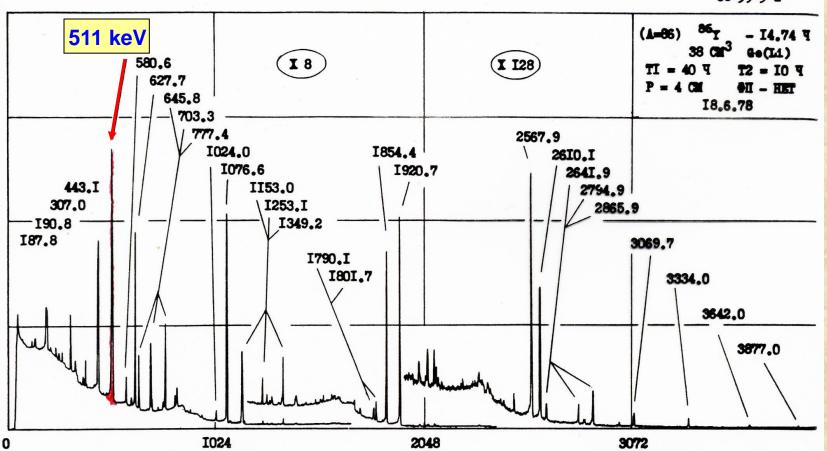


124

~13 MeV, 0.45 mCi/ μ Ah ¹²⁴I ¹²³I = 0.1 % EOB + 2 d

R.J. Ylimaki, M.Y. Kiselev, J.J. Čomor, G.-J. Beyer •DEVELOPMENT OF TARGET DELIVERY AND RECOVERY SYSTEM FOR COMMERCIAL PRODUCTION OF HIGH PURITY IODINE-124

WTTC 10, Madison (USA), 2004


irradiation time: 1 h, 10 μA, protons						
	15	13 MeV				
¹²⁴ l: (p,n)	250	150 MBq				
¹²³ I: (p,2n)	680	75 MBq				
	and the second second					

After 2 d:

178 / 51 MBq

⁸⁶Sr (p,n) ⁸⁶Y 16.5 h 86-Y enriched ⁸⁶SrO target, Pt-backing, 86-Y ~15 MeV p EC 86-Sr (p;n) 86-Y electrochemical separation technology $\beta^{+} = 34\%$ 86-Sr (d;2n) 86-Y Yield: 3.2 mCi/µAh with 13 MeV, 87-Sr (p;2n) 86-Y [Rösch, 1990 ZfK-728] 86-Sr 10 - 50 GBq possible

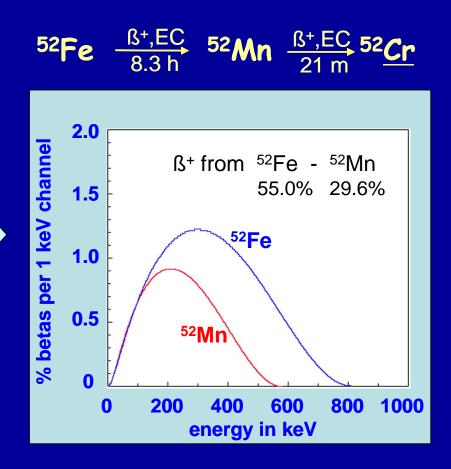
86-39-3-2

Isotope Production with Cyclotrons The (p,4n) process

⁸²Sr:

