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Preliminary remarks

An important consequence of classical electrodynamics is the

generation of electomagnetic waves by accelerated charges
particles.

The RF-voltage produces
Example: The antenna an electric field

E(t)= E,sin ot

It causes in the antenna
rod onto the electrons the
force

F(t)=eE,sin ot

and consequently the
accelleration

e i
alt)=—E,sIn ot
()mo @



As soon as a fast moving electron hits a solid state body it is
decelerated. Actually it is transversly bend by the coulomb field of
the atoms. Bending a charged particle is a transverse acceleration.
According to classical electrodynamics theese particles emit
electromagnetic radiation.

— X-ray radiation or ,Bremsstrahlung”
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An old example of a X-ray tube




The X-ray radiation has been discovered by Wilhelm Conrad Rontgen

fﬂ.‘(/&;&; |

1895: Discovery of the The hand of Mrs. Réntgen
X-ray radiation



X-rays are a powerful tool to
study the properties of all kinds
of material.

The X-ray tube provides a wide
wavelength spectrum of radiation.

X-ray tube

mono-crystal

Laue-interference of
a NaCl-cristal

collimator

Abb, 561
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Relativistic electons passing through a vertical magnetic field

bending magnet

In the dipole
magnet the
electrons feel a
horizontal
electron acceleration.

trajectory

This causes
also a kind of
electromagnetic
radiation

acceleration

synchrotron radiation
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In the center of mass frame of the electron the spartial power
distribution of the radiation is the same as of the Hertz' dipole
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Because of the relativistic velocity of the electrons one has to

apply the Lorentz transformation.

electron
trajectory

Lorentz-trans-

formation

Power distribution in the

Power distribution in the
laboratory frame

center of mass frame
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Time structure of the synchrotron radiation
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Because of the short radiation flash we have a wide frequency
spectrum of the radiation emitted by the relativistic elevtrons.
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Spektrum of electromagnetic radiation
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In 1898 Alfred-Marie Lienard has calculated
the radiation emitted by a moving charged
particle.

Due to his results the radiated power by
relativistic particles is given by the relativistic

Invariant expression

o e?C (dp)z 1 (dEjz_
Alfred-Marie Liénard |3S — 5 ——
1869 - 1958 6n80(m0C2) dt) c’\dt

At that time the possible electron energy in a laboratory was
strongly limited to some 100 keV. Therefore, it was not possible to

produce this kind of radiation.



In 1947 a 70 MeV-Synchrotron
was built by General-Electric.

This energy was high enough
to produce sufficient radiation
power.

= synchrotron radiation




Use of synchrotron radiation emitted by an electron storage
ring for high energy particle physics.

synchrotron synchrotron
radiation radiation
beam lines beam lines

particle
detector

e -injection e*-injection

i
&
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electron beam

\

radiation fan

>

bending magnet

electron beam

the synchrotron radiation from a
bending magnet is horizontally spread
out over a wide radiation fan.

— The radiation power at the
probe is limited.
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Much more intensity is provided by wigglers and undulators

undulator periode
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electron beam

magnet poles
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Principal of a modern, dedicated storage ring for syncrotron
radiation
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Development of
radiation power

Spitzenleuchtstarke
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Workshop

Design
of a dedicated
synchrotron radiation source
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The main elements of the SR-storage ring

S
beamline 3

wiggler /
undulator

rf-system
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1. Beamline requirements

Beamline 1 (bending magnet)

critical energy E. >3.5keV
dN . photons
>10
photon flux @ B¢ (4 /6)d@ =~ 0.1%BW - mrad-s
important _ _ey’l,
tormulas radiated power R, = 3.
il o 3T
critical frequency 2
dN _ P, g[ @
photon flux dele  of \ o,
93,7
spectral function S(&)= an K 5(t)dt
:
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Beamline 2 (wavelength shifter)
critical energy E. > 20 keV

dN S 1022 photons
(de/g)d®  0.1%BW-mrad-s

photon flux @ E_

Beamline 3 (undulator)

photon wavelength A=2-20nm
line width AN 1o
Important . 5 _ B,
formulas undulator field cosh(ng/A,)
ul « _ MeB
undulator parameter oM
oo 7\«u K2 2.2
coherence condition A = 22 1+2+y ®




2. General beam requirements

horizontal beam emittance e, <1-10° mrad
vertical beam emittance e, <0.1-¢,=1-10" mrad
Important 1
formula e <p3H(S)>
. 2
eE. =
beam emittance &, 323 mecy 1
J, o

Including the optics calculations of the storage ring


C:/OPTICS4/Optics4.exe

For the beam optics we coose a ,Chassman-Green lattice”.
A

B
D BO '
N p(s)
D(s)
[)0 . P /
D\ otbit
D=0 =
SO
Y
- - > bending magnet

g, =C y2®3(y°|—a0 +ﬁ°)<1-108mrad
! 20 4 3

C,=3.832-10"m



For the minimum emittance the initial conditions are

B, =2\/§| =1.549 |

o, =15 =3.873
1+ai 10.329
’yo — —
Bo |

This extreme slope q Is too high, it causes problems finding
stable beam optics. Therefore, it is recommended not to exceed
this value beond o, = 3,0.
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3. The machine

type: electron storage ring

beam energy E, =7

beam current 1, =7

. ] _n
bending magnets  bending radius p=:
magnet length =7?

bending angle / magnet A® =7
total number of magnets N =? (N-A® =2x)

beam optics (recommended: Cassman-Green lattice)

Insertion optics WLS (Strong magnet)

undulator  (weak magnet)

32



rf-system rf-frequency T =7
rf-power P.=7?

cavity type: pillbox, 3-cell, 5 cell,
superconductive etc.
Injection

injection energy: E,, = E,

E, <E, (+SRramping)

Injection rate ( maximum rate limited by radiaton
damping)

W
- a=—2-(1-D
damping constant X 2EbT0( )

generally:  keep the design simple and cheep !

33



1. Introduction to Electromagnetic Radiation
1.1. Units and Dimensions

In the following only MKSA units will be used.

physical quantity | symbol dimension
length I meter [m]
mass m kilogram [kg]
time t second [s]
current I Ampere [A]
velocity of light C 2.997925.10° m/s
charge q 1C=1As
charge of an electron e 1.60203-10"° C
dielectric constant & | 8.85419-10* As/Vm
permeability Lo Ar-107 Vs/Am
voltage V 1 volt [V]
electric field E V/m
magnetic field B 1 tesla [T]
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1.2. Rotating electric dipole

At first we will look at a static electrical dipole

One can see that the delay (or “retardation”) of the electric field
spreading immediately leads to a wave of the electric field.

35
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1.3. Rotating magnetic dipole

The figures show three pattern with different rotation frequencies

between 200 Hz and 10 kHz. One can directly see the generation of
spherical waves traveling from the center to the outside.
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2 kHz 10 kHz
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1.4. Relativistic charged particle traveling through a bending
magnet

The last example is the radiation emitted by a charged particle moving
with a velocity close to the velocity of light.

v "retarded”
) ficld
NREA
e () et O v _ ¢ o _@_ - @ _>
U/ \Y} / \Y} synchrotron
light
electron

trajectory
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Radiation2D.exe

2. Electromagnetic Waves

2.1. The wave equation
Oscillations are periodic changes with time S(t) = Syexpiomt
It is the solution of the differential equation S(t) + »*S(t) =0

A wave describes a periodic change with time and space.

