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Measurement of Beam Current

The beam current is the basic quantity of the beam. 
� It this the first check of the accelerator functionality

� It has to be determined in an absolute manner 

� Important for transmission measurement and to prevent for beam losses.

Different devices are used:

�Transformers: Measurement of the beam’s magnetic field

They are non-destructive. No dependence on beam energy 

They have lower detection threshold.

�Faraday cups: Measurement of the beam’s electrical charges

They are destructive. For low energies only

Low currents can be determined.

�Particle detectors: Measurement of the particle’s energy loss in matter

Examples are scintillators, ionization chambers, secondary e− emission monitors

Used for low currents at high energies e.g. for slow extraction from a synchrotron.
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Beam Structure of a pulsed LINAC

Pulsed LINACs and cyclotrons used for injection 

to synchrotrons with tpulse ≈100 µs:
One distinguish between:

�Mean current Imean

→ long time average in [A]

�Pulse current Ipulse

→ during the macro pulse in [A]

�Bunch current Ibunch

→ during the bunch in [C/bunch] 

or [particles/bunch]

Remark: Van-de-Graaff (ele-static):

→ no bunch structure

Example:

Pulse and bunch 
structure at 
GSI LINAC:
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Magnetic field of the beam and the ideal Transformer

�Beam current of N charges with velocity β

� cylindrical symmetry

→ only azimuthal component

Example: 1 µA, r = 10cm ⇒ 2 pT, earth B = 50 µT

Idea: Beam as primary winding and sense by sec. winding.
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⇒ Loaded current transformer

I1/I2= N2/N1 ⇒⇒⇒⇒ Isec = 1/N · Ibeam
� Inductance of a torus of µr

� Goal of Torus: Large inductance L

and guiding of field lines.

Definition: U = L · dI/dt
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Passive Transformer (or Fast Current Transformer FCT)

Simplified electrical circuit of a passively loaded transformer:

A voltages is  measured: U = R · Isec = R /N · Ibeam ≡ S · Ibeam

with S sensitivity [V/A], equivalent to transfer function or transfer impedance Z

Equivalent circuit for analysis of sensitivity and bandwidth

(disregarding the loss resistivity RL)
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Bandwidth of a Passive Transformer 

For this parallel shunt: 
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Analysis of  a simplified electrical circuit of a passively loaded transformer:

� Low frequency ω << R/L :  Z → iωL

i.e. no dc-transformation
� High frequency ω >> 1/RCS :  Z → 1/iωCS

i.e. current flow through CS

� Working region R/L <  ω <  1/RCS : Z ≃≃≃≃ R

i.e. voltage drop at R and sensitivity S=R/N.

No oscillations due to over-damping by low R = 50 Ω to ground.

2π flow=R/L
2πfhigh=1/RCS
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2π flow=R/L
2πfhigh=1/RCS

Response of the Passive Transformer: Rise and Droop Time

Time domain description:

Droop time:τdroop= 1/( 2πflow ) = L/R

Rise time:    τrise = 1/( 2πfhigh ) = 1/RCS (ideal without cables)

Rise time:    τrise = 1/(2π fhigh ) = √LSCs (with cables)

RL: loss resistivity, R: for measuring.

For the working region the voltage output is 

beam
t

Ie
N

R
tU droop ⋅⋅=

− τ/
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Example for passive Transformer

For bunch observation 

e.g. transfer between synchrotrons

a bandwidth of 2 kHz < f < 1 GHz  

⇔ 1 ns < t < 200 µs is well suited.

Example GSI type:

From 

Company Bergoz
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‘Active’ Transformer with longer Droop Time

Active Transformer or Alternating Current Transformer ACT:

uses a trans-impedance amplifier (I/U converter) to R ≈≈≈≈ 0 Ω load impedance i.e. a current sink 

+ compensation feedback 

⇒ longer droop time τdroop

Application: measurement of longer t > 10 µs e.g. at pulsed LINACs

The input resistor is for an op-amp: Rf/A << RL

⇒ τdroop = L/(Rf /A+RL) ≃≃≃≃ L/RL

Droop time constant can be up to 1 s!

The feedback resistor is also used for range 

switching.