•

⁸⁵Rb (p,4n) ⁸²Sr

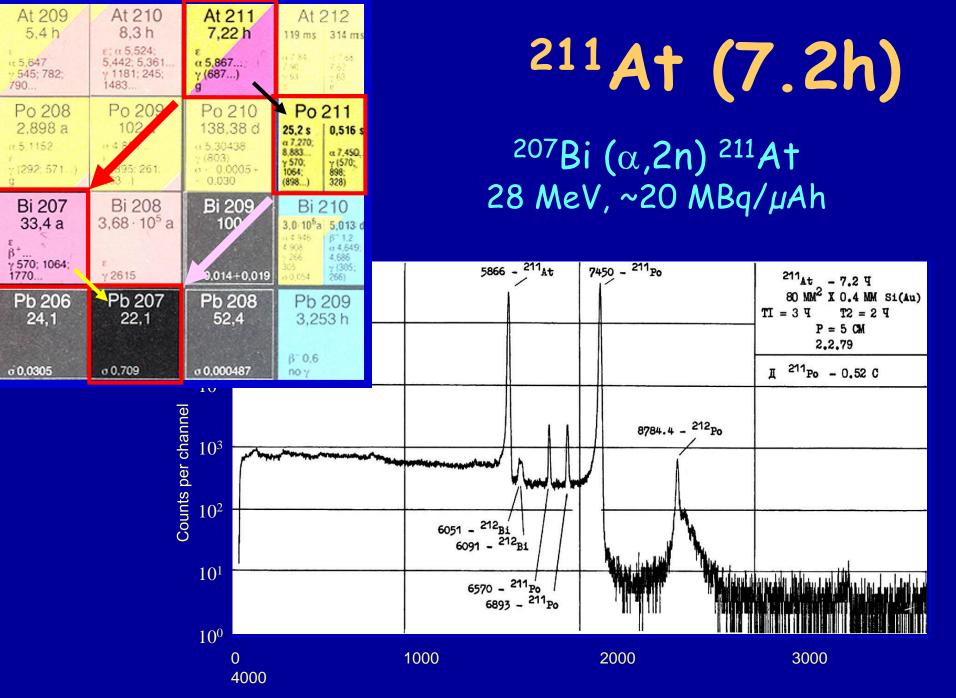

⁸²Sr generates the short-lived ⁸²Rb (80 sec), which is an positron emitter. This generator nuclide is used for PET in nuclear cardiology. The low availability and the still relatively high price hampered a larger distribution so far. Produced at TRIUMF(Ca), Protvino (Ru), South Africa and LosAlamos. Liquid Rb-metal sealed in silver bodies is used as target. High beam intensity is used.

⁵²Fe: ⁵⁵Mn (p,4n) ⁵²Fe

⁵²Fe is an interesting radionuclide for PET, it generates the 20 min ⁵²Mn daughter nuclide that can be used in PET.

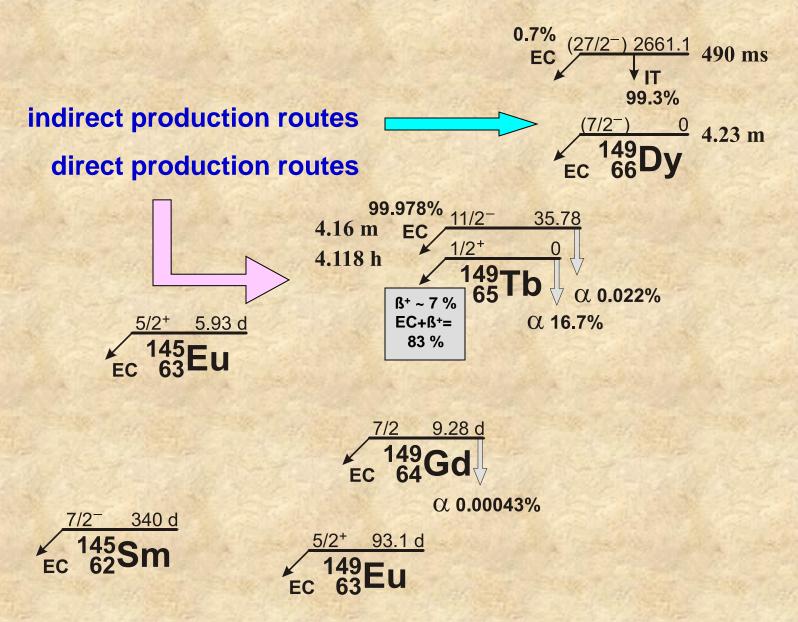
¹⁴⁹Tb: ¹⁵²Gd (p,4n) ¹⁴⁹Tb

¹⁴⁹Tb has shown its potential in TAT (targeted alpha therapy) as it is a partial alpha emitting nuclide and any bio-conjugate (monoclonal antibodies or peptides) can be easily labeled with this interesting nuclide