(W (1) [W (x)
t = const.




The corresponding equations are

W (1) + o'W (t)=0 W= %I_n (frequency) (2.1)
a2\(’2\)/(?() +kW(x) =0 K = % (wave number)  (2.2)

and for all 3 dimensions

—>

AW +KW () =0  K=(kok, k)

At the time t, the wave has at the point X, the value W™, At the time t,
the wave point has moved to the point X,

W™ (x,t) =W, exp i (ot, —kx, ) =W, exp i(ot, —kx,)
= ot —kx, =ot, —kX,

= o, —t,)=k(x —x,)

41



The wave velocity (phase velocity) becomes

VAx X, — X _o
At -t K

From (2.1) we get

1

(2.3)

Wt +oWXt)=0 =  W(Xxt)= —gW(x,t)

Inserting this result into (2.2) we get

OWD | e (x,1) =0
OX°
L WO Ky

OX* ®°

42
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With the phase velocity (2.3) we find the one dimensional wave
equation

W (x,t) =0

oW(x,t) 1
OX° s

The general tree dimensional wave equation has then the form

1
V2

AW (F,t) - SW(r,t)=0 (2.4)

with the Laplace operator

2 2 2
A= 8_2+ 82+ 82 =V
oX" oy° oz

2
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2.2 Maxwell's equations

The electromagnetic radiation is based on Maxwell's equations. In
MKSA units these equations have the form

V.E=P  Coulomb’s law (2.5)
&g
V-B=0 (2.6)
VxE = —Z? 2.7)
VxB = Mo J + HoE, a@f iAaVn\}pere S (28)

One can easily show that time dependent electric or magnetic fields
generates an electromagnetic wave. In the vacuum there is no
current and therefore | =0

44



From (2.7) and (2.8) we get

VxE=-B 9 VxE=-B
: % — Vx(ng)— Vxé
VxB=p,g,E V x — Ho®o

Inserting the first equation into the second one we get

—

V x (V X I§): —1L,€,B
Using the vector relation
Vx(Vxad)=V(V-a)-V-a
and equation (2.6) we finally find
V°B - u080|§ =0
This Iis a wave equation of the form of (2.4). The phase velocity Is

c=1//ie, = 2.997925.10° r:

45
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2.3 Wave equation of the vector and scalar potential

With the Maxwell equation VB =0 and the relation V(Vﬁx a’) =0
we can derive the magnetic field from a vector potential A as

B=VxA (2.9)
We insert this definition into Maxwell ‘s equation (2.7) and get

VXE:—a—B:—Vx oA = V x E+8—A =0
ot ot ot

The expression (E +0A/ 8’[) can be written as a gradient of a scalar
potential ¢(F,t) in the form

E + a_A\ — _V(I) (210)
The electric field becomes ot ~
= OA

E = —(V(I) + j (2.11)
ot

46
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With Coulomb's law (2.5) we find

VE——V£V(|)+8AJ L4
or ot ) ¢,
O(w z\_ P

Vio+ —(V-Al=—— 2.12

0 at( ) s (2.12)

We take now the formula of Ampere's law (2.8) and insert the relations
for the magnetic and electric field (2.9) and (2.11) and get

nN - 8 aZA
VxIVxA)= — Vo+
\ X( X ) Ho ) HOSO(@I 0 pve j

v-(v-gyva

VeA- VAV -A)=-
Hogo( 8’[ ot ] ( ) o )

(2.13)

a7
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The relation becomes

=
Vzﬁ—uogoztf\—v-(v-ﬂ+ uogog(l)j:—poj (2.14)

Equations (2.12) and (2.14) create a coupled system for the potentials
A and ¢. We define now the following gauge transformation

A o A=A+vA ¢ — q)’:q)—%?

The free choice of A(F,t) provides a set of potentials satisfying the
Lorentz condition

48
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With the gauge transformation we get

2
V(A+VA)+ 18(4)—8/\) VA+ 00 +V(VA)- 19 /2\ =0
ot ot k cat ¢’ ot
= 0
If the function A(T,t) is a solution of the wave equation
2
VZA - 12 ‘ /2\ =0
c” ot

the Lorentz condition is fulfilled. In (2.12) we replace VA by —(])/C2
(Lorentz condition) and get

2
V¢_1Q9 =l (2.15)
c’ot® g,

49
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With € =ZI7/ L€, the expression (2.14) becomes

2N
Y Z\—E%—v (v A+t a"’)_—uoj

¢’ ot’ > ot
N
The result is then =0
- 10°A .
VZA_ C2 81:2 — _Hoj (216)

The two expressions (2.15) and (2.16) are the decoupled equations
for the potentials A(T,t) and ¢(T,t). These inhomogeneous wave
equations are the basis of all kind of electromagnetic radiation.

50
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2.4.The solution of the iInhomogeneous wave equations

We have now to find the solution of the iInhomogeneous wave
equations (2.15) and (2.16). We start assuming a point charge in the
origin of the coordinate system of the form

dq = p(F,1) 83 (F) dV

Outside the origin, i.e. [F|#0 the charge density p vanishes. The
wave equations of the potential becomes

(I)_lﬁ_z(l) 0

The potential has now a spherical symmetry as

51
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We have now to evaluate the expression V-¢(r) for a point charge.
A straight forward calculation yields

raq)j (v )aq) 0% _28p 0%

Vi) =V Velr) = V(rar or or° ror 6r

On the other hand we find the relation

o (00 _ 500 0% _ o
8r2(r¢) ar((b ar) arH&r2 V7o

Combining these two expressions we get the wave eguation
In the form

1@24) 1( 0> 190°
Vip— = rd)=0
¢’ ot” (ar c? 8t2j( )

52



with the general solution

1 1
o(r,t) == f(r—ct)+=f,(r+ct)
I I
The second term on the right hand side represents a reflected wave,

which doesn't exist in this case. Therefore, the solution iIs reduced to
1
o(r,t) == f(r—ct)
I

In order to evaluate the function f (r — ct ) one has to calculate the

potential ¢(r, t) in the origin of the coordinate system. The problem is
that

r-0 = d)(r,t):f(rr_Ct) > 00

A better way is to compare the first and second derivatives of the
potential. For r — 0 we get

of . f (—ct) - of . 10f (—ct)
or r’ ot r ot

53



The ratio of the second spatial derivative to the second time derivative
IS even much larger

2 2
8_(1)»128_(2]) for r—0
or c” ot

and we can simplify the wave equation (2.15) to
vip(rt)=—  (r-0)
Eo

This is the well known Poisson equation for a static point charge.

