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Preliminary remarks 

An important consequence of classical electrodynamics is the 

generation of electomagnetic waves by accelerated charges 

particles. 

Example: The antenna 
The RF-voltage produces 

an electric field 

It causes in the antenna 

rod onto the electrons the 

force 

and consequently the 

accelleration  

  tEtE  sin0

  tE
m

e
ta  sin0

  tEetF  sin0
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As soon as a fast moving electron hits a solid state body it is 

decelerated. Actually it is transversly bend by the coulomb field of 

the atoms. Bending a charged particle is a transverse acceleration. 

According to classical electrodynamics theese particles emit 

electromagnetic radiation.     

 X-ray radiation  or  „Bremsstrahlung“ 
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UeE el

The energy of the electrons is 

electron 

nucleus 

electron 

shell 
elE

Then the energy of the X-ray 

is in the range of 

elrayX0 EE  
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some 10 - 100 kV 

Principal of a X-ray tube 
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An old example of a X-ray tube 
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The X-ray radiation has been discovered by Wilhelm Conrad Röntgen 

The hand of Mrs. Röntgen 1895: Discovery of the 

X-ray radiation 
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Laue-interference of 

a NaCl-cristal 

The X-ray tube provides a wide 

wavelength spectrum of radiation. 

X-ray tube 

mono-crystal 

collimator 

X-rays are a powerful tool to 

study the properties of all kinds 

of material. 
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Powerlimit of X-ray tubes 

water cooling 

hot spot 
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Relativistic electons passing through a vertical magnetic field 

In the dipole 

magnet the 

electrons feel a 

horizontal 

acceleration. 

bending magnet 

electron 

trajectory 

synchrotron radiation 

acceleration 

This causes 

also a kind of 

electromagnetic 

radiation 
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dipol 

In the center of mass frame of the electron the spartial power 

distribution of the radiation is the same as of the Hertz‘ dipole 
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Because of the relativistic velocity of the electrons one has to 

apply the Lorentz transformation.  

electron 

trajectory 

Power distribution in the 

center of mass frame 



Power distribution in the 

laboratory frame 

Lorentz-trans-

formation 

0v
cv 9.0
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A synchrotron radiation beam 
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Time structure of the synchrotron radiation 
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Because of the short radiation flash we have a wide frequency 

spectrum of the radiation emitted by the relativistic elevtrons. 

critical frequency 
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Spektrum of electromagnetic radiation 
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
Alfred-Marie Liénard 

1869 - 1958 

In 1898 Alfred-Marie Liénard has calculated 

the radiation emitted by a moving charged 

particle. 

Due to his results the radiated power by 

relativistic particles is given by the relativistic 

invariant expression 

At that time the possible electron energy in a laboratory was 

strongly limited to some 100 keV. Therefore, it was not possible to 

produce this kind of radiation. 
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synchrotron- 

radiation 

In 1947 a 70 MeV-Synchrotron 

was built by General-Electric. 

This energy was high enough 

to produce sufficient radiation 

power. 

      synchrotron radiation 
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Use of synchrotron radiation emitted by an electron storage 

ring for high energy particle physics. 

particle 

detector 

e--injection e+-injection 

magnets 

synchrotron 

radiation 

beam lines 

synchrotron 

radiation 

beam lines 

rf-cavity 
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electron beam 

bending magnet 

radiation fan 

probe 

electron beam 

the synchrotron radiation from a 

bending magnet is horizontally spread 

out over a wide radiation fan. 

 

 The radiation power at the 

     probe is limited. 
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Much more intensity is provided by wigglers and undulators 
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Principal of a modern, dedicated storage ring for syncrotron 

radiation 
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ESRF 
Grenoble 

Emax = 6 GeV 
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Development of 

radiation power 
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Workshop 

Design  

of a dedicated  

synchrotron radiation source  



JUAS 2012 Synchrotron  Radiation Klaus Wille 

26 

injector / 

booster 

synchrotron 

rf-system 

cavity 

magnet structure 

wiggler / 

undulator 

wavelength 

shifter 

in
je

c
ti
o
n
 

beamline 3 

beamline 2 

The main elements of the SR-storage ring 
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1. Beamline requirements 

Beamline 1 (bending magnet) 

critical energy 

photon flux @ Ec 

keV5.3c E

  smrad0.1%BW

photons
10

/

12


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 dd

Nd 

important  

formulas 
radiated power 

critical frequency 

photon flux 

spectral function    
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Beamline 2 (wavelength shifter) 

critical energy 

photon flux @ Ec 

keV20c E

  smrad0.1%BW

photons
10

/

12




 dd

Nd 

Beamline 3 (undulator) 

photon wavelength nm202 

important  

formulas 
undulator field 

undulator parameter 

coherence condition 
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2. General beam requirements 

horizontal beam emittance 

radm1011.0

radm101

9
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8

x









beam emittance 
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important  

formula 

including the optics calculations of the storage ring 

vertical beam emittance 

Optics 

C:/OPTICS4/Optics4.exe
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For the beam optics we coose a „Chassman-Green lattice“. 
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For the minimum emittance the initial conditions are 

l

ll

329.101

873.315

549.1
5

3
2

0

2

0
0

0

0











This extreme slope 0 is too high, it causes problems finding 

stable beam optics. Therefore, it is recommended not to exceed 

this value beond 0  3,0. 
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3. The machine 

type: electron storage ring 

beam energy 

beam current 

bending magnets bending radius 

magnet length 

bending angle / magnet 

total number of magnets   











2?

?

?

?

?

?

0

b

NN

l

I

E

beam optics (recommended: Cassman-Green lattice) 

insertion optics WLS             (strong magnet) 

undulator      (weak magnet) 
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rf-system rf-frequency 

rf-power 

cavity type:  pillbox,   3-cell, 5 cell,  

                   superconductive etc.  

?

