The emittance characterizes the whole beam quality, assuming linear behavior as described by second order differential equation. It is defined within the phase space as: $\varepsilon_x = \frac{1}{\pi} \int_A dx dx'$

The measurement is based on determination of:

either profile width σ_x and angular width σ_x' at one location or σ_x at different locations and linear transformations.

Different devices are used at transfer lines:

- > Lower energies E_{kin} < 100 MeV/u: slit-grid device, pepper-pot (suited in case of non-linear forces).
- All beams: Quadrupole variation, 'three grid' method using linear transformations (not well suited in the presence of non-linear forces)

Synchrotron: lattice functions results in stability criterion

 $\Rightarrow \text{ beam width delivers emittance: } \mathcal{E}_x = \frac{1}{\beta_x(s)} \left| \sigma_x^2 - \left(D(s) \frac{\Delta p}{p} \right) \right| \text{ and } \mathcal{E}_y = \frac{\sigma_y^2}{\beta_y(s)}$

Definition of transverse Emittance

The emittance characterizes the whole beam quality:

Ansatz: Beam matrix at one location: $\boldsymbol{\sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix} = \boldsymbol{\varepsilon} \cdot \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$ with $\vec{x} =$ It describes a 2-dim probability distr.

The value of emittance is:

$$\varepsilon_x = \sqrt{\det \sigma} = \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2}$$

For the profile and angular measurement:

$$x_{\sigma} = \sqrt{\sigma_{11}} = \sqrt{\epsilon\beta} \text{ and}$$

$$x'_{\sigma} = \sqrt{\sigma_{22}} = \sqrt{\epsilon\gamma}$$
Geometrical interpretation:
All points **x** fulfilling **x^{t} \cdot \sigma^{-1} \cdot x = 1**
are located on a ellipse
$$\sigma_{22}x^{2} - 2\sigma_{12}xx' + \sigma_{11}x'^{2} = \det \sigma = \epsilon_{x}^{2} \qquad -4 \qquad -2 \qquad 0 \qquad 2 \qquad 4$$

Peter Forck, JUAS Archamps

Transverse Emittance Measurement

 $\varepsilon_x = \frac{1}{\pi} \int_A dx dx'$

 $x_{\sigma}^{*} = (\sigma_{22})^{1/2}$

Χ,

Area:

 $A = \pi \epsilon$

Angle

Ð

The Emittance for Gaussian Beams

The density function for a 2-dim Gaussian distribution is:

$$\rho(x, x') = \frac{1}{2\pi\epsilon} \exp\left[-\frac{1}{2} \vec{x}^T \sigma^{-1} \vec{x}\right]$$
$$= \frac{1}{2\pi\epsilon} \exp\left[\frac{-1}{2\det\sigma} \left(\sigma_{22}x^2 - 2\sigma_{12}xx' + \sigma_{11}x'^2\right)\right]$$

It describes an ellipse

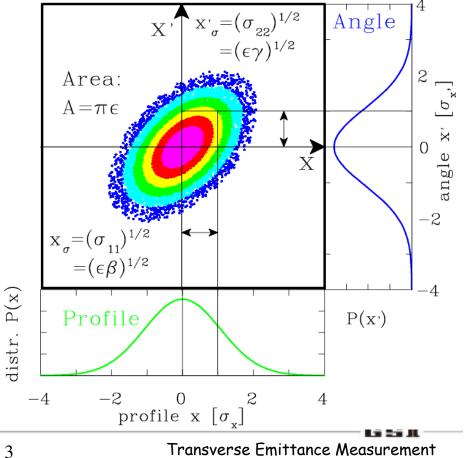
with the characteristics

profile and angle Gaussian distribution of width

$$x_{\sigma} = \sqrt{\sigma_{11}}$$
 and
 $x'_{\sigma} = \sqrt{\sigma_{22}}$

and the correlation or covariance

$$\operatorname{cov} = \sqrt{\sigma_{12}}$$



The Emittance for Gaussian and non-Gaussian Beams

The beam distribution can be non-Gaussian, e.g. at:

➤ beams behind ion source

➤ space charged dominated beams at LINAC & synchrotron

cooled beams in storage rings

General description of emittance

using terms of 2-dim distribution:

It describes the value for 1 stand. derivation

The n^{th} central moment of a density distribution $\rho(x, x')$ calculated via

$$\mu \equiv \langle x \rangle = \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot \rho(x, x') dx' dx}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho(x, x') dx dx'} \quad \text{and} \quad \langle x^n \rangle = \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu)^n \cdot \rho(x, x') dx' dx'}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho(x, x') dx dx'}$$
Covariance: $\langle xx' \rangle = \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu) \cdot (x' - \mu') \cdot \rho(x, x') dx dx'}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho(x, x') dx dx'}$

 \mathcal{E}_{rms}

Peter Forck, JUAS Archamps

Transverse Emittance Measurement

Covariance

Variances

 $\langle xx' \rangle$

i.e. correlation

The Emittance for Gaussian and non-Gaussian Beams

The beam distribution can be non-Gaussian, e.g. at:

- ➤ beams behind ion source
- ▹space charged dominated beams at LINAC & synchrotron
- cooled beams in storage rings

General description of emittance

using terms of 2-dim distribution:

It describes the value for 1 stand. derivation

For Gaussian beams only:

 $\varepsilon_{rms} \leftrightarrow$ interpreted as area containing a fraction f of ions: $\varepsilon(f) = -2\pi \varepsilon_{rms} \cdot \ln(1-f)$

 \mathcal{E}_{rms}

factor to
$$\epsilon_{rms}$$
 $1 \cdot \epsilon_{rms}$ $\pi \cdot \epsilon_{rms}$ $2\pi \cdot \epsilon_{rms}$ $4\pi \cdot \epsilon_{rms}$ $6\pi \cdot \epsilon_{rms}$ $8\pi \cdot \epsilon_{rms}$ faction of beam f [%]153963869598

Care: no common definition of emittance concerning the fraction f

Covariance

Variances

 $\langle xx' \rangle$

i.e. correlation

Outline:

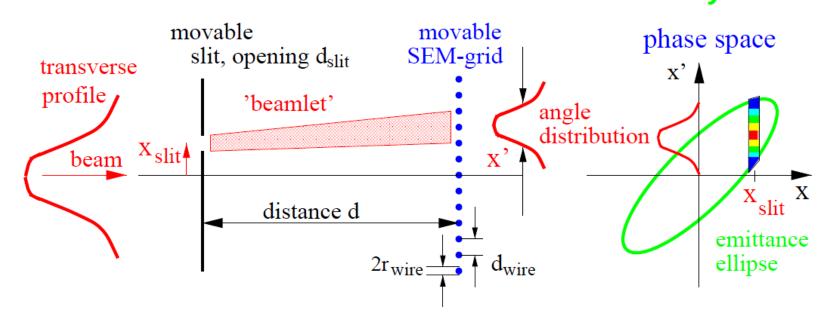
- > Definition and some properties of transverse emittance
- Slit-Grid device: scanning method

scanning slit \rightarrow beam position & grid \rightarrow angular distribution

- > Pepper-pot device: single shot device
- > Quadrupole strength variation and position measurement
- ➤ Summary

Slit-Grid: Direct determination of position and angle distribution.

Used for protons/heavy ions with $E_{kin} < 100 \text{ MeV/u} \Rightarrow \text{range } R < 1 \text{ cm.}$ Hardware Analysis



Slit: position P(x) with typical width: 0.1 to 0.5 mm *Distance:* 10 cm to 1 m (depending on beam velocity) *SEM-Grid:* angle distribution P(x')

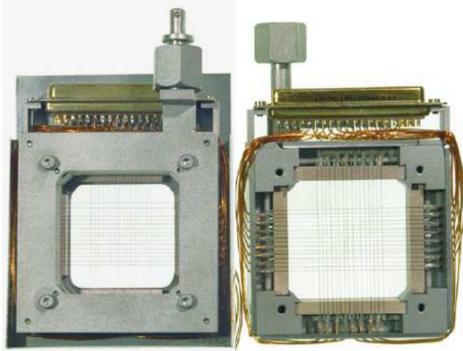
Slit & SEM-Grid

Slit with e.g. 0.1 mm thickness \rightarrow Transmission only from Δx .