For r — 0 the potential ¢(r , t ) approaches the Coulomb potential.
Therefore, we can write

or)=fr—ct) —=s Lfcy= - PO,y
r r Ame, T

54
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Because of the limited velocity C of the electromagnetic fields, at a
point I outside the origin the time dependent potential is delayed by

A= =ttt

C C
At this point we have the "retarded"
potential AZ
0,t—"
1 P ( ’ Cj P
do(r,t) = dV

Ame, r

If the charge Is not in the origin but at
any point " in a Volume dV we get

1 CJay

r—-r
retarded by At = ‘—

C

do(r,t) =

drig, F-r
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Since under real conditions one do not has a point charge the
potential must be integrated over a finite volume containing the
charge distribution. The result is then

e
C Jqv (2.17)

1
r.t)=
o(r.) 4re, r—r'

J
\%

The vector potential A(r,t) can according to (2.15) and (2.16) easily
evaluated by replacing the expression P/€, by U] . In this way we

find :
pﬂ%:t_r—r

A(r,t)="o S jolv (2.18)
At r—r

J
V

These solutions of the two wave equations are called Lieénard-
Wiechert potentials.
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2.5. Lienard-Wiechert potentials of a moving charge

We now replace the distance between the charge and the observer
by

R=r-r

Radiation observed at the \ p(x',y',Z')
point P comes from alll

charges within a spherical
shell with the center P,
the radius ‘ﬁ‘ and the
thickness \df’.\ fdoisthe do

surface element of the

shell the volume element
IS g at time ¢’

dV =dodr

radiation
at time t

P

observer

particle
trajectory
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The retarded time for radiation from the outer surface of the shell is

R
t'=t-—"-
C
and from the inner surface
t” — 1 _ @
C

The electromagnetic field at P at time t is generated by the charge

within the volume element dV . The charge in this volume element is
with dr = ‘dﬂ
dg, =pdodr

For charges moving with the velocity V one has to add all charge
that penetrate the inner shell surface during the time dt=dr/c ,
.e.

dg, = pvnidtdo

58



with the vector i normal to the outer surface defined by N = ﬁ/‘ﬁ‘
The total effective charge element is then

dg =dg, +dq, = pdo(dr +vrdt) = pdc(dr +\7ﬁdrj

C
= p(1+ ﬁB)drdG
With this relation we can write
dg
drdc =pdV = - 2.19
P P 1+1p (2.19)

Insertion into equation (2.17) gives

1 dg 1 g 1
o(r.t)= dre, J R(L+AP) 4ne, R (L+np) (2:20)

59
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The current density an be written as I = pV. With this relation the
vector potential (2.18) becomes

A(T’,t):Z;’EJ\;pdV

With (2.19) we get finally

—

X _ Mg vdog _Cup g 5
A(r’t)_4nJR(1+ ) 4n R(L+Ap), (2.20)

It is Important to notice that the parameter in the expression on the
right hand side must be taken at the retarded time t'. The equations
(2.20) and (2.21) are the Liénard-Wiechert potentials for a moving

point charge.
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2.6 The electric field of a moving charged particle

Using the formula (2.10) we can derive the electric field at the point P
by inserting the potentials as

E:—V’¢+a—'& — _ q V! 1 _}_C!“loqa B _
4ne, R{+nf) 4n otR(1+np)

After longer calculations (see script) the electrical field finally
becomes

2

SRS TS
E_4n80{ x (R+PR)+ aRx[R AR [3} (2.28)

with a:=R(L+rip)

61
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Since the expression1/R? drops down with the distance R the
first term vanishes at longer distances. The second term,
however, reduces only inversely proportional to the distance R .
It determines the radiation far away from the source charge.
Therefore, we can we can neglect the first term in (2.28) and get

E = 4380 Cig Rx|R+BR)xB]I | 2o

62
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2.8 The magnetic field of a moving charged particle

With the relations (2.9) and (2.21) we can calculate the magnetic field
of a moving charged particle and we find

B=V'xA= C“OqV’x(Bj CHoY (V xB—:(V a)x B) (2.30)

4 a 4

Again after longer calculations (see script) the magnetic field
becomes

E?=C“°q{— ; Xzﬁ] i lfsxﬁhi(ﬁw +ﬁﬁj[6xﬁ]} (233)
Ca d C

41 a

63


../../../../../../../Optics/Optics.exe
../../../../../../../../OPTICS4/Optics4.exe

For the long distance field only termes proportional to 1/R are
Important. We get

g - CHad| _ Ex n (Bﬁ)[ﬁ X ﬁ] ]
4r | cR(1+np) CR(1+ np)
we modify the formula (2.26) in the following way

) : __; RP
E = 480{ |-n—pB+bR] azb}

The vector multiplication of this equation with the unit vector N gives

E x| = ~n—p+bRJ- *+@b xn
exnl- 0| LEn-peok]- S M)

64
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#x—q;l—x X XM |———|[Bx X
E ﬁ]—4n80 \a{ [ﬁ_oﬁ] Bxn]+b Roﬁ) " s ﬁ] ~Ip ﬁ]}
q [ Bxn] R 1 R( o, Rala,

C4meg, | @ (:aZ[B ﬁPaS(ﬁB+B +0Bj[ﬁ ﬁ]}

Comparison with the equation (2.33) leads directly to the following
simple relation between the magnetic and electric field

T
B—E[Exﬁ]

We can now state the Poynting vector of the radiation in the form
- lr= = 1 r= /=
S =—[E>< B]z—[Ex(Exﬁ)]
Ho ClL

65
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We apply again the vector relation d X (5 X (T) = 5(81(‘3’)— 6(3’5)
and get E x(E xn)=E(En)-nE? = -nE?
The Poynting vector finally becomes

q 1 -
S=-"FE*n
CLL,
This is the power density of the radiation parallel to i observed at
the point P per unit cross section. We now evaluate the Poynting

vector at the retarded time t’. With (2.23) we find

goslt__lpgdt__1lga
dat"  cy, d" cu, R
and finally
§'—— L E14nif)n

C Uy

66
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3 Synchrotron Radiation

3.1 Radiation power and energy loss

We choose a coordinate system K* which moves with the particle

of the charge ( = €. In this reference frame the particle velocity
vanishes and the charge oscillates about a fixed point. We get

V=0 - =0 - a=R

It is Iimportant to notice that B* # 0! The expression (2.29) is then

modified to
E™ = 47?80CR3(RX[RX ]) (ﬁx[ﬁx ])

4me, CR
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The radiated power per unit solid angle at the distance R from the
generating charge is

dP

OI—Q:—riSR2 Cuo(4n80) (ﬁx[ﬁxﬁ])z

(3.1)

(47t) Ce, (ﬁ " [ﬁ " ])2

With the vector relation éx(b ) 6( ) C’(ﬁﬁ) and MM =M°=1

we find

(1l ] = (n(ni )¢
L. (

)] 22
B +p° =

-w
]
!
N
|
|
=
—
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Since

1B = p

CosO = ‘B‘ cos®

O is the angle between the direction of the particle acceleration and
the direction of observation the relation (3.2) becomes

(ﬁx [ﬁxB])z —B" —p cos?@=B"(1-cos’®)=F"sin’®

The power per unit solid angle is then

2 :
P& [sine (33)
dQ (4n) ce,

The spatial power distribution corresponds to the power distribution
of a Hertz' dipole.
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~

2 The total power radiated by the charged
particle can be achieved by integrating
(3.3) over all solid angle. With

dQ2 =sin®'dO'd
/ we can write
E S ﬁsin?’ OdOdo
(471)2 Ce, 4%

/% where ¢ is the azimuth angle with respect
/-1 to the direction of the acceleration. the
total power becomes

/ D — e’ [—'3»*2

bme,C

\
o
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This result was first found by Lamor . One can directly see that

radiation only occurs while the charged particle is accelerated. With
the modification

=V omv D
B — = —

C mc mc

2
6ne,m’c’\ dt
This is the radiation of a non-relativistic particle. To get an expression

for extreme relativistic particles we have to replace the time t by the
Lorentz-invariant time dt = dt/y and the momentum P by the 4-
momentum P,,.

we get
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dt — dv=dt with y= -, -
b MyC 1_52

p — P (4-momentum)

2
dt drt dt ¢’ \ dt

With this modification we get the radiated power in the relativistic

Invariant form

or

e?C dp)® 1(dEY
P. = 5 b (3.4)
67’580(m0C2) dt ¢\ drt
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There are two different cases:

| | dv

1. linear acceleration: —||V
dt
. . dv

2. circular acceleration: — |V
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3.1.1 Linear acceleration
The particle energy is
2 2\
E =(moc ) + p°C

After differentiating we get

Using E = ym0c2 and P =7vMyV we have
dE _, dp
dt dt

Insertion into (3.4) gives

e’c

ol
" g, (mc?) [\ dt ¢/ \dt

e, (myc?)