?

rf

rf





P

f

injection 

injection energy: 

binj

binj

EE

EE





(+ SR-ramping) 

injection rate ( maximum rate limited by radiaton 

   damping) 

damping constant  D
TE

W
a  1

2 0b

0
x

generally:      keep the design simple and cheep ! 
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In the following only MKSA units will be used.  

physical quantity symbol dimension 

length l meter [m] 

mass m kilogram [kg] 

time t second [s] 

current I Ampere [A] 

velocity of light c 2.997925108 m/s 

charge q 1 C = 1 A s 

charge of an electron e 1.6020310-19 C 

dielectric constant 0 8.8541910-12 As/Vm 

permeability µ0 410-7 Vs/Am 

voltage V 1 volt [V] 

electric field E V / m 

magnetic field B 1 tesla [T] 
 

1. Introduction to Electromagnetic Radiation 

1.1. Units and Dimensions 



JUAS 2012 Synchrotron  Radiation Klaus Wille 

35 

At first we will look at a static electrical dipole 

One can see that the delay (or “retardation”) of the electric field 

spreading immediately leads to a wave of the electric field. 

1.2. Rotating electric dipole 

+  
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The figures show three pattern with different rotation frequencies 

between 200 Hz and 10 kHz. One can directly see the generation of 

spherical waves traveling from the center to the outside.  

0 Hz 

200 Hz 

1.3. Rotating magnetic dipole 
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2 kHz 10 kHz 



JUAS 2012 Synchrotron  Radiation Klaus Wille 

39 

The last example is the radiation emitted by a charged particle moving 

with a velocity close to the velocity of light. 

1.4. Relativistic charged particle traveling through a bending 

magnet 

Radiation2D.exe
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A wave describes a periodic change with time and space. 

Oscillations are periodic changes with time tiStS  exp)( 0

It is the solution of the differential equation 0)()( 2  tStS

2. Electromagnetic Waves 

2.1. The wave equation 

)(tW

*W

1t

T 

t 

x = const. 

)(xW

*W

1x

 

x 

t = const. 
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0)()( 2  rWkrW
  zyx kkkk ,,


and for all 3 dimensions 

0)(
)( 2

2

2





xWk

x

xW






2
k (wave number) (2.2) 

0)()( 2  tWtW (2.1) 
T




2
(frequency) 

The corresponding equations are 

At the time t1 the wave has at the point  x1 the value W*. At the time t2 

the wave point has moved to the point x2 

   

   2121

2211

220110

* expexp),(

xxktt

xktxkt

xktiWxktiWtxW






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From (2.1) we get  

),(
1

),(0),(),(
2

2 txWtxWtxWtxW 




The wave velocity (phase velocity) becomes 

ktt

xx

t

x
v














12

12 (2.3) 

Inserting this result into (2.2) we get  
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With the phase velocity (2.3) we find the one dimensional wave 

equation  

0),(
1),(

22

2





txW

vx

txW 

with the Laplace operator 

2

2

2

2

2

2

2

























zyx

The general tree dimensional wave equation has then the form 

0),(
1

),(
2

 trW
v

trW
 (2.4) 

../../../../../../../OPTICS4/Optics4.exe
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The electromagnetic radiation is based on Maxwell's equations. In 
MKSA units these equations have the form 

t

E
jB

t

B
E

B

E




























000

0

0

Coulomb’s law 

Ampere’s 
law 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

2.2 Maxwell's equations 

One can easily show that time dependent electric or magnetic fields 
generates an electromagnetic wave. In the vacuum there is no 
current and therefore            .  0j


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Inserting the first equation into the second one we get 

  BB 
00

Using the vector relation 

    aaa
 2








EB

t
BE





00

From (2.7) and (2.8) we get 

  EB

BE









00

 and equation (2.6) we finally find 

000

2  BB 

This is a wave equation of the form of (2.4). The phase velocity is 

s

m
10997925.21 8

00 c
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With the Maxwell equation                and the relation                        

we can derive the magnetic field from a vector potential       as 
0B


  0 a



A


AB


 (2.9) 

We insert this definition into Maxwell ‘s equation (2.7) and get 

0



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

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
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











t

A
E

t

A

t

B
E







2.3 Wave equation of the vector and scalar potential 

The expression                      can be written as a gradient of a scalar 

potential               in the form 

 tAE 


),( tr










t

A
E




(2.10) 

The electric field becomes 















t

A
E




(2.11) 
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With Coulomb's law (2.5) we find 

0













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or 

We take now the formula of Ampere's law (2.8) and insert the relations 

for the magnetic and electric field (2.9) and (2.11) and get 
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 
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The relation becomes 

j
t

A
t

A
A





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2 
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


 (2.14) 

t
AAA








Equations (2.12) and (2.14) create a coupled system for the potentials        

     and . We  define now the following gauge transformation A


0
1

2







tc
A


The free choice of              provides a set of potentials satisfying the 

Lorentz condition 

),( tr



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With the gauge transformation we get 

    0
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If the function              is a solution of the wave equation ),( tr




0

2

2

2

2 1











tc
(2.15) 

the Lorentz condition is fulfilled. In (2.12) we replace        by              

(Lorentz condition) and get 
A



2c 
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The two expressions (2.15) and (2.16) are the decoupled equations 

for the potentials            and           . These inhomogeneous wave 

equations are the basis of all kind of electromagnetic radiation. 

),( trA


),( tr




The result is then 

j
t

A

c
A





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2

2

2 1





 (2.16) 

With                     the expression (2.14) becomes 00

2 1 c

j
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c
A


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
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
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
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
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We have now to find the solution of the inhomogeneous wave 

equations (2.15) and (2.16). We start assuming a point charge in the 

origin of the coordinate system of the form 

dVrtrdq )(),( 3 


0
1

2

2

2

2 





tc

Outside the origin, i.e.            the charge density  vanishes. The 

wave equations of the potential becomes 
0r



2.4.The solution of the inhomogeneous wave equations 

The potential has now a spherical symmetry as 

),(),(),( trtrtr 

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We have now to evaluate the expression               for a point charge. 

