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Measurement of Beam Profile

The beam width can be changed by focusing via quadruples.

Transverse matching between ascending accelerators is done by focusing.

→ Profiles have to be controlled at many locations.

Synchrotrons: Lattice functions ββββ(s) and D(s) are fixed ⇒ width σσσσ and emittance εεεε are: 

LINACs: Lattice functions are ‘smoothly’ defined  due to variable input emittance.
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A great variety of devices are used:

� Optical techniques: Scintillating screens (all beams),

synchrotron light monitors (e−), optical transition radiation (e−), 

residual gas fluorescence monitors (protons), residual gas monitors (protons).

� Electronics techniques: Secondary electron emission (SEM) grids, wire scanners (all)

grids with gas amplification MWPC (protons) 
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Outline:

� Scintillation screens: 

emission of light, universal  usage, limited dynamic range 

� SEM-Grid

� Wire scanner

� Ionization Profile Monitor and Beam Induced Fluorescence Monitor  

� Optical Transition Radiation  

� Synchrotron Light Monitors

� Summary
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Scintillation Screen

Particle’s energy loss in matter produces light 

→ the most direct way of profile observation  as used from the early days on!

Pneumatic feed-through 
with Ø70 mm screen :

Flange & 
window

Screenbeam

Pneumatic
drive

CCD
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Example of Screen based Beam Profile Measurement

Observation with a CCD camera

with digital output 

or video & frame grabber.

Advantage of screens:

�Direct 2-dim measurement

�High spatial resolution

�Cheap realization

b/w CCD:

artificial 
false-color

Example: GSI LINAC, 4 MeV/u, low current, YAG:Ce screen
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Al2O3
CsI:Tl Al2O3:Cr P43

YAG:Ce Herasil Quartz:Ce ZrO2:Mg

� Very different light yield i.e. photons per ion‘s energy loss

� Different wavelength of emitted light

Light output from various Scintillating Screens

Example: Color CCD camera: Images at different particle intensities determined for U at 300 MeV/u
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Interaction steps within the scintillation process

� beam interaction

→→→→ hot electrons + deep holes

� multiplication:

electron – electron scattering

� thermalization: 

electron – phonon coupling

� capture at doped atom and/or 

electron - hole pair creation

� emission of photons

Physics of Scintillating Mechanism

Beam

hν

Doping atom

hν
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Material Properties for Scintillating Screens

Some materials and their basic properties:

Properties of a good scintillator:

� Large light output at optical wavelength → standard CCD camera can be used

� Large dynamic range → no deformation due to saturation or self-absorption

� Short decay time → observation of time variations

� Radiation hardness → long lifetime

� Good mechanical properties → typical size up to Ø 10 cm

(Phosphor Pxx grains of Ø ≈ 10 µm on glass or metal).
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Outline:

� Scintillation screens: 

emission of light, universal  usage, limited dynamic range 

� SEM-Grid: emission of electrons, workhorse, limited resolution  

� Wire scanner

� Ionization Profile Monitor and Beam Induced Fluorescence Monitor

� Optical Transition Radiation 

� Synchrotron Light Monitors

� Summary
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Secondary Electron Emission Grids = SEM-Grid

Beam surface interaction: e− emission → measurement of current.

Example: 15 wire spaced by 1.5 mm:

SEM-Grid feed-through on CF200:
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Secondary Electron Emission Grids = SEM-Grid

Beam surface interaction: e− emission → measurement of current.

Example: 15 wire spaced by 1.5 mm:

Each wire is equipped with one I/U converter 

different ranges settings by Ri

→ very large dynamic range up to 106.
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The Artist view of a SEM-Grid = Harp

The Faraday Cup is an award granded every second year for beam diagnostics inventions .



L. Groening, Sept. 15th, 2003GSI-Palaver, Dec. 10th, 2003, A dedicated proton accelerator for  p-physics at the future GSI facilitiesPeter Forck, JUAS Archamps Beam Profile Measurement 12

Properties of a SEM-Grid

Secondary e- emission from wire or ribbons, 10 to 100 per plane.