With 1—B° =1/y* we can write

e’c ( dp )2 e’c (dp)z
Ps — 2 \2 = 2 )2
67‘[80(m0C ) ydt 67’[80(m0C ) dt

For linear acceleration holds

dp _cdp _dE

dt cdt dx

e’c (dEj2
Ps — 2
6re, (m,c?) \

In modern electron linacs one can achieve

O'_Ez15M = P =4.10"" Watt (1)
dx m

and we get
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3.1.2 Circular acceleration

Completely different is the situation when the acceleration is perpen-
dicular to the direction of particle motion. In this case the particle
energy stays constant. Equation (3.4) reduces to

2 2 2 2 2
p_ e°c Z(dp) _ ety 2(dpj (35)
6n80(m002) dr 6n80(mocz) dt

On a circular trajectory with the radius p a change of the orbit angle
dow causes momentum variation

dp = pda
With v = ¢ and E = pc follows
dt p P
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We insert this result in (3.5) and get with vy = E/moc2

e’c E°
P, = T (3.6)
6n80(m0C ) Y

Comparison of radiation from an electron and a proton with the
same energy gives

m.c® = 0.511MeV
m.c = 938.19MeV

P mc?)’
=[ : j =1.13-10%(!)

2
Ps,p meC

This radiation Is therefore observed in most of the cases from
electrons.
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In a circular accelerator the energy loss per turn is

We insert (3.6) into (3.7) and get

AE = §Pdt_ pt, =P <" 27p
C
e’ =

AE =

380(m0C2 )4 Y

(3.7)

For electrons one can reduce this formula to a very simple expression

AE [keV]=88.5

E* [GeV*]

p [m]
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The synchrotron radiation was investigated the first time by Liénard
at the end of the 20th century. It was observed almost 50 years later
at the 70 GeV-synchrotron of General Electric in the USA.

The energy loss per revolution is

4
AEocE—
P

L[m] | E[GeV] | p[m] | B[T] |AE [keV]
BESSY || 624 0.80 1.78| 1.500 20.3
DELTA 115 1.50 3.34| 1500 134.1
DORIS 288 5.00 12.2| 1.370| 4.53.10°
ESRF 844 6.00 23.4| 0.855| 4.90-10°
PETRA | 2304 23.50|  195.0/ 0.400| 1.38-10°
LEP 27-10° 70.00 3000/ 0.078| 7.08-10°




3.2. Opening angle of synchrotron radiation

In the center of mass system K’ the spartial intensity distribution is
the same as at the Hertz' dipole.

!

y

K'

Elektronen-

bahn 3’ A , K'

Biegeradius

[ —
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A photon emitted parallel to the y "-axis has the momentum

EI
Py =Py=—70

C
ES' IS the photon energy. The 4-momentum becomes

P =(p,, Pes Py P, )=(E./c, 0, py, 0)

Using the Lorentztransformation we get the 4-momentum in K

(y 0 0 By)(Ej/c) (vE/c)
0 1 0 O 0 0
p = - =
© 10 01 0| p s
By 00 v)L 0 ) (yBE/c)
With P, = E./C we get the opening angle
: 1
tan®:&= Po_ 2

b, YBPy v
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3.3 Spatial distribution of the radiation of a relativistic particle

The power per unit solid angle was given in (3.3) as

dP €’
dQ  (4n)°ce,

for the radiation of a charged particle in the reference frame K*.
The angular distribution corresponds to that of the Hertz' dipole.
The radiation of relativistic particles is focused with the opening
angle of .

S>x2 .
B sin’®

The radiation power per unit solid angle is given in (3.1)

P _nsr?
dQ
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With the relation for the Poynting vector at the radiated time we
get

P 1
o @E 1+npR?

Inserting the electrical field (2.29) and with the charge of an
electron q = e we find

dP 1 : 1 (=2 [/ =~\ = _
dQ  cu (47:)8 )’ c’a® '{RX[(RJFBR)XB }2(1+ﬁl3)R2
0 0

1 e R o= e
_ CHO (4n80)2 2 {ﬁx [(ﬁ + ﬁ)x B ]}

(3.8)
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particle
trajectory \

The vector R pointing from the
observer to the moving particle is

R

—R | sIn®sIing

(sin ®cos ¢

. C0s®

and the correlated unit vector

= —sin®sin ¢

(—sinOcosd )

. —C0S®

(3.9)

The Lorentz force of an elec-
tron traveling through a magnet

IS

/_VBZ\

F=-eVxB=-¢ 0

.0

= 'Ymo\7
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with (0) V) (0

v={0|, v=|/0| and Z (3-10)
V) 0 0
A straight forward calculation yields

ym,Vv, = evB, = ecf3B,

uul
Il
0o

On the other hand the bending radius p of a trajectory in a magnet
can be evaluated according to

1 e eB m,V
“=-B=—"% = B = Al
p P Y MV €p
The transverse acceleration of the particle can now be written in the
form
. CZBZ
V, = —— (3.11)

P
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With (3.10) and (3.11) we get

B= 0 |=|0 (3.12)

and

==l
Il
o
Il
o

(3.13)

Using again the vector relation
d x (Bxé): 5(3(":’)—6(36)
The double product in (3.8) becomes

(1 ([n+xp )j=(n+B)lrp)-p e+ nF)
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Inserting (3.9), (3.12) and (3.13) we get

(ri+ B ) )- B+ np)=

(—sSin®cosd) :
=| —sin®sin ¢ (—sin@cosd)%j—
. p—C0s® P .