An additional active feedback loop is used to compensate the droop.
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‘Active’ Transformer Realization

Active transformer for the measurement of long

t > 10 µs pulses e.g. at pulsed LINACs
Torus inner radius ri=30 mm

Torus outer radius ro=45 mm
Core thickness l=25 mm
Core material Vitrovac 6025

(CoFe)70%(MoSiB)30%

Core permeability ur=105

Number of windings 2x10 crossed
Max. sensitivity 106 V/A
Beam current range 10 µA to 100 mA
Bandwidth 1 MHz
Droop 0.5 % for 5 ms
rms resolution 0.2 µA for full bw
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‘Active’ Transformer Measurement

Example: Transmission and macro-pulse 

shape for Ni2+ beam at GSI LINAC 
Example: Multi-turn injection of a Ni26+

beam into GSI Synchrotron, 5 µs per turn

Active transformer for the measurement of long t > 10 µs pulses e.g. at pulsed LINACs
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Shielding of a Transformer

The image current of the walls have to be bypassed by a gap and a metal housing.

This housing uses µ-metal and acts as a shield of external B-fields as well.
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Design Criteria for a Current Transformer

Criteria:

1. The output voltage is U ∝∝∝∝ 1/N ⇒ low number of windings for large signal.

2. For a low droop, a large inductance L is required due to τdroop = L/R:

L ∝∝∝∝ N2 and L ∝∝∝∝ µr (µr ≈105 for amorphous alloy)

3. For a large bandwidth the integrating capacitance Cs should be low τrise = √LsCs

Depending on applications the behavior is influenced by external elements:

�Passive transformer: R = 50 Ω, τrise ≈ 1 ns for short pulses 

Application: Transfer between synchrotrons : 100 ns < tpulse < 10 µs

�Active transformer: Current sink by I/U-converter, τdroop ≈ 1 s for long pulses

Application: macro-pulses at LINACs : 100 µs < tpulse < 10 ms

General:

� The beam pipe has to be intersected to prevent the

flow of the image current through the torus

� The torus is made of 25 µm isolated flat ribbon

spiraled to get a torus of ≈15 mm thickness, 

to have large electrical resistivity

�Additional winding for calibration with current source
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The Artist’ View of Transformers

The active transformer ACCT The passive, fast transformer FCT

Cartoons by Company Bergoz, Saint Genis



L. Groening, Sept. 15th, 2003GSI-Palaver, Dec. 10th, 2003, A dedicated proton accelerator for  p-physics at the future GSI facilitiesPeter Forck, JUAS Archamps Beam Current Measurement 14

How to measure the DC current? The current transformer discussed sees only B-flux changes.

The DC Current Transformer (DCCT) → look at the magnetic saturation of two torii.

14

� Modulation of the primary windings 

forces both torii into saturation 

twice per cycle

� Sense windings measure the 

modulation signal and cancel each other. 

� But with the Ibeam, the saturation is 

shifted and Isense is not zero

� Compensation current adjustable 

until Isense is zero once again

The dc Transformer
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The dc Transformer

� Modulation without beam:

typically about 1 kHz to saturation → no net flux

� Modulation with beam: 

saturation is reached at different times, → net flux

� Net flux: double frequency than modulation 

� Feedback: Current fed to compensation winding 

for larger sensitivity

� Two magnetic cores: Must be very similar. 
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Example: The DCCT at GSI synchrotron (designed 1990 at GSI):

16

The dc Transformer Realization

Recent commercial product specification (Bergoz NPCT):

Most parameters comparable the GSI-model

Temperature coeff. 0.5 µA/oC
Resolution several µA (i.e. not optimized)
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Example: The DCCT at GSI synchrotron:

⇒ Observation of beam behavior with 20 µs time resolution → important operation tool.

17

Measurement with a dc Transformer

Important parameter:

Detection threshold: 1 µA

(= resolution)

Bandwidth: dc to 20 kHz

Rise-time: 20 µs

Temperature drift: 1.5 µA/0C

⇒ compensation required.
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Design Criteria and Limitations for a dc Transformer

Careful shielding against external

fields with µ-metal.

� High resistivity of the core material

to prevent for eddy current

⇒ thin, insulated strips of alloy.

� Barkhausen noise due to changes of Weiss domains

⇒ unavoidable limit for DCCT.

� Core material with low changes of µr due to temperature and stress

⇒ low micro-phonic pick-up.

� Thermal noise voltage Ueff = (4kBT · R · f)1/2

⇒ only required bandwidth f, low input resistor R.

� Preventing for flow of secondary electrons through the core

⇒ need for well controlled beam centering close to the transformer.

⇒ The current limits are:  ≈≈≈≈ 1   µA for DCCT

≈≈≈≈ 30   µA for FCT with 500 MHz bandwidth 

≈≈≈≈ 0.3 µA for ACT with 1 MHz bandwidth.
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The Artist’ View of Transformers

The active transformer ACCT The passive, fast transformer FCT

The dc transformer DCCT

Company Bergoz
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Measurement of Beam Current

The beam current is the basic quantity of the beam. 
� It this the first check of the accelerator functionality

� It has to be determined in an absolute manner 

� Important for transmission measurement and to prevent for beam losses.