Example: Slit of width 0.1 mm (defect) Moved by stepping motor, 0.1 mm resolution

Beam surface interaction: e⁻ emission

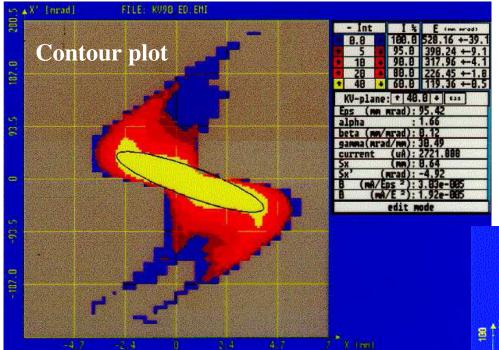
→ measurement of current. Example: 15 wire spaced by 1.5 mm:



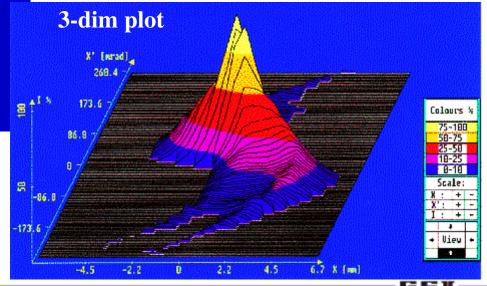
Each wire is equipped with one I/U converter different ranges settings by R_i \rightarrow very large dynamic range up to 10⁶.

Result of an Slit-Grid Emittance Measurement

Result for a beam behind ion source: > here aberration in quadrupoles due to large beam size



Low energy ion beam: → well suited for emittance showing space-charge effects or aberrations. ➢ different evaluation and plots possible
➢ can monitor any distribution
Calculation of moments
<x²>, <x²> and <xx²> and $\mathcal{E}_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$



The Resolution of a Slit-Grid Device

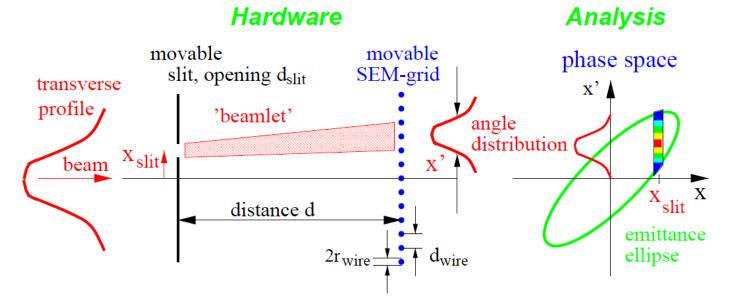
The width of the slit d_{slit} gives the resolution in space $\Delta x = d_{slit}$.

The angle resolution is $\Delta x' = (d_{slit} + 2r_{wire})/d$

 \Rightarrow discretization element $\Delta x \cdot \Delta x'$.