( sin?@cos?y
=" sin®®sindcosd
_—(B—C0s®)sin®cos¢),




From the definition of a we derive with (3.9) and (3.12)

a=R(1+np)=R(1-pcosO) (3.14)

Some further calculations finally privide

dP 1 ' PB*(B2-1)sin?@cos? h+(1-Pcos®)

dQ  c®u, (4ne, )’ p° \\(1— Bcos®)
Acceleration (3.15)

2 2
a:dv:v =CZB—
dt »p P
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With the dimensionless
particle energy

E 1

we vary the angle ©® bet-
ween the direction of par-
ticle motion and the direc-
tion of photon emission
according to

u
® =— (U= dimension-
Y less number)

and calculate the photon
Intensity using equation
(3.15).
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It is directly to see that the radiation is mainly concentrated within a
cone of an opening angle of. In equation (3.15) we set ¢ =7t/2 and
the fraction on the right hand side reduces to

1
W(0®) = 1P oos @)3 (3.16)

With the conditionsy >>1and ® << 1 we find the approximations
2

b= /1—12z1—i2 and cosO=1-—
Y 2y 2
and we get from (3.16)
) 2\ T 2 2 773
W(@) =~ |1- 1—% 1—®— 1—1-|—®—+ 12 ®2
I 2y 2 i 2  2y" A4y
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We chose now an angle of
® =1/y and find the relation

-3

1 1
2 o
wly) _\2y" 2y
w(0) 1 )"
2y2
1)’ 1
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3.4. Time structure and radiation spectrum

A detailed evaluation
of the spectral functi-
ons can be derived
IN

J.D. Jackson, Classical
Electrodynamics, Sect.
14

or in

H. Wiedemann, Particle
Accelerator Physics Il,
chapter 7.4
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The synchrotron radiation is focused within a cone of an angle
O = 1/ Y. An observer locking onto the particle trajectory can see
the radiation the first time when the electron has reached the point

clectron
trajectory p
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The photons from A fly directly to the observer with the velocity of
light. The electron takes the circular trajectory and its velocity is less
than the velocity of light. B is the last position from which radiation

can be observed. The duration of the light flash is the difference of
the time used by the electron and by the photon moving from the

point A to point B

At=t —t :2p®_2psm®
"ocpP C
or
At—@ © 5. .2 1 1 1
c\ B 3 c\y-12y v 6y
With
1

1 1 1( 1)1 1
|1+ =+
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We get (

In order to calculate the pulse length we assume a bending radius of

p = 3.3 m and a beam energy of E = 1.5 GeV, I1.e. y = 2935. With
this parameters the pulse length becomes

At =5.8-10"sec

This extremely short pulse causes a broad frequency spectrum with

the typical frequency o ey
T OnCy

Oy = =
WAL 2p

More often the critical frequency
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IS used. The exact calculation of the radiation spectrum has been
carried out the first time by Schwinger. He found

dN _Rgfo i17
de'e ok "\ o, .17
With the radiation power given in (3.6)
2 4
p — e°c 4 E
6re,(m,c2)' P

the total power radiated by N electrons is
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The spectral function in (3.17) has the form

S, (¢) = W&f K, 5(E)E

where K; ;(E)is the modified Bessel function and &=/, .

Because of energy conservation the spectral function satisfies the
normalization condition

[s,(¢)de =1
Integrating until the upper limit £ =1, 1.e. ® = ®,, gives

1 1

This result shows that the critical frequency o, divides the spectrum
Into two parts of identical radiation power.
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Synchrotron radiation spectrum from a bending magnet

critical frequency
1 i
=== =5 =
/ R S\
0.1 b
B
0
0.01 \
-
1
\
0.001 ‘

0.0001
0.001 0.01 0.1 W/ 10
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4 Electron Dynamics with Radiation
4.1 The particles as harmonic oscillators

In cyclic machines we have synchrotron and betatron oscillations.
In a good approximation we can consider the system to be a
harmonic oscillator.

S
=

rf-resonator
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4.1.1 Synchrotron oscillation

In a circular accelerator we have to compensate the energy loss by a
rf-cavity ("phase focusing").

For an on-momentum particle (Ap/p = 0) the energy change per
revolution is

E, =eUsin'¥, -W, (4.1)

with the reference phase Y, the peak voltage U, and the energy
loss W,,. For any particle with a phase deviation AY we find

E=eUsin(¥, + A¥)-W (4.2)

The energy loss can be expanded as

W =w, + W AE
dE
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The difference between (4.1) and (4.2) is
AE = E - E, =eU,[sin(¥, + A¥)-sin \I’S]—Cii\gAE

The frequency of the phase oscillations is very low compared to
the revolution frequency f, = 1/T,. It follows
AE eU €Yo

sin(¥, + A¥)—sin LPS]—O'W AE
TO T, dE T,

The phase difference AY is caused by the variation of the revolution
time of the particles

AE = (4.3)

AT =T,2F 1,025 (4.0
L, E
with the momentum-compaction-factor o defined as
AL _ Ap

L, p
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With the period of the rf-voltage T we get

AY = ZTC_AI_T = ©, AT (4.5)
f

The ratio of the rf-frequency and the revolution frequency must be
an integer number

q= O with ( = Iinteger
®

u

With (4.4) and (4.5) we get

AY =qo AT :anérT:anocAEE

0
and after differentation

_AY  2rnqa AE
T, T, E

AY (4.6)
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Assuming small oscillations, i.e. AY << ‘¥, we can write

sin(W, + A¥)—sin .= sin ¥, cosAY +cos ¥ sin AY —sin ¥,

~ AY coS'Y,
With this approximation equation (4.3) reduces to
AE = ®oawcos ¥ - W AE
T, dE T,
A second differentiation provides
AE = Yoacos P - W AE
T, dE T,
Insertion of (4.6) gives
AE +£MAE _2nqgeal,cos‘Y, AE =0

T, dE TE
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or

AE +2a AE + Q°AE =0 (4.7)
with the damping const
a - 1 dw 49
2T, dE

and the synchrotron frequency

Q-0 \/_ eU,qocos'P,
2nE

The equation (4.7) can be solved by the ansatz

AE(t) = AE exp(— a.t)exp(iQat)

This damped oscillation with the frequency Q is called the synchro-
tron oscillation.
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4.1.2 Betatron oscillation

The motion of a charged particle can be expressed by the equations

, 1 1 Ap
* ) +(&(s) k(s)jx(s) () P
2"(s) + k(s)z() = 0

Where p(s) and K(s) give the bending radius and the quadrupole

strength. With K(s) = 1/p?(s) - k(s) we find for on-momentum
particles

X"(s)+ K(s)x(s)=0 (4.9)
According to Floquet's theorem we find the solution
X(s) = ~&./B(s) cos|¥(s) + ] (4.10)

with the constant beam emittance € and the variable but periodic
betafunction 3(S) .
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The phase can be expressed as

)= JB(G)

The solution (4.10) is a transverse spatial particle oscillation with re-
spect to the beam orbit. We have a strong correlation between the

position S at the orbit and the time t
s(t) =s, +ct

This transverse periodic particle motion is called betatron oscillation.
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4.2 Radiation Damping

The damping needs an energy loss due to synchrotron radiation

depending on the oscillation amplitude.