Different devices are used:

�Transformers: Measurement of the beam’s magnetic field

They are non-destructive. No dependence on beam energy 

They have lower detection threshold.

�Faraday cups: Measurement of the beam’s electrical charges

They are destructive. For low energies only

Low currents can be determined.

�Particle detectors: Measurement of the particle’s energy loss in matter

Examples are scintillators, ionization chambers, secondary e− emission monitors

Used for low currents at high energies e.g. for slow extraction from a synchrotron.
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Faraday Cups for Beam Charge Measurement

The beam particles are collected inside a metal cup

⇒ The beam’s charge are recorded as a function of time. The cup is moved in 

the beam pass →

destructive device

Currents down  to 10 pA with bandwidth of 100 Hz!

Magnetic field:

To prevent for secondary electrons leaving the cup

and/or

Electric field: 

Potential barrier at the cup entrance.
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Realization of a Faraday Cup at GSI LINAC

The Cup is moved into the beam pass.
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Secondary Electron Suppression: Using permanent Magnets

Arrangement of Co-Sm permanent magnets within the yoke 

and the calculated magnetic field lines.

The homogeneous field strength is B ≈ 0.1 T.
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Secondary Electron Suppression: Electric Field

A ring shaped electrode is used 

at the entrance of Faraday Cup:

Typical voltage 100 to 500 V

Field calculation and 

secondary electron trajectories

J. Harasimowicz et al. BIW 2010

Secondary electrons

Potential lines
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Secondary Electron Emission by Ion Impact 

Energy loss of ions in metals close to a surface:

Distant collisions → slow e- with Ekin ≤≤≤≤ 10 eV

→ ‘diffusion’ & scattering wit other e-: scattering length Ls ≈≈≈≈ 1 - 10 nm

→ at surface ≈ 90 % probability for escape

Closed collision: → slow e- with Ekin>> 100 eV inelastic collision and ‘thermalization’

Secondary electron yield and  energy distribution comparable for all metals!

⇒ Y = const. * dE/dx (Sternglass formula)
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Different targets:

From E.J. Sternglass, Phys. Rev. 108, 1 (1957)
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Secondary Electron Emission by Ion Impact 

Energy loss of ions in metals close to a surface:

Distant collisions → slow e- with Ekin ≤≤≤≤ 10 eV

→ ‘diffusion’ & scattering wit other e-: scattering length Ls ≈≈≈≈ 1 - 10 nm

→ at surface ≈ 90 % probability for escape

Closed collision: → slow e- with Ekin>> 100 eV inelastic collision and ‘thermalization’

Secondary electron yield and  energy distribution comparable for all metals!

⇒ Y = const. * dE/dx (Sternglass formula)

beam

Ls ≈≈≈≈ 10 nm

e-

e-

δ-ray

From C.G. Drexler, R.D. DuBois, Phys. Rev. A 53, 1630 (1996)



L. Groening, Sept. 15th, 2003GSI-Palaver, Dec. 10th, 2003, A dedicated proton accelerator for  p-physics at the future GSI facilitiesPeter Forck, JUAS Archamps Beam Current Measurement 27

Source
LINAC, Cycl.

Synchrotron

27

Energy Loss of Ions in Copper
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Numerical calculation

with semi-empirical model e.g. SRIM

Main modification  Zp → Zeff
p(Ekin)

⇒ Cups only for

Ekin < 100 MeV/u due to R < 10 mm

Bethe Bloch formula:

Range:                                          

with approx. scaling R∝∝∝∝ Emax
1.75
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Faraday Cups for high Intensity Ion Beam → Surface Heating

The heating of material has to be considered, given by the energy loss.

The cooling is done by radiation due to Stefan-Boltzmann: Pr = εεεε σ T 4

Example: Beam current: 11.4 MeV/u Ar10+ with 10 mA and 1 ms beam delivery

Beam size: 5 mm FWHM → 23 kW/mm2 ,  Ppeak = 450 kW total power during 1ms delivery

Foil: 1 µm Tantalum, emissivity εεεε = 0.49

Temperature increase: 

T > 2000 0C during beam delivery 

Even for low average power, 

the material should 

survive the peak power!
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High Power Faraday Cups

Cups designed for 1 MW, 1 ms pulse power → cone of Tungsten-coated Copper

Bismuth for high melting temperature and copper for large head conductivity.

beam
∅∅∅∅60mm

∅∅∅∅60mm
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Energy Loss of Electrons in Copper & Faraday Cups of e-

Bethe Bloch formula is valid for all charged particles. 