Typical specifications for a SEM-Grid used at the GSI-LINAC:

Care has to be taken to prevent over-heating by the energy loss!

Low energy beam: Ratio of spacing/width: ≃ 1mm/0.1mm = 10 → only 10 % loss.

High energy Ekin > 1 GeV/u: thin ribbons of larger width are used 

due to negligible energy loss.
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Example of Profile Mesurement with SEM-Grids

Even for low energies, several SEM-Grid can be used due to the ≈80 % transmission

⇒ frequently used instrument beam optimization: setting of quadrupoles, energy….

Example: C6+ beam of 11.4 MeV/u at different location at GSI-LINAC

horizontal vertical
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Outline:

� Scintillation screens: 

emission of light, universal  usage, limited dynamic range 

� SEM-Grid: emission of electrons, workhorse, limited resolution  

� Wire scanner: emission of electrons, workhorse, scanning method

� Ionization Profile Monitor and Beam Induced Fluorescence Monitor  

� Optical Transition Radiation 

� Synchrotron Light Monitors 

� Summary
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Wire Scanner

Instead of several wires, one wire is scanned though the beam.

Fast pendulum scanner for synchrotrons; sometimes it is called ’flying wire’:
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Usage of Wire Scanners

Material: carbon or SiC→ low Z-material for low energy loss and high temperature.

Thickness: down to 10 µm→ high resolution.

Detection: Either the secondary current (like SEM-grid) or

high energy secondary particles (like beam loss monitor)

flying wire: only sec. particle detection due to induced current by movement.

Proton impact on
scanner at CERN-PS Booster:

Secondary particles:

Proton beam → hadrons (π, n, p...) from nuclear interactions

Electron beam → Bremsstrahlung photons.
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The Artist View of a Wire Scanner
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Slow, linear Wire Scanner

Slow, linear scanner are used for:

� low energy protons due to lack of sec. particles

� high resolution measurements e.g. at e+-e− colliders

by de-convolution σ2
beam=σ2

meas−d2
wire

⇒ resolution down to µm can be reached

� detection of beam halo.
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Slow, linear Wire Scanner

Slow, linear scanner are used for:

� low energy protons due to lack of sec. particles

� high resolution measurements e.g. at e+-e− colliders

by de-convolution σ2
beam=σ2

meas−d2
wire

⇒ resolution down to µm can be reached

� detection of beam halo.
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Comparison between SEM-Grid and Wire Scanners

Grid: Measurement at a single moment in time

Scanner: Fast variations can not be monitored 

→ for pulsed LINACs precise synchronization is needed 
__________________________________________________________________________

Grid: Not adequate at synchrotrons for stored beam parameters

Scanner: At high energy synchrotrons flying wire scanners are nearly non-destructive
__________________________________________________________________________

Grid: Resolution of a grid is fixed by the wire distance (typically 1 mm)

Scanner: For slow scanners the resolution is about the wire thickness (down to 10 µm)

→ used for e−-beams having small sizes (down to 10 µm)
__________________________________________________________________________

Grid: Needs one electronics channel per wire 

→ expensive electronics and data acquisition

Scanner: Needs a precise movable feed-through → expensive mechanics.
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Outline:

� Scintillation screens: 

emission of light, universal  usage, limited dynamic range 

� SEM-Grid: emission of electrons, workhorse, limited resolution  

� Wire scanner: emission of electrons, workhorse, scanning method

� Ionization Profile Monitor and Beam Induced Fluorescence Monitor: 

secondary particle detection from interaction beam-residual gas

� Optical Transition Radiation

� Synchrotron Light Monitors 

� Summary
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Ionization Profile Monitor

Non-destructive device for proton synchrotron:

� beam ionizes the residual gas by electronic stopping

� gas ions or e- accelerated by E -field ≈1 kV/cm

� spatial resolved single particle detection

Typical vacuum pressure:

Transfer line: 10−8 − 10−6 mbar (N2)

Synchrotron: 10−11 − 10−9 mbar (H2).