4.2.1 Damping of synchrotron oscillation

The radiated power of the synchrotron radiation is
e’c 1 E°

P =
6ﬂ80 (mocz)4 p2
The bending radius Is
2
1:EB:§B — E—ZZeZCZBZ
p p E p

We can write the radiated power in the form

4.3
P-CEB2 with C= °°F

67t80(m0C2 )4

(4.12)
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In order to evaluate the radiation damping of the synchrotron oscil-
lation we use the equation (4.7)

AE +2a AE + Q°AE =0
with the damping constant (4.8)
1 dw
= 2T, dE

It is necessary to calculate the ration dW/dE. We estimate the ener-
gy loss along a dispersion. It is

ds’ = (1+ ij ds
P

Using ds’/dt =c¢ the energy loss per revolution is

TO 4
W:jedt=§ed5=1§a(1+mjds
0 c ¢ P
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The displacement AX is caused by an energy deviation

AX = DE
E

The energy loss becomes
W = %P(u DAEjds
C p E
Differentiating gives
dw 1 ([dP D(dP AE Pl)_
dE ¢ dE p

dE E E
Averaging over a long time one finds

-

ds

(4.12)
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Equation (4.12) becomes

W _ L) %5 4 OB g @13
dE ¢ dE pE |
We use the radiation formula (4.11) and get
0% _ 2CEB?+2CE? BdB—ZP(l ldBj (4.14)
dE dE E BdE

In quadrupoles with non vanishing dispersion the field variation with
the particle energy is

dB dBdx dBD
dE dxdE dx E
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It is put into the expression (4.14) and we get from (4.13)

1

dWlZPS
dE c¢)|

|

J

=

_|_
E

ii“:)d +1§DP(2dB
EE

BE dx P

— =

cE B dx

With (4.8) the damping constant is then

DdB)JrPSD
E_

ds

1jds
p

aS:

1dw W,
2T, dE ~ 2T,E

2+ o | ol
cW,

2dB 1
—— 4

Bdx p

jds

115



or

a, = Wi (2+D )| with D —%DP(ZdB-kljds (4.15)
2T, E dx p

It is more convenient to apply the bending radius p and the quadru-
pole strength Kk

ec dB dB kE]
k = — =
E dx dx ec 1dB
1 ec 1 e [ §d—:kp
-=—B -5 = p X
o E B E

We write the radiation power in the form
C E°

R = o202 pz

S
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Then the integral (4.15) becomes

DP| —+
§ (de P

The energy radiated by an on-momentum particle is

CE* 3Eds
eZCB p2

The damping constant for synchrotron oscillation is

20B 1

jd CE %D(Zk ' jds—
eC p P

f 1
W, :jPSdt=E§PSd5:

CE
e

4§D
“Jp

(Zk +

aS:

W

2T.E

® (2+D) with D:jg

D
p

(2k +

1
P

2jds

ds

2

p

1
pzjds

(4.16)

The damping only depends on the magnet structure of the machine.
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4.2.1 Damping of betatron oscillation

Following Floguet's transformation we can write with

A:=b./B(s)
2 =Db./B(s)cosd [ 7=Ac0s¢
b

(4.17)
sin ¢ = <z’:—isincb

JBs) . BB

We calculate the amplitude A using z and z".

A? = A2cos?d+ A%sin?g =22 +[B(s)Z'] (4.18)
A photon is emitted and the particle momentum P is reduced by op

p=p-3p
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The longitudinal component p, of the particle momentum is restored
by the rf-cavity, the transverse component, however, stays reduced.

The angle z’ is reduced by the amount

The energy variation
of the electron is then

2
C
OE =—9
v P,
orusingv =z’c

C
OE =0
z’ Py

A

7
e

particle
trajectory

momentum
of the photon ?
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With the relation E = c|p| follows

s,/ O (4.19)
E

From (4.18) we get the variation
3(A%)=5(z* )+ 8(z°p"(9)) =" (9)8(2”)
And we find with §(z? )= 0
2A5A=2B°(s)2'87 = ASA=P°(s)z'd7
After insertion of (4.19) we get
ASA = —B2(s)2" 6; (4:20)
Now one has to average over z 2. Taking the formula (4.17) gives

o AT, A
RRFIS f 000 =0 )
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In this way we find with the relation (4. 20)

=
ABA) = 28 (S)B (s )— o E

After a full revolution the energy losses oE have accumulated to
the total loss W,,. The average amplitude variation per revolution is

AA = (3A) (4.21)
Then we get from (4.21)

AA W,

A 2E
The amplitude decreases and we have a damping of the betatron
oscillation. The damping constant is

dA _ —a, dt
A
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With the revolution time At =T, we finally find

*T AAt 2ET,

A similar calculations including the dispersion gives

a, = W (1_ D ) (4.23)
2ET,

j@D(2k+12jds
D2 P p

ds

2

P

with
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4.3 The Robinson theorem

With the equations (4.16), (4.22) and (4.23) we have all damping
constants

a=_" (2+4D)=_0J,  a=_r =0
2T E 2T E 2TE 2TE
a, = WO (1_D): WO ‘Jx
2T E 2T E
with
J.=2+D J =1 J =1-D
From these relations we can directly derive the Robinson criteria
J,+J,+J. =4

The total damping is constant. The change of the damping partition
IS possible by varying the quantity D. In most of the cases we have
D << 1 ("natural damping partition").
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In strong focusing machines it is possible to shift the particles onto

a dispersion trajectory by variation of the particle energy. With this
measure one can change the value of D within larger limits. The

trajectory circumference L depends on the rf-frequency f as

L:qkzq: = dL:—qc(;hc2

We get
AL _ geAf _ af
L L f* f
With the momentum compaction factor we get
AL  AE AE 1AL 1 Af
L E E olL o f

The variation of the rf-frequency f shifts the beam onto the disper-
sion trajectory 1 Af

X5 (S) = _D(S)&T

124



UOIR[[I10SO UOJIRdq
oy} jo Surduwep ou

UONRIPRI UOJJOIYIUAS
oy Jo Suidwep ou

125



5. Particle distribution in the transversal phase space

5.1 Transversal beam emittance

bending magnet

photon

| particle
R trajectory

The natural beam
emittance iIs deter-
mined by the emis-
sion of synchrotron
radiation.

We start with an elec-
tron of momentum p,.
and emittance g, = 0.

The particle emits a
photon with the

momentum Ap and
continues the flight
with the momentum

Po - Ap
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4

A X

It now belongs to a disper- | |
sion trajectory with the dispersion
displacement and angle trajectory
A
5x =D P
P
A
and ox' = D’pIO - | ~
orbit Ox A
Y

The electron has therefore a finite emittance. It can be calculated
using the ellipse relation.

2 2
g = YOX + 200X0X' + BOX = [d;’j (yD? + 20DD’ +pD’?) = (dg’j H (s)
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To get the beam emittance one had to integrate over all particles in
the beam. For relativistic particles is

Ap AE
p E

A detailled calculation gives the natural beam emittance in the form

1
55 e 2<RSH (S)>
< 323mc? J<1>

R
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The damping is represented by the amount J,. If all bending
magnets are equal, we get with J, = 1 the simplified expression

E?

g =1.47-10 jH (s)ds

with E in [GeV], Rin [m] and g, in [m rad]. Because of

H (s)=(yD?+2uDD' +pD?)

the emittance is small whenever the betafunction and the disper-
sion is small inside a bending magnet.
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5.2 Examples
5.2.1 FODO lattice

Increasing the quadrupole strength
decreases the betafunctions and
the dispersion and the function

H(S). We can demonstrate it with a
simple so called "FODO-lattice".

one cell of the FODO-lattice OPTICS
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With increasing quad strength,

The quadrupole strengths vary the chromaticity increases

fromk=0.4 m2tok=1.6 m2

. rapidly.
It reduces the emittance almost
by two orders of magnitude ! -20
\ I
-15
100
' éz
-10
2 10 /
: / 2
—~ 1 2
W f 0 —
| 0 l k[m®] 2
0 1' Extremely low beam emittances

0 1 “m-r] 2 need very effective chromaticity
compensation (dynamic aperture).
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The betafunction and
s [m] the dispersion have

' ' O  inthe bending

magnet not the

minimum value.
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5.2.2 Triplett
lattice
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Mode: symmetrical solution
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This structure has been used for the electron storage ring DELTA. The emit-

tance at an beam energy of E = 1.5 GeV is g, = 7-10° m rad.
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6. Low emittance lattice

6.1 Basic idea of low emittance lattices

What is the lowest possible beam emittance ?