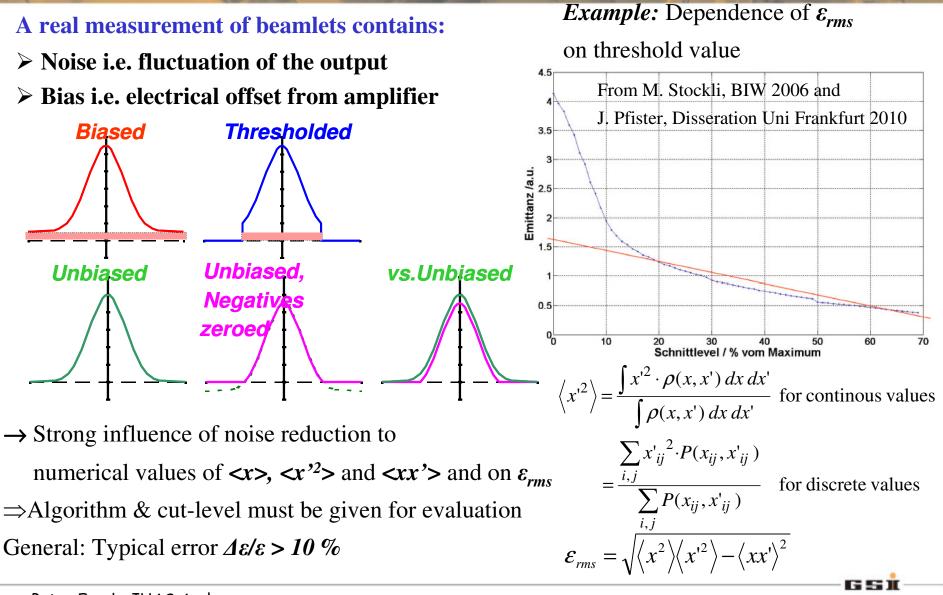
By scanning the SEM-grid the angle resolution can be improved.

Problems for small beam sizes or parallel beams.



For pulsed LINACs: Only one measurement each pulse \rightarrow long measuring time required.

The Noise Influence for Emittance Determination



Peter Forck, JUAS Archamps

Transverse Emittance Measurement

Outline:

- > Definition and some properties of transverse emittance
- ➢ Slit-Grid device: scanning method scanning slit → beam position & grid → angular distribution
- ➢ Pepper-pot device: single shot device hole-plate → beam position & screen → angular distribution
- > Quadrupole strength variation and position measurement
- ➤ Summary

The Pepperpot Emittance Device

➢ For pulsed LINAC: Measurement within one pulse is an advantage > If horizontal and vertical direction coupled \rightarrow 2-dim evaluation required (e.g. for ECR ion source) **CCD** camera with zoom viewing screen Beam ion beam pepper-pot support y' as [mrad] Good **spatial** resolution if many holes are illuminated. y'3 Good **angle** resolution *only* if spots do not overlap. y as [mm]

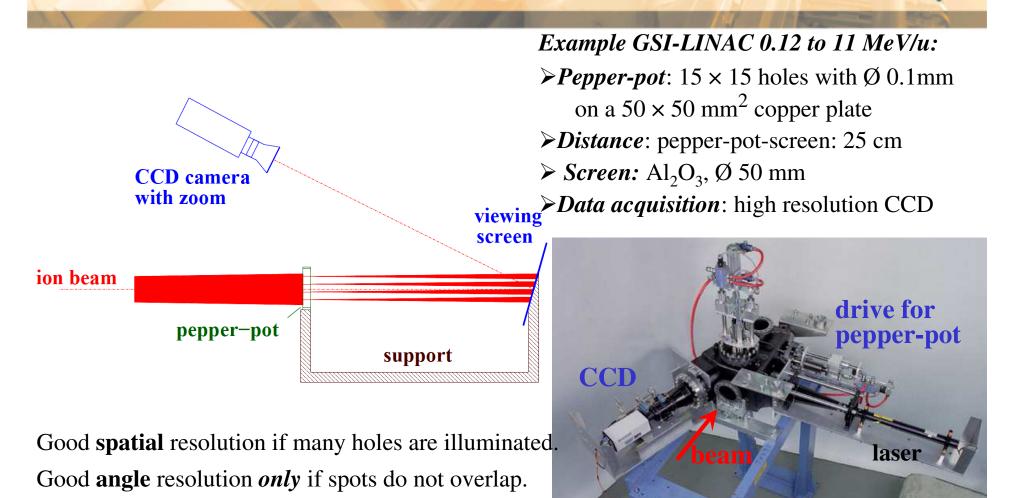
Partly from H.R. Kremers et al., ECRIS 2010