However, Bremsstrahlung dominates for energies above 10 MeV.
e- shows  much larger longitudinal and transverse straggling

energy loss of e- in copper

Al stopper: Stopping of e- gently in low-Z material

Pb-shield: Absorption of Bremstrahlungs-γ

⇒ Used as beam dump
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Measurement of Beam Current

The beam current is the basic quantity of the beam. 
� It this the first check of the accelerator functionality

� It has to be determined in an absolute manner 

� Important for transmission measurement and to prevent for beam losses.

Different devices are used:

�Transformers: Measurement of the beam’s magnetic field

They are non-destructive. No dependence on beam energy 

They have lower detection threshold.

�Faraday cups: Measurement of the beam’s electrical charges

They are destructive. For low energies only

Low currents can be determined.

�Particle detectors: Measurement of the particle’s energy loss in matter

Examples are scintillators, ionization chambers, secondary e− emission monitors

Used for low currents at high energies e.g. for slow extraction from a synchrotron.
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Low Current Measurement for slow Extraction

Slow extraction from synchrotron: lower current compared to LINAC,

but higher energies and larger range R >> 1 cm.

� Particle counting:

max: r ≃ 106 1/s

� Energy loss in gas (IC):

min: Isec ≈ 1 pA

max: Isec ≈ 1 µA

� Sec. e− emission:

min: Isec ≈ 1 pA

� Max. synch. filling:

Space Charge Limit (SCL).

Particle detector technologies for ions of 1 GeV/u, A = 1 cm2:

Particles per second
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Example of Scintillator Counter

Example: Plastic Scintillator i.e. organic fluorescence molecules in a plastic matrix

Advantage: any mechanical from, cheap, blue wave length, fast decay time

Disadvantage: not radiation hard

Particle counting: PMT → discriminator → scalar → computer
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Properties of a good Scintillator

Analog pulses from a plastic sc. with a low 

current 300 MeV/u Kr beam.
Properties of a good scintillator:

� Light output linear to energy loss

� Fast decay time → high rate

� No self-absorption

� Wave length of fluorescence

350 nm < λ < 500 nm

� Index of refractivity n ≈ 1.5

→ light-guide

� Radiation hardness

e.g. Ce-activated inorganic

are much more radiation hard.

The scaling is 20 ns/div and 100 mV/div.



L. Groening, Sept. 15th, 2003GSI-Palaver, Dec. 10th, 2003, A dedicated proton accelerator for  p-physics at the future GSI facilitiesPeter Forck, JUAS Archamps Beam Current Measurement 35
35

Monitoring of Slow Extraction

Slow extraction from a synchrotron delivers countable currents

Example: Comparison for 

different detector types:

Parameters: dc-transformer inside the synch., ionization chamber and scintillator

for a 250 MeV/u Pb67+ beam with a total amount of 106 particles.
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Ionization Chamber (IC): Electron Ion Pairs

Energy loss of charged particles in gases → electron-ion pairs → low current meas.

beamIx
dx

dE

W
I ⋅∆⋅=

1
sec

Example: GSI type

W is average energy for one e- -ion pair:
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Secondary Electron Monitor (SEM): Electrons from Surface

For higher intensities SEMs are used.

Due to the energy loss, secondary e− are emitted from a metal surface.

The amount of secondary e− is proportional to the energy loss

Sometimes they are installed permanently in front of an experiment.

beamI
dx

dE
YI ⋅⋅=sec

It is a surface effect:

→ Sensitive to cleaning procedure

→ Possible surface modification by  radiation 

Example: GSI SEM type

Advantage for Al: good mechanical properties.

Disadvantage: Surface effect!

e.g. decrease of yield Y due to radiation

⇒ Ti foils for a permanent insertion.
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Example: GSI Installation for SEM and iC

IC in Ar-gas at 1 bar

SEM in vacuum

Feed-through with 

Ø 200 mm flange 
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Summary for Current Measurement

Current is the basic quantity for accelerators!

Transformer: →→→→ measurement of the beam’s magnetic field

� magnetic field is guided by a high µ toroid

� types: passive (large bandwidth), active (low droop)

and dc (two toroids + modulation)

� lower threshold by magnetic noise: about Ibeam > 1 µA

� non-destructive, used for all beams

Faraday cup: →→→→ measurement of beam’s charge

� low threshold by I/U-converter: Ibeam > 10 pA

� totally destructive, used for low energy beams

Scintillator, →→→→ measurement of the particle’s energy loss

IC, SEM: � particle counting (Scintillator)

� secondary current: IC → gas or SEM → surface

� no lower threshold due to single particle counting

� partly destructive, used for high energy beams