In dedicated syn- B !

chrotron radiation

D b,
sources long o,
straight sections for |
wiggler and D(s)
undulator magnets i e /
are required. This [)(: |
straight sections ~ 0 \ﬁ/ orbit
have no dispersion, D=0 S
i.e.D=0. s,

Y
- - > bending magnet
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Therefore, at the beginning of the bending magnet the dispersion

has the initial value
D, (0O
D) 0

With this initial condition the dispersion in the bending magnet is
well defined. With s/R <« 1 we get

2
D(s) = R(l— cossj ~ D'(s) =sin > ~ >
R) 2R R R

The emittance can only be changed by varying the initial values 3,
and o, of the betafunction. These functions can be transformed as

B(s) -—a(s)) (1 s B, —-o,)(1 O
iy S Y e
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and after straight forward calculations

B(s) =Py — 20,5 + Vosz’ a(S) =0, — 7S ¥(S) =17, = const.
We can write the function H(S) in the form

H (s) =y(s)D’(s) +20(s)D(s)D'(s) +B(s) D" (s)

L(y
= RZ(A? s* —a,s’ + Boszj

For identical bending magnets and with J, = 1 we get

Sx :Cy:_.(\)l_([H (S)dS:nyz(l) (YJ_OLO _I_Boj

R/)\20 4 3
with
55 h

- -3.832-10m
" 32J3mg
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The relation |

e
R
IS the bending angle of the magnet. We can write
g, =C y°®’ Yol _ G + o (6.1)
20 4 3

Since the emittance grows with ®3 one should use many short
bending magnets rather than a few long ones to get beams with low
emittances.

In order to get the minimum possible emittance we have to vary
the initial conditions B, and o, in (6.1) until the minimum is found.
This is the case |f

Og, 5 0 (lrog | oy Bo|_n (o ! _1)_,
60(0 aoLo Bo 20 4 3'
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and

og, A 1+oc§ | 1
o84 B2 20" 3

23
A =Cy@

with

The unknown initial conditions 3, and o, are

3
Bomin = 2\[5 | =1.549] 62)
Oy min = V15 =3.873

The betafunction for the minimum possible emittance is determined
only by the magnet length |.
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This principle is used by
the Chasman Green lat-
tice, the optical functions
do not exactly fit the con-
ditions (6.2). The reason
IS the extremely high
chromaticity caused by
the ideal initial conditions
(6.2).

The simple magnet struc-
ture shown in the figure
has no flexibility. There-
fore, more quadrupole
magnets are used in
modern light sources

30

B [m]]

299

20-
15-

10

3.0
D |m]

1.5
1.0

_'0.5

L0
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European Synchrotron Radiation Facility, Grenoble

An example of a flexible low emittance storage ring of the third generation
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In order to get the required flexibility, a larger number of quadrupols is applied.

The lattice of one cell of the ESRF magnet structure. The ring consists on 32 cells.

Magnet structures of this type are often called “double bend achromat lattice” (DBA)
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Another modifica-
tion of this optical
principle is the
"triple bend achro-
mat lattice” (TBA)
as applied in the
storage ring
BESSY Il in Berlin
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7. Appendix A: Undulator radiation

Synchrotron radiation is nowadays mostly generated by use of
undulators (or “insertion devices”).

undulator periode
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7.1 The field of a wiggler or undulator
Along the orbit one has a periodic field with the period length A. The

potential Is

o(s,2) = f(z)cos(Zn;j = f(z)cos(k,s). (7.1)

u

In X-direction the magnet is assumed to be unlimited. The function
f(z) gives the vertical field pattern. With the Laplace equation

Veo(s,z) =0
We get
d*f(2) )
—f(2)k:=0

and find the solution
f(z) = Asinh(k,z)
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Inserting into (7.1) the potential becomes
¢(s,z) = Asinh(k,z) cos(k,s)

and the vertical field component o0
BZ (S, Z) = — (72)
. 0z
PP =k, Acosh(k,z)cos(k,s)
, In order to get the integration
< i i | 1 constant A we take the pole tip
BT 92 field Byat{s,z} = {0, 9/2}. With
W 0 b s (7.2) we get

E B, = BZ(O,Q) = kuAcosh(ku g)
2 2 2

= kuAcosh(nj
A
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and A Bo

) k cosh(mg/A,)
Insertion into (8.2) provides
B (s2)= 20 _cosh(k z)cos(k.s)
cosh[ngj
d M
an
B(5,2)= %=~ sinh(k 2)sin(k s)

S cosh(n gj
}\"U

At the orbit the periodic field has the maximum value
B,

g —
cosh(mg /A, )
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For given period length the A the field decreases with increasing

gap height g. Short periods require therefore small pole distances.

1.2 [
~ 1.0
B
By 0.8 \
0.6
0.4
0.2
0 \\ i
0 0.5 1 1.5 2

g/Ay

At the beam the periodic field is B, (S,2) = I§sin(kus)
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The most simple design is an electromagnet

Ay " coils
Wz / \
el W
el

\_ NN
1
N

7

/.

P
Z
P

' RSN IMIVR N
SN NS

iron yoke
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Shorter period length down to a few cm are possible by use of
permanent magnets. The field variation is made by changing the
gap height.

{ z

permanent magnets
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.
“

Undulator of the SASE-FEL (DESY)




Undulator U55 an DELTA
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A hybrid magnet consists of permanent magnets and iron poles.

iron
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Superconductive wiggler magnet

W/U-magnets have maximum fields at the beam about 1 T. The
minimum wave length is limited because of

_4nR_4nc(mc?) 1 &
3y RE? B Bb-

Shorter wave lengths are
possible with supercon-
ductive wigglers with
fields of B > 5T.

Superconductive asymmetric S

wiggler at the storage ring EBaaas

DELTA
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Turmbereich mit Siromzufiihrungen, Bersischeibe,

Flll— und Abgosleitung, Insitrumentierungsbuchsen

und Drucksensor flr den He—Gastank
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The W/U-field has to be matched that
the total bending angle is zero.

il Au
’1 na trajectory -4

§ I
QNSNSNSNSNQ

e half

u pole

We have then

W/U

j B, (s)ds = I§Tcos(kus)ds =0

The condition is
fulfilled if

s, =0

and s, =nA +}21

u

withn=12,....1tis
possible to utilize at
both ends short
magnet pieces of
half pole length. In
addition one has to
shim the single poles
to compensate the
unavoidable tole-
rances.
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7.2 Equation of motion in a W/U-magnet
In a W/U-magnet we have the Lorentz force
F=p=myV=eVxB

With the approximation

(0 Vv,
B=|B,| and v=|0
We get B, Vs
(_VSBZ\
i= o -V, B,
MyY
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The velocity component in z-direction is very small and can be neg-
lected. With X =V, and $ =V, we have the motion in the s-x-plane

{=-8 ° B (s)
Mmyy

s=x " B (3)
Mmyy

(7.3)

This is a coupled set of equations. The influence of the horizontal
motion on the longitudinal velocity is very small

X=V, <<C and $=v,=[fCc=const.