One device per plane.

Realization at

GSI synchrotron:
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Ionization Profile Monitor Realization

The realization for the  heavy ion storage ring ESR at GSI:

beam
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Realization of Ionization Profile Monitor at a LINAC

The realization of an IPM for the use at the GSI LINAC:

Vacuum pressure p ≃ 10−7 mbar and high current of I ≃ 1 mA → no MCP required.

Readout by strips fed to an I/U converter.

One device per plane.
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Multi Channel Plate MCP

MCP are used as particle detectors with secondary electron amplification.

A MCP is:

� 1 mm glass plate with ≈10 µm holes

� thin Cr-Ni layer on surface

� voltage ≈1 kV/plate across

→ e− amplification of ≈ 103 per plate.

→ resolution ≈ 0.1 mm (2 MCPs)

Anode technologies:

� SEM-grid, ≈ 0.5 mm spacing

→ fast electronics readout

� phosphor screen + CCD

→ high resolution, but slow timing

→ fast readout by photo-multipliers

� single particle detection

→ for low beam current.
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Application: ‘Adiabatic’ Damping during Acceleration

The beam emittance is defined in the laboratory frame.∫= 'dxdxε

During acceleration:

for increasing v|| and constant v
�

:

⇒ x′ shrinks

⇒ emittance εεεε shrinks

⇒ width x = √βεεεε shrinks.

Non-intercepting ionization profile monitor is well suited for long time observations 

without beam disturbance → mainly used at proton synchrotrons.
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Broadening due to the Beam’s Space Charge: Ion Detection

Parameter: U73+, 109 particles per 3 m bunch length, cooled beam with 2.5 mm FWHM.
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Electron Detection and Guidance by Magnetic Field

Alternative: e− detection in an external magnetic field

→ cyclotron radius 

Ekin, given by atomic physics, 0.1 mm is internal resolution of MCP.

Time-of-flight: ≈1 ns → 2 or 3 cycles.

B-field: By dipole magnets with large aperture → IPM is expensive device.

T 1.0for  mm 1.0     /2 , =<⇒= ⊥ BreBEmr ckinec
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IPM: Magnet Design

Maximum image distortion:

5% of beam width ⇒⇒⇒⇒ ∆∆∆∆B/B < 1 %

Challenges:

� High B-field homogeneity of  1%

� Clearance up to 500 mm 

� Correctors required 

to compensate  beam steering

� Insertion length 2.5 m incl. correctors

For MCP wire-array readout

lower clearance required

Magnetic field for electron guidance: Corrector

480mm

Corrector

Horizontal IPM

Vertical IPM

Insertion 

length

2.5 m

300mm
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Beam Induced Fluorescence for intense Profiles  

Large beam power → Non-intercepting method:  
⇒ Beam Induced Fluorescence BIF

N2 + Ion → (N2
+)*+ Ion → N2

+ + γ + Ion

With single photon detection scheme

390 nm< λ< 470 nm

⇒ non-destructive, compact installation.

Installation of hor&vert. BIF Monitor:
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Beam Induced Fluorescence Monitor BIF: Image Intensifier

A BIF monitor consists of only:

� optics outside beam pipe

� image intensifier + camera

� gas-inlet for pressure increase

⇒ nearly no installation inside vacuum.

only LEDs for calibration

⇒ cheaper than IPM, but lower signal.

Image intensifier:

� Photo cathode → creation of photo-e-

� Accelerated toward MCP for amplification

� Detection of ampl. e- by phosphor screen

� Image recorded by CCD

⇒ Low light amplification

(commercially used for night vision devices)
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Beam Induced Fluorescence Monitor BIF: Image Intensifier

Example at GSI-LINAC:

4.7 MeV/u Ar 10+ beam 

I=2.5 mA equals to 1011 particle 

One single macro pulse of 200 µµµµs 

Vacuum pressure: p=10-5 mbar (N2)

‘Single photon counting’:

A BIF monitor consists of only:

� optics outside beam pipe

� image intensifier + camera

� gas-inlet for pressure increase

⇒ nearly no installation inside vacuum.

only LEDs for calibration

⇒ cheaper than IPM, but lower signal.
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Comparison between IPM and BIF

Non-destructive methods preferred:

Beam is not influenced and diagnostics device is not destroyed!