A straight forward calculation yields 

)(2 r
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r
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On the other hand we find the relation 
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
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Combining these two expressions we get the wave equation 

in the form 

  0
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The second term on the right hand side represents a reflected wave, 

which doesn't exist in this case. Therefore, the solution is reduced to 

 ctrf
r

tr 
1

),(

with the general solution 

   ctrf
r

ctrf
r

tr  21

11
),(

In order to evaluate the function  f (r  ct ) one has to calculate the 

potential (r, t) in the origin of the coordinate system. The problem is 

that 





r

ctrf
trr

)(
),(0

A better way is to compare the first and second derivatives of the 

potential. For r  0 we get 

t

ctf

rtr

ctf

r 










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The ratio of the second spatial derivative to the second time derivative 

is even much larger 

0for
1

2

2

22

2










r

tcr

and we can simplify the wave equation (2.15) to 

)0(),(
0

2 



 rtr

This is the well known Poisson equation for a static point charge. 

For r  0 the potential (r , t ) approaches the Coulomb potential. 

Therefore, we can write 

V
r

t
ctf

r
ctrf

r
tr r 




   ),0(

4

1
)(

1
)(

1
),(

0

0
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Because of the limited velocity c of the electromagnetic fields, at a 

point r outside the origin the time dependent potential is delayed by 

c

r
tt

c

r
t 

At this point we have the "retarded"  

potential 

dV
r

c

r
t

trd













,0

4

1
),(

0

If the charge is not in the origin but at 

any point      in a Volume dV we get r 


dV
rr

c

rr
tr
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'

'
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1
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
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'
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Since under real conditions one do not has a point charge the 
potential must be integrated over a finite volume containing the 
charge distribution. The result is then 

dV
rr

c

rr
tr

tr

V

















 





'

'
,'

4

1
),(

0






 (2.17) 

The vector potential            can according to (2.15) and (2.16) easily 

evaluated by replacing the expression          by        . In this way we 

find 

),( trA


0 j


0

dV
rr

c

rr
trj

trA

V

















 







'

'
,'

4
),( 0






 (2.18) 

These solutions of the two wave equations are called Liénard-

Wiechert potentials. 
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We now replace the distance between the charge and the observer 
by 

rrR


 '

radiation 
at time t 

P 

observer 

particle 
trajectory 

q at time t’ 

d

)',','( zyx

rd


R


n


2.5. Liénard-Wiechert potentials of a moving charge 

drddV 

Radiation observed at the 

point P comes from all 

charges within a spherical 

shell with the center P, 

the radius      and the 

thickness     . If d is the 

surface element of the 

shell the volume element 

is 

R


rd

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The retarded time for radiation from the outer surface of the shell is 

c

R
tt





and from the inner surface 

c

rd
tt




rddr




The electromagnetic field at P at time t is generated by the charge 

within the volume element dV . The charge in this volume element is 

with 
drddq 1

  cdrdt 
For charges moving with the velocity     one has to add all charge 

that penetrate the inner shell surface during the time                  , 

i.e. 

v


 ddtnvdq


2
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with the vector     normal to the outer surface defined by n


RRn




The total effective charge element is then 

 

  











ddrn

c

dr
nvdrddtnvdrddqdqdq





1

21

With this relation we can write 


 

n

dq
dVddr

1
(2.19) 

Insertion into equation (2.17) gives 

   







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
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dq
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1

1

4

1

14

1
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(2.20) 
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The current density an be written as             . With this relation the 

vector potential (2.18) becomes  

vj







 



 dV

R

v
trA
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

4
),( 0

   
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dqv
trA
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









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


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






1414
),( 00

(2.21) 

With (2.19) we get finally 

It is important to notice that the parameter in the expression on the 

right hand side must be taken at the retarded time    . The equations 

(2.20) and (2.21) are the Liénard-Wiechert potentials for a moving 

point charge. 

t
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Using the formula (2.10) we can derive the electric field at the point P 
by inserting the potentials as 

   
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A
E

141

1

4
0

0

2.6 The electric field of a moving charged particle 

After longer calculations (see script) the electrical field finally 

becomes 

(2.28)     














 



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a

q
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4

with  


nRa 1:

../../../../../../../Optics/Optics.exe


JUAS 2012 Synchrotron  Radiation Klaus Wille 

62 

Since the expression1/R2 drops down with the distance R the 
first term vanishes at longer distances. The second term, 

however, reduces only inversely proportional to the distance R . 

It determines the radiation far away from the source charge. 
Therefore, we can we can neglect the first term in (2.28) and get 

   


 
RRR

ca

q
E

3

0

1

4
(2.29) 

../../../../../../../Optics/Optics.exe


JUAS 2012 Synchrotron  Radiation Klaus Wille 

63 

With the relations (2.9) and (2.21) we can calculate the magnetic field 

of a moving charged particle and we find 

  
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
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(2.30) 

2.8 The magnetic field of a moving charged particle 

Again after longer calculations (see script) the magnetic field 

becomes 
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(2.33) 
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For the long distance field only termes proportional to 1/R are 

important. We get 

 
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 we modify the formula (2.26) in the following way 

The vector multiplication of this equation with the unit vector     gives n

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Comparison with the equation (2.33) leads directly to the following 

simple relation between the magnetic and electric field 

 nE
c

B



1

We can now state the Poynting vector of the radiation in the form 
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The Poynting vector finally becomes 

nE
c

S
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
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We apply again the vector relation 

and get 

This is the power density of the radiation parallel to     observed at 

the point P per unit cross section. We now evaluate the Poynting 

vector at the retarded time t’. With (2.23) we find 
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and finally 
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We choose a coordinate system K* which moves with the particle 

of the charge q = e. In this reference frame the particle velocity 

vanishes and the charge oscillates about a fixed point. We get 

Rav  00 **


3 Synchrotron Radiation 

3.1 Radiation power and energy loss 

0* 


It is important to notice that            ! The expression (2.29) is then 

modified to 
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The radiated power per unit solid angle at the distance R from the 

generating charge is 

 
  