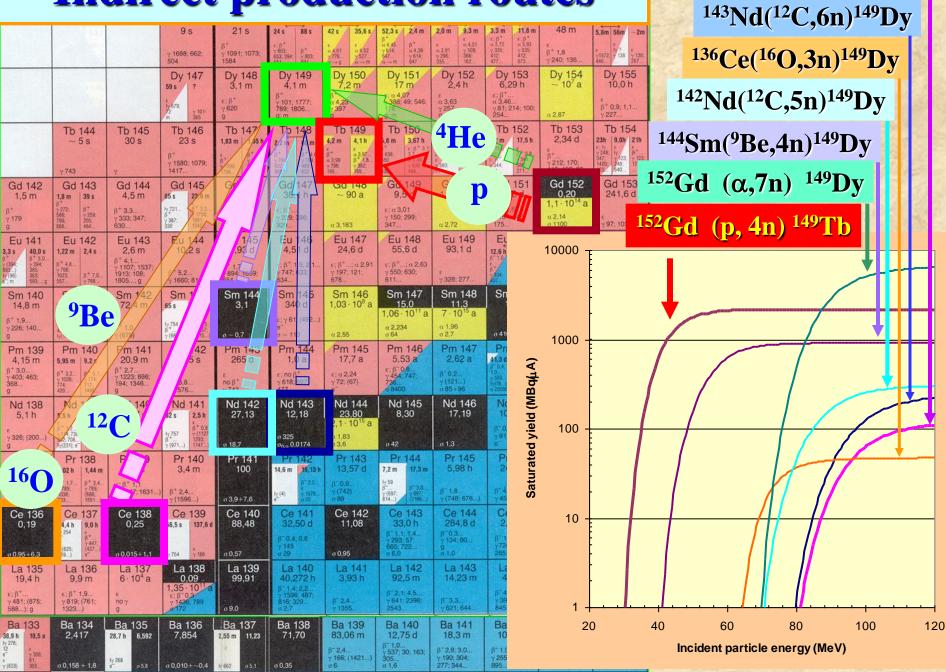

Isotope Production with Cyclotrons The $(\alpha, 2n)$ process

• 211At: $^{209}Bi(\alpha, 2n)^{211}At$

Among the very few suitable alpha emitting radionuclides for the ²¹¹At turns out to be the most suitable candidate for the medical application (targeted alpha therapy) presently a subject of intense international research activity.


The ²¹¹At can be produced by irradiating of natural Bi targets with 28 MeV alpha particles. Newly developed targets allow a production on large scale:

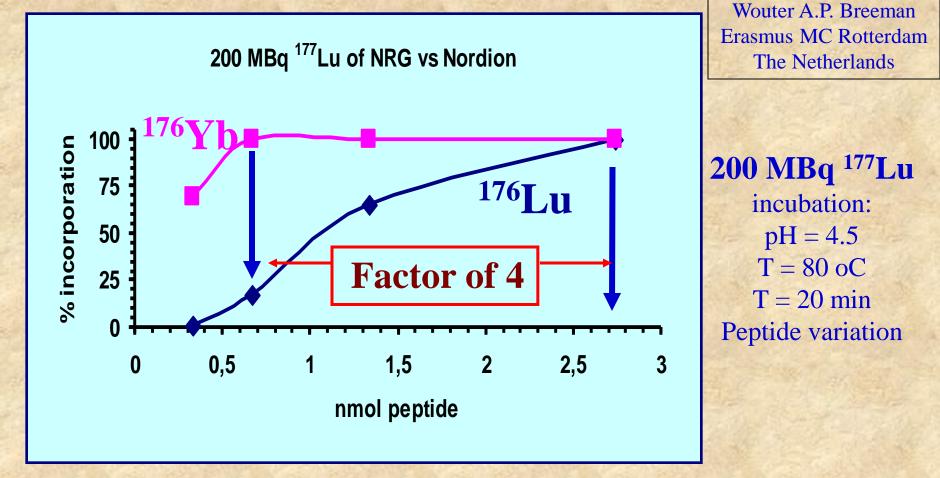
Production yield is ~ 40 MBq/Ah, production batches of 10 GBq are technically possible. A typical patient dose for therapy will range between 0.4 and 2 GBq.