In this case only the first equation of (7.3) is important and we get

ceB
K=—"

cos(k,s)
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We replace with
x=xpc and K=x"p°c’
the time derivative by a spatial one and get
i eB eB S
X"'=— cos(k,s) =— COS(an
myBCy myBCy A
With B =1 we can write

~ 2 —~

u

X'(S) = A5 sin(k,s) X(s) = kzueB cos(k,s) (7.4
27M,yC 41t°m,yC
The maximum angle is at sIn(k, s) =1
Q,

i ~
—_ )q\ . 0 :X;nalekueB

y 21tm,C

trajectory
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We get the wiggler- or undulator parameter

~ AeB (7.5)

K =
27tm,C

The maximum trajectory angle is

This is the natural opening angle of the synchrotron radiation. With

the parameter K we can now distinguish between wiggler and
undulator:

undulator iIf K<l 1e. 0,1y
wiggler If K>1 1e 0,>1f
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Now we go back to the system of coupled equations (7.3). We
assume that the horizontal motion is only determined by a constant

average velocity v =(g) . From (7.4) and (7. 5) we get
S

X(s) = sin(k s) = ©_ sin(k s)
Y
With X = cx’, s =fct and o, =k c we can write
X(t) =pc®,, sin(w,t) = Bcﬁsin(oout) (7.6)
!

For the velocity holds

Bc
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and with

1

2

Y

S(t) =cJ1—(12+X§j
Y C

Since the expression in the brackets is very small, the root can be
expand in the way

p* =1

we get

o2 2
s(t)=c 1—1(12+X2j =C 1—12£1+y2>‘<2j

2\y" € 2y C

Inserting the horizontal velocity (7.6) and using the relation

1—c0s2x

sin(x) = )
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we get

1

1— —

2y2

This can be written in the form

S(t) =($)+ As(t)

with the average velocity

14 2;2 (1-cos(2am,t))

21/ 2
s)=cl1- 1 14PN
oL 2
and the oscillation
21/ 2
As(t)zc[j1 2( cos(2m,t)
Y

1

-

(7.7)
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From (8.7) we derive the relative velocity with f =1

_ -
B*:@:l_iz 1_|_K_ (7.8)
C 2y"| 2
With (8.6) and (8.7) to (8.8) we get
21/ 2
X(t) = Bcﬁsin(mut) s(t)=Pc+ Ci |2< cos(2m,t)
b

Using ®, = kuBC and 3 = 1 one can evaluate the velocity simply by
Integration. In the laboratory frame we have

K . K*
X(t) =———cos(m,t s(t)=p ct+
O=- oK@ sO=petry

sSin(2w,t)

2
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We get an impressive form of
motion in the center of mass

system K”, which moves with

the velocity B~ with respect to the
laboratory sys-tem. With the
transformation

X'=x and s =vy(s—pct)

we get

X (t) = —ﬁcos((out)
K.y
K2
s (1)Y= sin(2m.t
(t) 8k 1 (200,t)

K=1.5

—K=0.5




Because of periodic motion in the undulator radiation is emitted in
the laboratory frame with a well defined frequency

_2n 2mfc
w T u
In the moving frame with the average velocity B~ the frequency is
transformed according to

=k Be

Q)* — y*QW (7.9)

The system emits monochromatic radiation. To transform a photon
Into the laboratory system we take a photon emitted under the

angle ®, X
X
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Energy and momentum of the photon are

E=ho, P= hs)
and the 4-vector becomes (E/c\ ( E/c
0 SIn®
PM = X — p )
0, 0

P, /) \pcos®, )
Transformation into the System K™ is then

(E'c) (v 0 0 —-BY)( E/c O
0, | | 0 10 0 psin O,
" |l 0o 01 0 || O

b ) =By 0 0 y ) {pcos®,,
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The energy of the photon becomes

*

E « E

. % * N
— =Y E—Bv pcos®, =y —*

(1-B cos®,)

C C

With E~ = fi we get

o Ao .

S =y T (1B cos O, )

C C
and x
®
®

"y - cos, )
Using (8.9) we can write
@)

W

®, = .
1-pB cos®,
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and find
O, _ Ay _ 1 (7.10)
Q, A, 1-pcos®,

w

with
A, = A, (1-P cos®,)

Now we replace B~ by (7.8) and expand
Q. . 1
cos®, z1—7° since Q,~-<«1

After this manipulations we find

2, (L- P cos®, )=1, 1_[1_1+ Kj/Zj( _@Sj

} 2 2 | 2 2
_ 1_(1_@;0_1+K /2j+m N u£®0+1+K /2]

u
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Using equation (7.10) we get the important "coherence condition for

undulator radiation"

2
A, = [1+K2+y2®§j

W:2’y2
g

e

electron beam

undulator periode

/
Ay

magnet poles

(7.12)
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The undulator radiation

Periode length: A, =0.25m

Simply we
expect a
radiation
with a
wavelength

A, =0.25m.

—

But: actually the radiation from the magnet is blue light !
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In the laboratory frame the magnet has the periode length A, = 0.25 m.

electron
. /
The electron has the energy In the electron system the
E =450 MeV, i.e. undulator appeares shorter:
1 )
" ey =880 N ="1=284.10"m
—(v/c y
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Undulator seen by the fast moving electron

In the frame of the electron a
wave with the wavelength A‘is
generated.

/

electron

But we can only observe the radiation in the laboratory frame. It is
therefore again shortened by a factor 1/y. The resulting wavelength
IS finally
A
A =—=-—=323nm
Y

Undulator y

The wavelength is shortened by the factor y> = 774400!
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The exact calculation gives the important coherence condition:

2
A = kuz (1+ K]
2y 2

With K = 2 we get the exact wavelength A = 480 nm

This is blue light !

175



The wavelength of the radiation is mainly determined by , vy, and K.
With increasing angle ®, also the wavelength increases.

undulator
\'\. ; N u )\rrad
< \‘\'\‘ Nu xu » “—"-“—"
\
A\
-4 TR
\
wave
[ | T ' |

The total length of the undulatoris L, = N A,

If S, marks the center of the undulator, the emitted wave has the time
dependent function

( . . T
u(mw,t):<anp'(°Wt If —EgtgE (7.12)
0 otherwise
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The wave has the duration
T=NA,/C = o, =21N, (7.13)

Such limited wave generates a continuous spectrum of partial
waves. Their amplitudes are given by the Fourier integral

1 7 .
Alw) = u(o. texp(—imt)dt
() mT_[O (o,,,D)exp(-iot)
Insertion into (8.12) gives
a 2a sin(o—o, )T

Alo) = jexp[—i(m—(ﬂw)t]dt - V21T 2(0-o,,)

-T/2

21T

With Ao = ® —,, and (7.13) we get

Alo) = &Sin(nNu imj/nNu im
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The intensity is proportional to the square of amplitude
A

112
. 1(A0)
sm(nNu Am)

spontaneous
- undulator
radiation

®

W

TcNuAO)
®

L W 0

| (Aw) oc

We get the half width of maximum from

: 2
(SIHX) :; With x:nNuA—O)=1.392

X ®

w

and find

® N N N

w u u u

200 2x 0886 1

i.e. an undulator with N, = 100 periods gives a line width of = 1%.
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The spectrum of an undulator Is

center of mass frame
laboratory frame
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