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(3.1) 

With the vector relation                                              and                      

we find 
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 coscos ***  nn

Since 

 is the angle between the direction of the particle acceleration and 

the direction of observation the relation (3.2) becomes 

      22*22*22*2*
2

* sincos1cos 
nn

The power per unit solid angle is then 
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(3.3) 

The spatial power distribution corresponds to the power distribution 

of a Hertz' dipole.  
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we can write 

   
 






2

0 0

32*

0

2

2

sin
4

dd
c

e
P 

where  is the azimuth angle with respect  

to the direction of the acceleration. the  

total power becomes 

2*

0

2

6



 

c

e
P

The total power radiated by the charged 

particle can be achieved by integrating 

(3.3) over all solid angle. With 

 ddd sin
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This result was first found by Lamor . One can directly see that 

radiation only occurs while the charged particle is accelerated. With 

the modification 

mc

p

mc

vm

c

v  
**

*

we get 

2

32

0

2

6












dt

pd

cm

e
P



This is the radiation of a non-relativistic particle. To get an expression 

for extreme relativistic particles we have to replace the time t by the 

Lorentz-invariant time                     and the momentum     by the 4-

momentum Pu..  

 dtd p




JUAS 2012 Synchrotron  Radiation Klaus Wille 

72 

2

2

222
1









































 

d

dE

cd

pd

d

dP

dt

pd


or 

With this modification we get the radiated power in the relativistic 

invariant form 

  






























2

2

2

22

00

2 1

6 d

dE

cd

pd

cm

ce
Ps


(3.4) 

momentum)-(4

1

1
with

1
22

0









Pp

cm

E
dtddt


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There are two different cases: 

v
d

vd 


||


1. linear acceleration: 

2. circular acceleration: v
d

vd 




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The particle energy is 

  2222

0

2 cpcmE 

After differentiating we get 




 d

dp
pc

d

dE
E 2

2

0cmE  vmp 0Using                    and                   we have 




 d

dp
v

d

dE

Insertion into (3.4) gives 

   
 

2

2

22

00

2222

22

00

2

1
66






















































d

dp

cm

ce

d

dp

c

v

d

dp

cm

ce
Ps

3.1.1 Linear acceleration 
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22 11 With                        we can write 

   

2

22

00

22

22

00

2

66























dt

dp

cm

ce

d

dp

cm

ce
Ps

For linear acceleration holds 

dx

dE

dtc

dpc

dt

dp


and we get 

 

2

22

00

2

6












dx

dE

cm

ce
Ps

In modern electron linacs one can achieve 

)(!Watt104
m

MeV
15 17

s

 P
dx

dE
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On a circular trajectory with the radius  a change of the orbit angle 

d causes momentum variation 

 dpdp

Completely different is the situation when the acceleration is perpen-

dicular to the  direction of particle motion. In this case the particle 

energy stays constant. Equation (3.4) reduces to 

   

2

22

00

222

22

00

2

66

























dt

dp

cm

ce

d

dp

cm

ce
Ps

(3.5) 

3.1.2 Circular acceleration 

With v = c and E = pc follows 







Evp
p

dt

dp
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Comparison of radiation from an electron and a proton with the 

same energy gives 

)(!1013.1

MeV19.938

MeV511.0

13

4

2

2

ps,

es,

2

2




















cm

cm

P

P

cm

cm

e

p

p

e

2

0cmEWe insert this result in (3.5) and get with 

  2

4

42

00

2

6 


E

cm

ce
Ps

(3.6) 

This radiation is therefore observed in most of the cases from 

electrons.  
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We insert (3.6) into (3.7) and get 

  


4

42

00

2

3

E

cm

e
E

For electrons one can reduce this formula to a very simple expression 

]m[

]GeV[
5.88keV][

44




E
E

In a circular accelerator the energy loss per turn is 

c
PtPdtPE


 

2
sbss

(3.7) 
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L [m] E [GeV]  [m] B [T] E [keV]

BESSY I 62.4 0.80 1.78 1.500 20.3

DELTA 115 1.50 3.34 1.500 134.1

DORIS 288 5.00 12.2 1.370 4.5310
3

ESRF 844 6.00 23.4 0.855 4.9010
3

PETRA 2304 23.50 195.0 0.400 1.3810
5

LEP 2710
3 70.00 3000 0.078 7.0810

5

The synchrotron radiation was investigated the first time by Liénard 

at the end of the 20th century. It was observed almost 50 years later 

at the 70 GeV-synchrotron of General Electric in the USA. 




4E
E

The energy loss per revolution is 
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3.2. Opening angle of synchrotron radiation 

In the center of mass system K’ the spartial intensity distribution is 

the same as at the Hertz‘ dipole. 

0z pp 

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n
c

E
pp s

y







0

A photon emitted parallel to the y’-axis has the momentum 

   0,,0,,,, 0zyxt pcEppppP s




     is the photon energy. The 4-momentum becomes 
sE
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Using the Lorentztransformation we get the 4-momentum in K 

cEp s


0With                    we get the opening angle 



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

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3.3 Spatial distribution of the radiation of a relativistic  particle 

 







22*

0

2

2

sin
4



c

e

d

dP

The power per unit solid angle was given in (3.3) as 

for the radiation of a charged particle in the reference frame K*. 
The angular distribution corresponds to that of the Hertz' dipole. 

The radiation of relativistic particles is focused with the opening 

angle of . 