Peter Forck, JUAS Archamps

tance Measurement

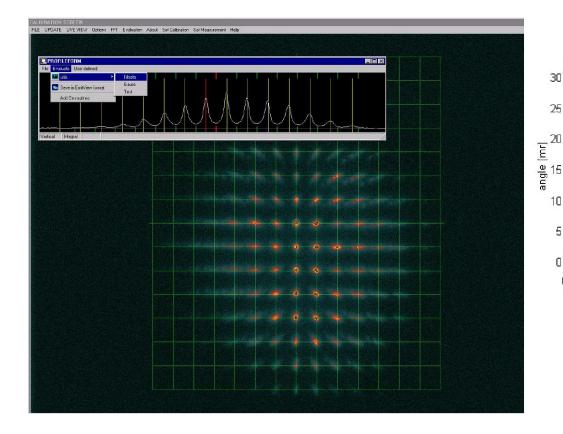
y₃

The Pepperpot Emittance Device at GSI UNILAC

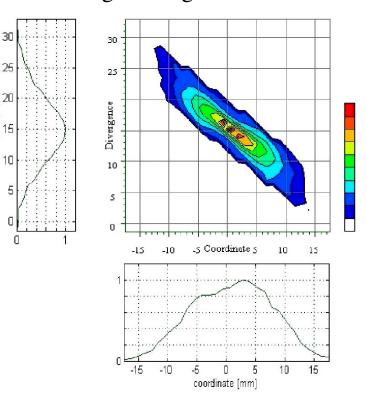


Result of a Pepperpot Emittance Measurement

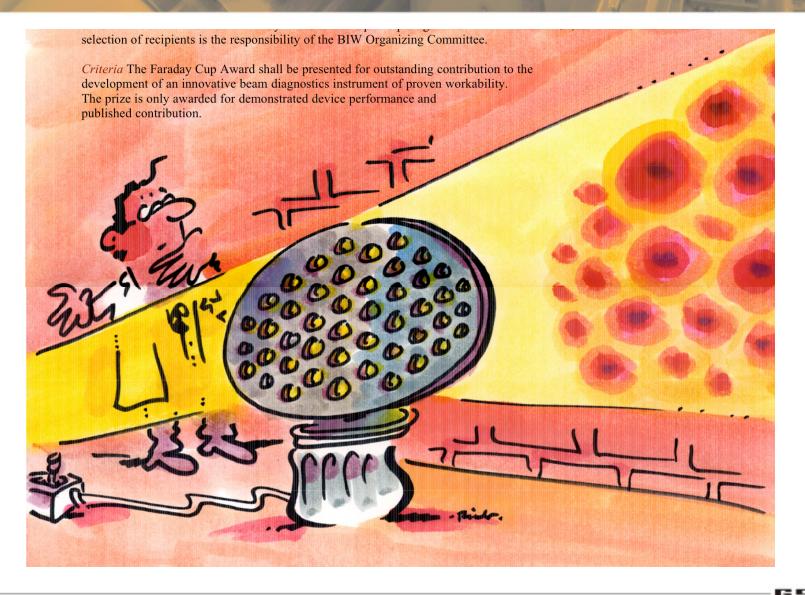
Example: Ar ¹⁺ ion beam at 1.4 MeV/u, screen image from single shot at GSI:



Data analysis: Projection on horizontal and vertical plane → analog to slit-grid.