Channel number

Segment of the decay chain A = 149

Indirect production routes

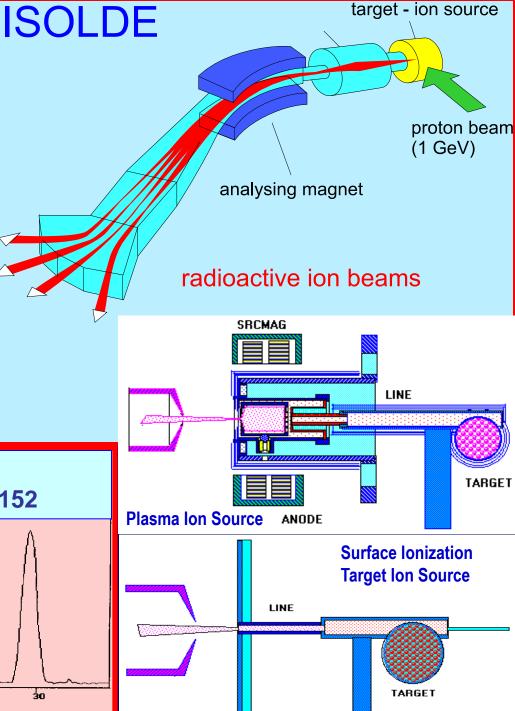

¹³⁸Ce(¹⁶O,5n)¹⁴⁹Dy

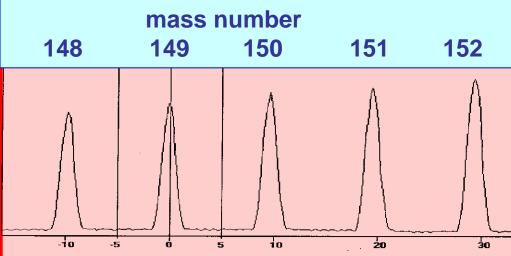
Higher Quality is required

Why is high specific activity that important?

- The receptor density is low for peptide ligands
- The infusion speed is limited for certain therapeutical approaches
- We do not wont to delute our biospecific ligands with inactive atoms