2RSn
d

dP






The radiation power per unit solid angle is given in (3.1) 
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 
     

 
   2

52
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2

0

2

0

2
2

622

0

2

0

4

1

1
1

4

1
















nn
ac

Re

c

RnRRR
ac

e

cd

dP

(3.8) 

Inserting the electrical field (2.29) and with the charge of an 

electron q = e  we find 

With the relation for the Poynting vector at the radiated time we 

get 

  22

0

1
1

RnE
cd

dP








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x 

z 

s 

  




R


observer 
charge 

particle 

trajectory 

























cos

sinsin

cossin

RR


The vector     pointing from the 

observer to the moving particle is 

R


vm

Bv

eBveF

z




0

0

0 


















The Lorentz force of an elec-

tron traveling through a magnet 

is 

























cos

sinsin

cossin

n


(3.9) 

and the correlated unit vector 
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









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







0

0

and

0

0,0

0

z

x

BB

v

v

v

v




 (3.10) 

with 

zzx BceBvevm  0

A straight forward calculation yields 









 e

vm
B

vm

Be
B

p

e
z

z
z

0

0

1

On the other hand the bending radius  of a trajectory in a magnet 

can be evaluated according to 






22c
vx (3.11) 

The transverse acceleration of the particle can now be written in the 

form 
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With (3.10) and (3.11) we get 




































 0
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0

0

cv
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v
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(3.12) 

(3.13) 

 
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
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
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











0
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2ccvx


and 

     baccabcba




Using again the vector relation 

        


nnnnn 1

The double product in (3.8) becomes 
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Inserting (3.9), (3.12) and (3.13) we get 
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    cos11 RnRa


(3.14) 

From the definition of a we derive with (3.9) and (3.12) 

 

   

 5

2222

2

4
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




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

e

cd
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(3.15) 

Some further calculations finally privide 

Acceleration 









2
2

2

c
v

dt

dv
a
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 = 0 

 = 0.3 
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 = 0.5 

 = 0.9 
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

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With the dimensionless 

particle energy 

and calculate the photon 

intensity using equation 

(3.15).  

we vary the angle  bet-

ween the direction of par-

ticle motion and the direc-

tion of photon emission 

according to 




u
(u = dimension- 

      less number) 
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With the conditions           and             we find the approximations 1 1

2
1cosand

2

1
1

1
1

2
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and we get from (3.16) 
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w (3.16) 

It is directly to see that the radiation is mainly concentrated within a 

cone of an opening angle of. In equation (3.15) we set             and 

the fraction on the right hand side reduces to 

2
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We chose now an angle of                 

             and find the relation  1
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A sychrotron radiation beam 
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3.4. Time structure and radiation spectrum 

A detailed evaluation 

of the spectral functi-

ons can be derived 

in  

J.D. Jackson, Classical 

Electrodynamics, Sect. 

14 

or in 

H. Wiedemann, Particle 

Accelerator Physics II, 

chapter 7.4 
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The synchrotron radiation is focused within a cone of an angle                

            . An observer locking onto the particle trajectory can see 

the radiation the first time when the electron has reached the point 

A.  

 1

  
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The photons from A fly directly to the observer with the velocity of 

light. The electron takes the circular trajectory and its velocity is less 

than the velocity of light. B is the last position from which radiation 

can be observed. The duration of the light flash is the difference of 

the time used by the electron and by the photon moving from the 

point A to point B 


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
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322 2

11

2

1
1

1

211

11

21

1




























JUAS 2012 Synchrotron  Radiation Klaus Wille 

99 

We get 

333 3

4

6

11

2

112















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










cc
t

sec108.5 19t

In order to calculate the pulse length we assume a bending radius of 

 = 3.3 m and a beam energy of E = 1.5 GeV, i.e.  = 2935. With 

this parameters the pulse length becomes 

This extremely short pulse causes a broad frequency spectrum with 

the typical frequency 









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32 3
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More often the critical frequency  
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is used. The exact calculation of the radiation spectrum has been 

carried out the first time by Schwinger. He found 

















 c

s

c

0 S
P

d

Nd




(3.17) 

  2
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00

2

6 


E

cm

ce
Ps

With the radiation power given in (3.6) 

bI
e

N
ce

P










0

4

2

0

42

0
36

the total power radiated by N electrons is 




2

ceN
Ib

with the beam current 
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    


 




dKS 35s
8

39

The spectral function in (3.17) has the form 

where               is the modified Bessel function and                . )(35 K c

 



0

1dS s

Because of energy conservation the spectral function satisfies the 

normalization condition 

  

1

0
2

1
dS s

Integrating until the upper limit   = 1, i.e.  = c, gives 

This result shows that the critical frequency c divides the spectrum 

into two parts of identical radiation power.  
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Synchrotron radiation spectrum from a bending magnet 
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4 Electron Dynamics with Radiation 

4.1 The particles as harmonic oscillators 

In cyclic machines we have synchrotron and betatron oscillations. 

In a good approximation we can consider the system to be a 

harmonic oscillator. 
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4.1.1 Synchrotron oscillation 

In a circular accelerator we have to compensate the energy loss by a 

rf-cavity ("phase focusing"). 

0s00 sin WUeE  (4.1) 

For an on-momentum particle (p/p = 0) the energy change per 

revolution is 

with the reference phase s , the peak voltage U0 and the energy 

loss W0. For any particle with a phase deviation  we find 

  WUeE  s0sin (4.2) 

The energy loss can be expanded as 

E
dE

dW
WW  0
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The difference between (4.1) and (4.2) is 

   E
dE

dW
eUEEE  ss00 sinsin

The frequency of the phase oscillations is very low compared to 

the revolution frequency fu = 1/T0. It follows 

  
0

ss

0

0

0

sinsin
T

E

dE

dW

T

eU

T

E
E





  (4.3) 

E

E
T

L

L
TT





 0

0

0
(4.4) 

The phase difference  is caused by the variation of the revolution 

time of the particles  

with the momentum-compaction-factor  defined as 

p

p

L

L 




0
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T
T

T



 rf

rf

2 (4.5) 

With the period of the rf-voltage Trf we get 

The ratio of the rf-frequency and the revolution frequency must be 

an integer number 

integerwith
u

rf 



 qq

With (4.4) and (4.5) we get 

E

E
q

T

T
qTq





 22

0

u

E

E

T

q

T







00

2 (4.6) 

and after differentation 
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 

s

sssss

cos

sinsincoscossinsinsin





Assuming small oscillations, i.e.                   we can write s

0

s

0

0 cos
T

E

dE

dW

T

Ue
E


 