The Artist View of a Pepperpot Emittance Device

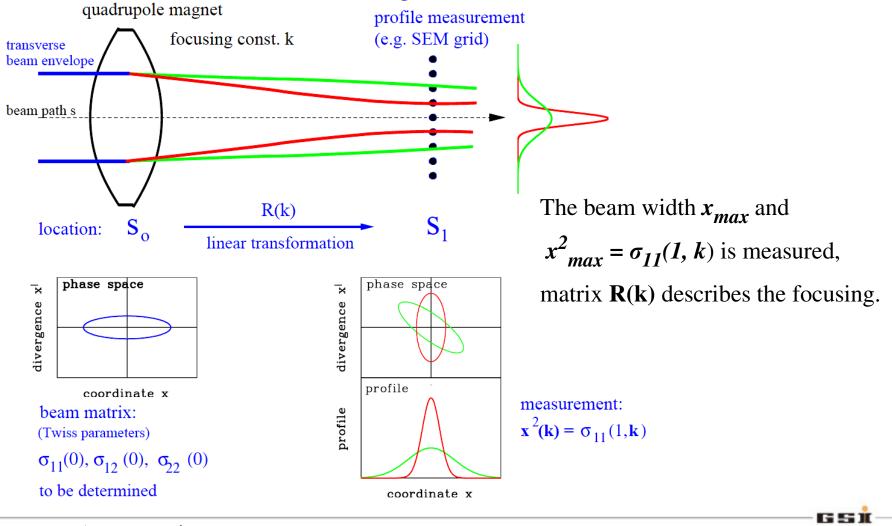


Outline:

- > Definition and some properties of transverse emittance
- ➢ Slit-Grid device: scanning method scanning slit → beam position & grid → angular distribution
- > Pepper-pot device: single shot device hole-plate \rightarrow beam position & screen \rightarrow angular distribution
- > Quadrupole strength variation and position measurement emittance from several profile measurement and beam optical calculation
- ➤ Summary

Emittance Measurement by Quadrupole Variation

From a profile determination, the emittance can be calculated via linear transformation, if a well known and constant distribution (e.g. Gaussian) is assumed.



Peter Forck, JUAS Archamps

Without dispersion one can use the 2-dim sub-space (x, x').

- Drift with length L: $\mathbf{R}_{\mathbf{drift}} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$
- Horizontal focusing with quadrupole constant k and eff. length L:

$$\mathbf{R_{focus}} = \begin{pmatrix} \cos\sqrt{k}L & \frac{1}{\sqrt{k}}\sin\sqrt{k}L \\ -\frac{1}{\sqrt{k}}\sin\sqrt{k}L & \cos\sqrt{k}L \end{pmatrix}$$

• Horizontal de-focusing with quadrupole constant k and eff. length L:

$$\mathbf{R}_{\mathbf{defocus}} = \begin{pmatrix} \cosh\sqrt{kL} & \frac{1}{\sqrt{k}}\sinh\sqrt{kL} \\ -\frac{1}{\sqrt{k}}\sinh\sqrt{kL} & \cosh\sqrt{kL} \end{pmatrix}$$

For a (ideal) quadrupole with field gradient $g = B_{pole}/a$, B_{pole} is the field at the pole and a the aperture, the quadrupole constant $k = |g|/(B\rho)_0$ for a magnetic rigidity $(B\rho)_0$.

Peter Forck, JUAS Archamps

- The beam width x_{max} at s_1 is measured, and therefore $\sigma_{11}(1, k_i) = x_{max}^2(k_i)$.
- Different focusing of the quadrupole $k_1, k_2...k_n$ is used: $\Rightarrow \mathbf{R}_{\mathbf{focus}}(k_i)$, including the drift, the transfer matrix is changed $\mathbf{R}(k_i) = \mathbf{R}_{\mathbf{drift}} \cdot \mathbf{R}_{\mathbf{focus}}(k_i)$.
- Task: Calculation of *beam* matrix $\sigma(0)$ at entrance s_0 (size and orientation of ellipse)
- The transformations of the beam matrix are: $\sigma(1, k) = \mathbf{R}(k) \cdot \sigma(0) \cdot \mathbf{R}^{\mathbf{T}}(k)$. \implies Resulting in a redundant system of linear equations for $\sigma_{ij}(0)$:

$$\sigma_{11}(1,k_1) = R_{11}^2(k_1) \cdot \sigma_{11}(0) + 2R_{11}(k_1)R_{12}(k_1) \cdot \sigma_{12}(0) + R_{12}^2(k_1) \cdot \sigma_{22}(0) \text{ focusing } k_1$$