Influence of production mode for ¹⁷⁷Lu ¹⁷⁶Lu-route versus ¹⁷⁶Yb-route

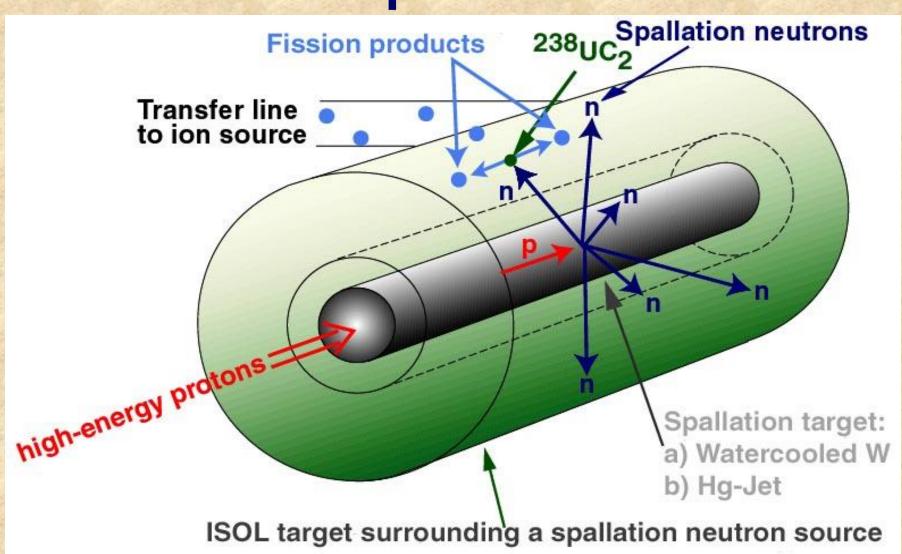


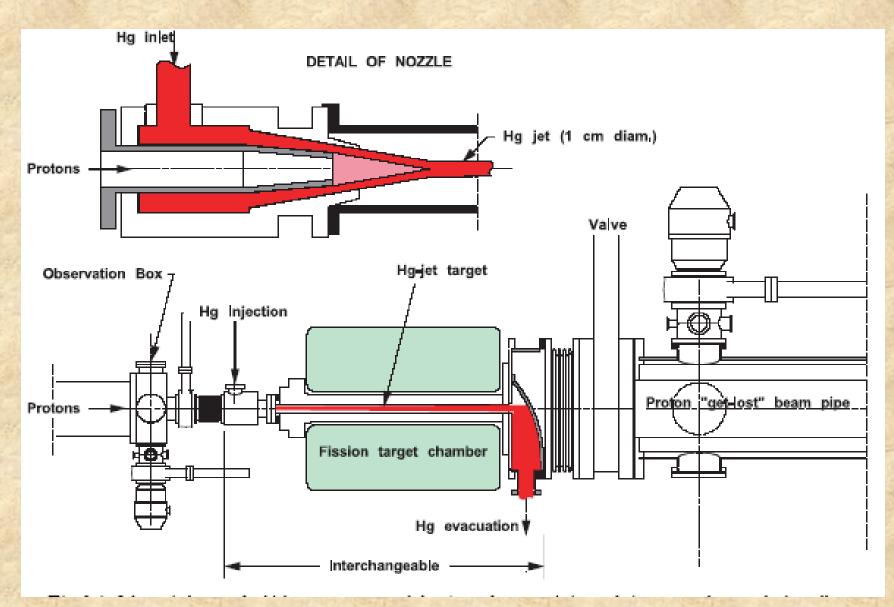

Low carrier - shorter infusion time

- R&D needed for development of alternative technologies producing carrierfree radioisotope preparations for therapy.
- Reactor versus cyclotron production routes: ¹⁸⁵Re (n,γ)¹⁸⁶Re // ¹⁸⁶W (p,n) ¹⁸⁶Re 67Cu others
- Other alternatives: spallation reaction (CERN) isotope separation (of radioactive preparations)

Radiolanthanides at

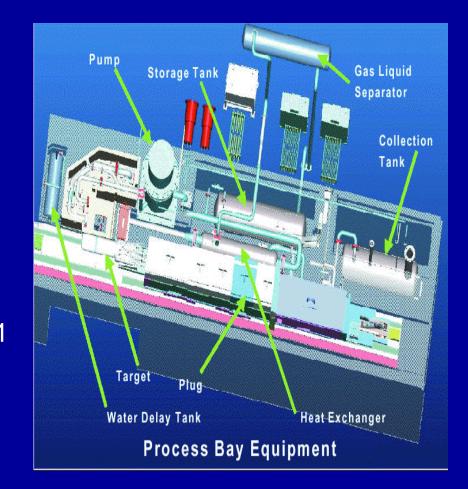
spallation or fission 1 or 1.4 GeV protons pulsed beam, 3 10¹³ p/pulse (~1μA) Ta-foil- or U-carbide target Surface ionization ion source 122 g/cm² Ta (rolls of 25 μm foils) at 2400 °C W-tube as ionizer at 2800°C Radioactive Ion Beams of 40 elements possible today

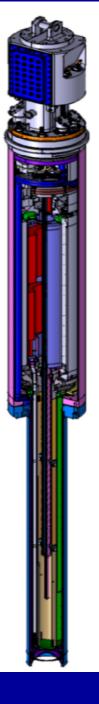



Alterantive Production Route:

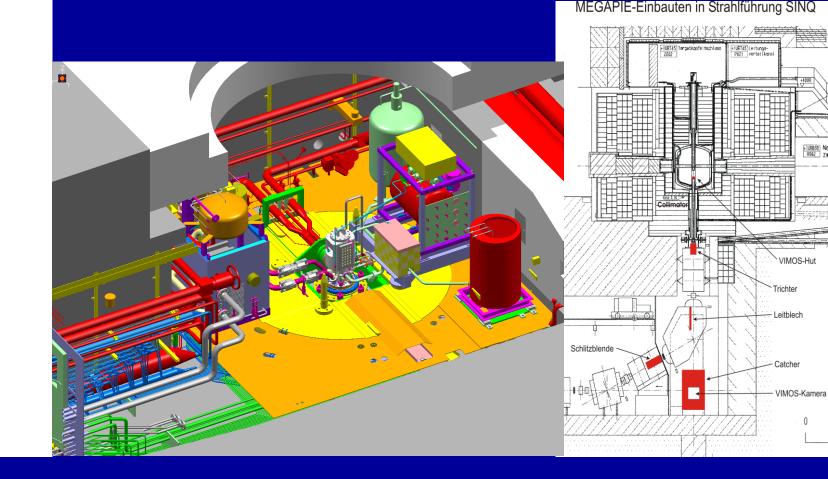
high energy proton induced Spallation Reaction

1 MW target for 10¹⁵ fissions per s




Hg-jet p-converter target

The SNS neutron source target station under construction


- Operating pressure 100 Bar
- Flow rate 2 t/m
- Jet speed 30 m/s
- Jet diameter 10 mm
- Temperature
 - Inlet to target 30° C
 - Exit from target 100° C
- Power absorbed in Hg-jet MW
- Total Hg inventory 10 t
- Pump power 50 kW

The MEGAPIE 1MW molten PbBi target under construction at PSI

Operation scheduled for 2006

What can nuclear centers do?

- Own specific medical isotope programs
- Keep existing classical facilities running (²¹¹At)
- Alternative ways for isotope production
- High-tech radiochemistry
- Integrate physical methods into the isotope programs (mass separation for example)
- Collaboration with bio-chemistry and medicine (oncology, radiology, nuclear med.)
- International collaboration and integration into existing research network