With this approximation equation (4.3) reduces to 

0

s

0

0 cos
T

E

dE

dW

T

Ue
E


 



A second differentiation provides 

0
cos21

2

0

s0

0




 E
ET

Ueq
E

dE

dW

T
E 

Insertion of (4.6) gives 
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02 2

s  EEaE  (4.7) 

or 

dE

dW

T
a

0

s
2

1
 (4.8) 

with the damping const 

and the synchrotron frequency 

E

qUe






2

cos s0
u

The equation (4.7) can be solved by the ansatz 

   titaEtE  expexp)( s0

This damped oscillation with the frequency  is called the synchro-

tron oscillation. 
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4.1.2 Betatron oscillation 

0)()()(

)(

1
)()(

)(

1
)(

2






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


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







szsksz

p

p

s
sxsk

s
sx

The motion of a charged particle can be expressed by the equations 

0)()()(  sxsKsx (4.9) 

Where (s) and k(s) give the bending radius and the quadrupole 

strength. With K(s) = 1/²(s) - k(s) we find for on-momentum 

particles 

  )(cos)()( sssx (4.10) 

According to Floquet's theorem we find the solution 

with the constant beam emittance  and the variable but periodic 

betafunction ß(s) .  
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The phase can be expressed as 











s

d
s

0

)(
)(

The solution (4.10) is a transverse spatial particle oscillation with re-

spect to the beam orbit. We have a strong correlation between the 

position s at the orbit and the time t 

tcsts  0)(

This transverse periodic particle motion is called betatron oscillation.  
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4.2 Radiation Damping 

4.2.1 Damping of synchrotron oscillation 

The damping needs an energy loss due to synchrotron radiation 

depending on the oscillation amplitude. 

  2

4

42

00
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E

cm

ce
P

The radiated power of the synchrotron radiation is 

222

2

21
Bce

E
B

E

ce
B

p

e







The bending radius is 

We can write the radiated power in the form 

 42

00

34
22

s

6
CwithC

cm

ce
BEP


 (4.11) 
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In order to evaluate the radiation damping of the synchrotron oscil-

lation we use the equation (4.7) 

02 2

s  EEaE 

with the damping constant (4.8) 

dE

dW

T
a

0

s
2

1


It is necessary to calculate the ration dW/dE. We estimate the ener-

gy loss along a dispersion. It is  

ds
x

sd 




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cdtsd  /Using                     the energy loss per revolution is 
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The displacement x is caused by an energy deviation  

E

E
Dx




The energy loss becomes 

ds
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W 
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Differentiating gives 
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Averaging over a long time one finds 

0


E

E
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ds
E

PD

dE

dP

cdE

dW





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




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 ss1

(4.13) 

Equation (4.12) becomes 


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


dE
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P

dE
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2C2C2 s

22s (4.14) 

We use the radiation formula (4.11) and get 

In quadrupoles with non vanishing dispersion the field variation with 

the particle energy is 

E

D

dx
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It is put into the expression (4.14) and we get from (4.13) 
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With (4.8) the damping constant is then 
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 D 2
2 0

0
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or 
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D (4.15) with 

It is more convenient to apply the bending radius  and the quadru-

pole strength k  

















k
dx

dB

B

E

ce

B
B

E

ce

ce

Ek

dx

dB

dx

dB

E

ce
k

1

11

2

4

22s

C




E

ce
P

We write the radiation power in the form 
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
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Then the integral (4.15) becomes 
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T

The energy radiated by an on-momentum particle is 

The damping constant for synchrotron oscillation is 

 
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W
a DD (4.16) 

The damping only depends on the magnet structure of the machine. 
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4.2.1 Damping of betatron oscillation 
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(4.17) 

)(: sbA 

Following Floquet's transformation we can write with 

 2222222 )(sincos zszAAA  (4.18) 

We calculate the amplitude A using z and z’. 

ppp


*

A photon is emitted and the particle momentum     is reduced by     p


p



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p

p
z 




The longitudinal component ps of the particle momentum is restored 

by the rf-cavity, the transverse component, however, stays reduced. 

The angle z’ is reduced by the amount 

The energy variation 

of the electron is then 

 p
v

c
E

2

or using v = z’c 




 p
z

c
E
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z
E

E
z 


 (4.19) 

pcE


With the relation                 follows 

       222222 )()( zsszzA 

From (4.18) we get the variation 

zzsAAzzsAA  )()(22 22

  02  zAnd we find with 

E

E
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
 22 )(

(4.20) 

After insertion of (4.19) we get 

Now one has to average over z’2. Taking the formula (4.17) gives 
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In this way we find with the relation (4.20) 

EAfter a full revolution the energy losses        have accumulated to 

the total loss W0. The average amplitude variation per revolution is 

(4.21)   AA

E

W

A

A

2
0



Then we get from (4.21) 

dta
A

dA
z

The amplitude decreases and we have a damping of the betatron 

oscillation. The damping constant is 
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0
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2 TE

W
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A
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 (4.22) 

With the revolution time               we finally find  
0Tt 

 D 1
2 0

0
x

TE

W
a (4.23) 

A similar calculations including the dispersion gives 
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4.3 The Robinson theorem 

 

  x

0

0

0

0
x

z

0

0

0

0
zs

0

0

0

0
s

2
1

2

222
2

2

J
ET

W

ET

W
a

J
ET

W

ET

W
aJ

ET

W

ET

W
a





D

D

With the equations (4.16), (4.22) and (4.23) we have all damping 

constants  

DD  112 xzs JJJ
with 

4szx  JJJ

From these relations we can directly derive the Robinson criteria 

The total damping is constant. The change of the damping partition 
is possible by varying the quantity D. In most of the cases we have 

D << 1 ("natural damping partition").  
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2f

df
cqdL

f
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qqL 

In strong focusing machines it is possible to shift the particles onto 

a dispersion trajectory by variation of the particle energy. With this 
measure one can change the value of D within larger limits. The 

trajectory circumference L depends on the rf-frequency f as 

f
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With the momentum compaction factor we get 

The variation of the rf-frequency f  shifts the beam onto the disper-

sion trajectory 
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5. Particle distribution in the transversal phase space 

5.1 Transversal beam emittance 
The natural beam 

emittance is deter-

mined by the emis-

sion of synchrotron 

radiation. 