:

 $\sigma_{11}(1,k_n) = R_{11}^2(k_n) \cdot \sigma_{11}(0) + 2R_{11}(k_n)R_{12}(k_n) \cdot \sigma_{12}(0) + R_{12}^2(k_n) \cdot \sigma_{22}(0) \text{ focusing } k_n$

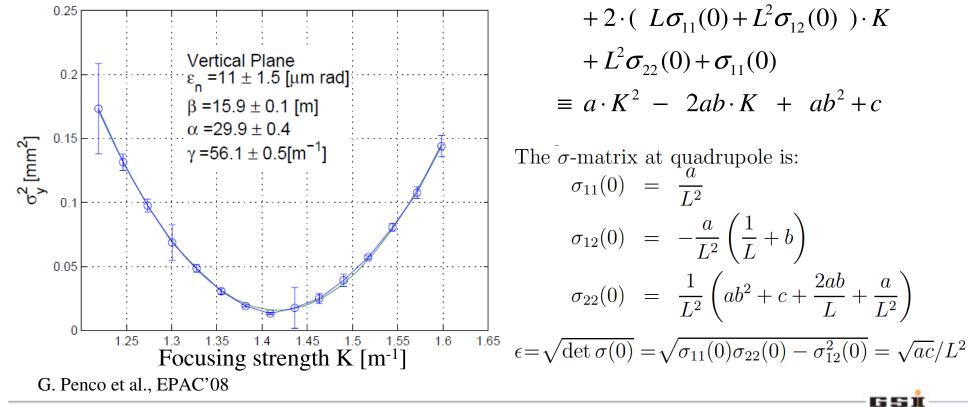
- To learn something on possible errors, n > 3 settings have to be performed. A setting with a focus close to the SEM-grid should be included to do a good fit.
- Assumptions:
 - Only elliptical shaped emittance can be obtained.
 - No broadening of the emittance e.g. due to space-charge forces.
 - If *not* valid: A self-consistent algorithm has to be used.

Measurement of transverse Emittance

Using the 'thin lens approximation' i.e. the quadrupole has a focal length of *f*:

$$\mathbf{R}_{focus}(K) = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ K & 1 \end{pmatrix} \implies \mathbf{R}(L, K) = \mathbf{R}_{drift}(L) \cdot \mathbf{R}_{focus}(K) = \begin{pmatrix} 1+LK & L \\ K & 1 \end{pmatrix}$$

Measurement of $\sigma(I,K) = \mathbf{K}(K) \cdot \sigma(U) \cdot \mathbf{K}^{T}(K)$ *Example:* Square of the beam width at $\sigma_{11}(1,K) = L^2 \sigma_{11}(0) \cdot K^2$ ELETTRA 100 MeV e⁻ Linac, YAG:Ce:



+2·($L\sigma_{11}(0) + L^2\sigma_{12}(0)$)·K

 $+L^2\sigma_{22}(0)+\sigma_{11}(0)$

The 'Three Grid Method' for Emittance Measurement

Instead of quadrupole variation, the beam width is measured at *different* locations:

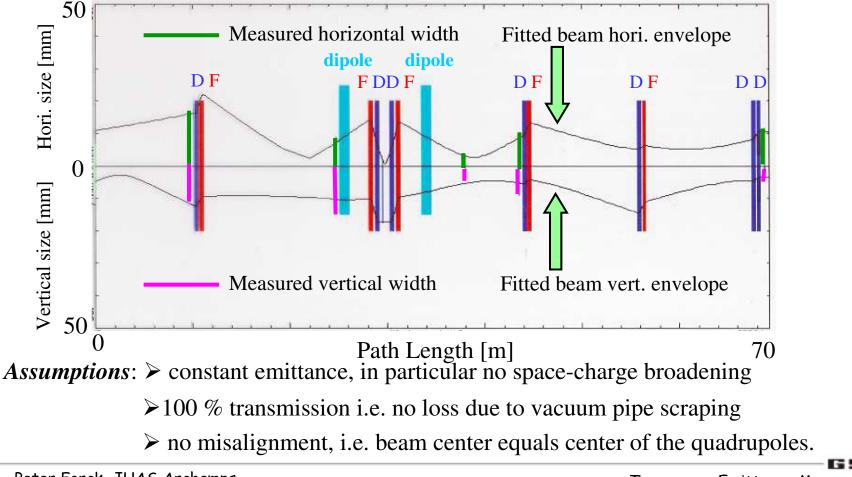
profile measurement (e.g. SEM grid) transverse The procedure is: beam envelope \blacktriangleright Beam width x(i) measured beam path s at the locations s_i \Rightarrow beam matrix element $x^2(i) = \sigma_{11}(i).$ R(1) \mathbf{S}_1 R(2) _ S₂ S_o location: R(3) > The transfer matrix $\mathbf{R}(i)$ is known. S_3 phase space phase space Ř × (without dipole a 3×3 matrix.) phase space phase space × livergence divergence livergence divergence \blacktriangleright The transformations are: $\sigma(i) = \mathbf{R}(i)\sigma(0)\mathbf{R}^{\mathrm{T}}(i)$ profile profile profile profile profile coordinate x profile \Rightarrow redundant equations: beam matrix: (Twiss parameters) $\sigma_{11}(0), \sigma_{12}(0), \sigma_{22}(0)$ coordinate x coordinate x coordinate x measurement: to be determined $\mathbf{x}^{2}(1) = \sigma_{11}(1)$ $\mathbf{x}^{2}(2) = \sigma_{11}(2)$ $\mathbf{x}^{2}(3) = \sigma_{11}(3)$ $\sigma_{11}(1) = R_{11}^2(1) \cdot \sigma_{11}(0) + 2R_{11}(1)R_{12}(1) \cdot \sigma_{12}(0) + R_{12}^2(1) \cdot \sigma_{22}(0) \qquad \mathbf{R}(1) : s_0 \to s_1$ $\sigma_{11}(2) = R_{11}^2(2) \cdot \sigma_{11}(0) + 2R_{11}(2)R_{12}(2) \cdot \sigma_{12}(0) + R_{12}^2(2) \cdot \sigma_{22}(0) \qquad \mathbf{R}(2) : s_0 \to s_2$ $\sigma_{11}(n) = R_{11}^2(n) \cdot \sigma_{11}(0) + 2R_{11}(n)R_{12}(n) \cdot \sigma_{12}(0) + R_{12}^2(n) \cdot \sigma_{22}(0) \quad \mathbf{R}(n) : s_0 \to s_n$

Peter Forck, JUAS Archamps

Transverse Emittance Measurement

Solution: Solving the linear equations like for quadrupole variation or fitting the profiles with linear optics code (e.g. TRANSPORT, WinAgile, MadX).

Example: The hor. and vert. beam envelope and the beam width at a transfer line:



Emittance measurements are very important for comparison to theory.

It includes size (value of ε) and orientation in phase space (σ_{ij} or α , β and γ) (three independent values)

Techniques for transfer lines (synchrotron: width measurement sufficient):

Low energy beams \rightarrow direct measurement of x- and x'-distribution

▷ *Slit-grid*: movable slit $\rightarrow x$ -profile, grid $\rightarrow x'$ -profile

→ *Pepper-pot*: holes → *x*-profile, scintillation screen → *x'*-profile

All beams \rightarrow profile measurement + linear transformation:

> Quadrupole variation: one location, different setting of a quadrupole

'Three grid method': different locations

➤ Assumptions: ➤ well aligned beam, no steering

 \blacktriangleright no emittance blow-up due to space charge.