We start with an elec-

tron of momentum p0. 

and emittance i = 0. 
The particle emits a 

photon with the 

momentum p and 

continues the flight 

with the momentum     

p0 - p 



JUAS 2012 Synchrotron  Radiation Klaus Wille 

127 

p

p
Dx

p

p
Dx







and

It now belongs to a disper-

sion trajectory with the 

displacement and angle 

The electron has therefore a finite emittance. It can be calculated 

using the ellipse relation. 
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To get the beam emittance one had to integrate over all particles in 

the beam. For relativistic particles is 

E

E

p

p 




2x

3
2

2

0

x 1

)(
1

332

55

R
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s
R

cm

c
H




A detailled calculation gives the natural beam emittance in the form 
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 22 2)( DDDDs H

with E in [GeV], R in [m] and x in [m rad]. Because of 

the emittance is small whenever the betafunction and the disper-

sion is small inside a bending magnet. 




l

dss
lR

E

0

2
6

x )(1047.1 H

The damping is represented by the amount Jx. If all bending 

magnets are equal, we get with Jx  1 the simplified expression 
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5.2 Examples 

5.2.1 FODO lattice 

Increasing the quadrupole strength 

decreases the betafunctions and 

the dispersion and the function 

H(s). We can demonstrate it with a 

simple so called "FODO-lattice".  

one cell of the FODO-lattice 
OPTICS 

../../../../../../../../OPTICS4/Optics4.exe
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The quadrupole strengths vary 

from k = 0.4 m-2 to k = 1.6 m-2. 

It reduces the emittance almost 

by two orders of magnitude ! 

With increasing quad strength, 

the chromaticity increases 

rapidly.  

Extremely low beam emittances 

need very effective chromaticity 

compensation (dynamic aperture). 



JUAS 2012 Synchrotron  Radiation Klaus Wille 

132 

The betafunction and 

the dispersion have 

in the bending 

magnet not the 

minimum value. 
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QF QF QF QD QD QD QD B B 

D [m] ß [m] 

Dx 

ßx 
ßz 

5.2.2 Triplett  

          lattice 

This structure has been used for the electron storage ring DELTA. The emit-

tance at an beam energy of E = 1.5 GeV is x = 710-9 m rad. 
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6. Low emittance lattice 

6.1 Basic idea of low emittance lattices 

What is the lowest possible beam emittance ? 

In dedicated syn-

chrotron radiation 

sources long 

straight sections for 

wiggler and 

undulator magnets 

are required. This 

straight sections 

have no dispersion, 

i.e. D  0.  
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Therefore, at the beginning of the bending magnet the dispersion 

has the initial value 
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With this initial condition the dispersion in the bending magnet is 

well defined. With                we get 1Rs

The emittance can only be changed by varying the initial values 0 

and 0 of the betafunction. These functions can be transformed as 
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and after straight forward calculations 
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We can write the function H(s) in the form 
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For identical bending magnets and with Jx = 1 we get  
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
R

lThe relation 

is the bending angle of the magnet. We can write 






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 






 

l

l
C

3420
00032

x
(6.1) 

Since the emittance grows with 3 one should use many short 

bending magnets rather than a few long ones to get beams with low 

emittances.  

0
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In order to get the minimum possible emittance we have to vary 

the initial conditions 0 and 0 in (6.1) until the minimum is found. 

This is the case if 
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3
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

 ll
(6.2) 

The unknown initial conditions 0 and 0 are 

The betafunction for the minimum possible emittance is determined 

only by the magnet length l.  
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This principle is used by 

the Chasman Green lat-

tice, the optical functions 

do not exactly fit the con-

ditions (6.2). The reason 

is the extremely high 

chromaticity caused by 

the ideal initial conditions 

(6.2). 

The simple magnet struc-

ture shown in the figure 

has no flexibility. There-

fore, more quadrupole 

magnets are used in 

modern light sources  
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European Synchrotron Radiation Facility,    Grenoble 

An example of a flexible low emittance storage ring of the third generation 
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In order to get the required flexibility, a larger number of quadrupols is applied. 

The lattice of one cell of the ESRF magnet structure. The ring consists on 32 cells. 

Magnet structures of this type are often called “double bend achromat lattice” (DBA) 
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Another modifica-

tion of this optical 

principle is the 

"triple bend achro-

mat lattice” (TBA) 

as applied in the 

storage ring 

BESSY II in Berlin  
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7. Appendix A: Undulator radiation 

Synchrotron radiation is nowadays mostly generated by use of 

undulators (or “insertion devices”). 
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7.1 The field of a wiggler or undulator 

 .cos)(2cos)(),( u

u

skzf
s

zfzs 









 (7.1) 

Along the orbit one has a periodic field with the period length u. The 

potential is 

0),(2  zs

In x-direction the magnet is assumed to be unlimited. The function 

f(z) gives the vertical field pattern. With the Laplace equation 

0)(
)( 2

u2

2

 kzf
dz

zfd
We get 

and find the solution 

 zkAzf usinh)( 
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Inserting into (7.1) the potential becomes 

)cos()sinh(),( uu skzkAzs 

and the vertical field component 
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


 (7.2) 

In order to get the integration 

constant A we take the pole tip 

field B0 at {s,z} = {0, g/2}. With 

(7.2) we get 
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Insertion into (8.2) provides 
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At the orbit the periodic field has the maximum value 
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For given period length the u the field decreases with increasing 

gap height g. Short periods require therefore small pole distances. 

)sin(
~

),( uz skBzsB At the beam the periodic field is 



JUAS 2012 Synchrotron  Radiation Klaus Wille 

148 

The most simple design is an electromagnet 



JUAS 2012 Synchrotron  Radiation Klaus Wille 

149 



JUAS 2012 Synchrotron  Radiation Klaus Wille 

150 

Shorter period length down to a few cm are possible by use of 

permanent magnets. The field variation is made by changing the 

gap height. 
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Undulator of the SASE-FEL (DESY)  
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Undulator U55 an DELTA 
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A hybrid magnet consists of permanent magnets and iron poles. 
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Superconductive wiggler magnet 

 
BEe

cmcR
~
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32
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
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


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W/U-magnets have maximum fields at the beam about 1 T. The 

minimum wave length is limited because of 

Shorter wave lengths are 

possible with supercon-

ductive wigglers with 

fields of B > 5T. 

Superconductive asymmetric 

wiggler at the storage ring 

DELTA 
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We have then 

The W/U-field has to be matched that 

the total bending angle is zero. 

2
and
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u
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




ns

s

The condition is 

fulfilled if 

with n = 1,2,  . It is 

possible to utilize at 

both ends short 

magnet pieces of 

half pole length. In 

addition one has to 

shim the single poles 

to compensate the 

unavoidable tole-

rances. 
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7.2 Equation of motion in a W/U-magnet 

In a W/U-magnet we have the Lorentz force 
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The velocity component in z-direction is very small and can be neg-

lected. With            and           we have the motion in the s-x-plane 
xvx  svs 
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e
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e
sx
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This is a coupled set of equations. The influence of the horizontal 

motion on the longitudinal velocity is very small 

const.and sx  cvscvx 

In this case only the first equation of (7.3) is important and we get 

)cos(

~

u

0

sk
m

Bce
x








JUAS 2012 Synchrotron  Radiation Klaus Wille 

159 

We replace with 
22and cxxcxx  

the time derivative by a spatial one and get 
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cm

Be
K
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~




 (7.5) 

We get the wiggler- or undulator parameter 

The maximum trajectory angle is 




K
w

This is the natural opening angle of the synchrotron radiation. With 

the parameter K we can now distinguish between wiggler and 

undulator: 

undulator if K  1      i.e.     w   1/ 

wiggler if K > 1      i.e.     w  > 1/ 
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1K

Wiggler 

1K

Undulator 
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Now we go back to the system of coupled equations (7.3). We 

assume that the horizontal motion is only determined by a constant 

average velocity               . From (7.4) and (7. 5) we get sv s

)sin()sin()( uwu sksk
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For the velocity holds 
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Since the expression in the brackets is very small, the root can be 

expand in the way 
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Inserting the horizontal velocity (7.6) and using the relation 
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we get 
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with the average velocity 
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and the oscillation 
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From (8.7) we derive the relative velocity with  = 1 
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With (8.6) and (8.7) to (8.8) we get 
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Using                    and  = 1 one can evaluate the velocity simply by 

integration. In the laboratory frame we have 
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 tcssxx *** and 

We get an impressive form of 

motion in the center of mass 

system K*, which moves with 

the velocity * with respect to the 

laboratory sys-tem. With the 

transformation 
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Because of periodic motion in the undulator radiation is emitted in 

the laboratory frame with a well defined frequency  

w

**  (7.9) 

In the moving frame with the average velocity * the frequency is 

transformed according to 

The system emits monochromatic radiation. To transform a photon 

into the laboratory system we take a photon emitted under the 

angle 0 

p 
px 

ps s 

x 

0 



JUAS 2012 Synchrotron  Radiation Klaus Wille 

168 

Energy and momentum of the photon are 
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Transformation into the System K* is then 
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 0

*w`*

0

***
*

cos1cos 



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E 

The energy of the photon becomes 
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*w*
*
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




cc



**  EWith                 we get 
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
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and 

0

*

w
w
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


Using (8.9) we can write 
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(7.10) 

and find 
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Now we replace * by (7.8) and expand 

After this manipulations we find 
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Using equation (7.10) we get the important "coherence condition for 

undulator radiation" 














 2

0

2
2

2

u
w

2
1

2

K
(7.11) 
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Periode length:  u = 0.25 m 
The undulator radiation 

But: actually the radiation from the magnet is blue light ! 

Simply we 

expect a 

radiation 

with a 

wavelength 

u = 0.25 m. 
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In the laboratory frame the magnet has the periode length u = 0.25 m. 

electron 

The electron has the energy 

E = 450 MeV, i.e..  

 
880

1

1
2





cv

In the electron system the 

undulator appeares shorter: 

m1084.2 4u 




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In the frame of the electron a 

wave with the wavelength ‘is 

generated.  

Undulator seen by the fast moving electron 

electron 

But we can only observe the radiation in the laboratory frame. It is 

therefore again shortened by a factor 1/. The resulting wavelength 

is finally  

nm323
2

u
Undulator 











The wavelength is shortened by the factor 2 = 774400! 
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The exact calculation gives the important coherence condition: 














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2
1

2

2

2

u K

With K = 2 we get the exact wavelength  = 480 nm 

This is blue light ! 
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The wavelength of the radiation is mainly determined by , , and K. 

With increasing angle 0 also the wavelength increases. 

uuu  NLThe total length of the undulator is 

If s0 marks the center of the undulator, the emitted wave has the time 

dependent function 











otherwise0
22

ifexp
),( w

w

T
t

T
tia

tu (7.12) 
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uwwu 2c NTNT  (7.13) 

The wave has the duration 

Such limited wave generates a continuous spectrum of partial 

waves. Their amplitudes are given by the Fourier integral 







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A )exp(),(
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Insertion into (8.12) gives 
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wWith                          and (7.13) we get 
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The intensity is proportional to the square of amplitude  
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We get the half width of maximum from 
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NNN
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
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and find 

i.e. an undulator with Nu = 100 periods gives a line width of  1%. 
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The spectrum of an undulator is 