IPM: Beam ionizes the residual gas 

→ measurement of all ionization products, Ω = 4π-geometry due to E-field

BIF: Beam ionizes and excites the residual gas  

→ measurement of photons emitted toward camera, solid angle  Ω ≈≈≈≈ 10-3

__________________________________________________________________________

IPM: Higher efficiency than BIF

BIF: Low detection efficiency, only ≈ 10-4 of IPM 

⇒ longer observation time or higher pressure required

__________________________________________________________________________

IPM: Complex installation inside vacuum

BIF: Nearly no installation inside vacuum

__________________________________________________________________________

IPM: More expensive, for some beam parameters even guiding magnetic field required

BIF: More sensitive to external parameters like radiation stray light
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Outline:

� Scintillation screens: 

emission of light. universal  usage, limited dynamic range 

� SEM-Grid: emission of electrons, workhorse, limited resolution  

� Wire scanner: emission of electrons, workhorse, scanning method

� Ionization Profile Monitor and Beam Induced Fluorescence Monitor: 

secondary particle detection from interaction beam-residual gas  

� Optical Transition Radiation: 

crossing material boundary, for relativistic beams only 

� Synchrotron Light Monitors 

� Summary
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Optical Transition Radiation OTR

Optical transition radiation is  emitted by 
charged particle passage through a material boundary.

Electrodynamics field configuration

changes during the passage:

→ Polarization of the medium

→ emission of energy

Description by 

classical electrodynamics & relativity:

( )222
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π

µ

ω +
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Ω −

ce

dd
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W: energy emitted in solid angle Ω

θ: angle of emission

γ: Lorentz factor

ω: angular frequency intervall Eph=2πhω

� Insertion of thin Al-foil under 45o

� Observation of low light by CCD.
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Optical Transition Radiation: Angular Photon Distribution

Photon distribution

within a solid angle dΩΩΩΩ and 

Wavelength interval λbegin to λend

� Detection: Optical 400 nm < λ < 800 nm

using image intensified CCD

� Larger signal for relativistic beam γγγγ >> 1

� Angular focusing for γγγγ >> 1

⇒ well suited for e- beams

⇒ p-beam only for Ekin>10 GeV (γγγγ>10)

→ Profile by focusing to screen

→ Beam angular distribution by focusing on infinity

due to emission dependence on beam angular distribution.
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OTR-Monitor: Technical Realization and Results

Example of realization at TERATRON:

� Insertion of foil 
e.g. 5 µm Kapton coated  with 0.1µm Al

Advantage: thin foil ⇒ low heating & straggling
2-dim image visible

V.E. Scarpine (FNAL) et al., BIW’06

rad-hard
camera

Beam 

pipe

Window

Filter 

wheel

Lens

σσσσ = 0.66 mm

σσσσ = 1.03 mm

Results at FNAL-TEVATRON synchrotron 

with 150 GeV proton 
Using fast camera: Turn-by-turn measurement
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Comparison between Scintillation Screens and OTR

OTR: electrodynamic process → beam intensity linear to # photons

Scint. Screen: complex atomic process → saturation possible

OTR: thin foil Al or Al on Mylar, down to 0.25 µm thickness

→ minimization of beam scattering (Al is low Z-material)

Scint. Screen: thickness ≈ 1 mm inorganic, fragile material, not radiation hard

OTR: low number of photons → expensive image intensified CCD

Scint. Screen: large number of photons → simple CCD sufficient

OTR: complex angular photon distribution → resolution limited

Scint. Screen: isotropic photon distribution → simple interpretation

OTR: beam angular distribution measurable→ beam emittance

Scint. Screen: no information concerning the beam angular distribution

OTR: large γ needed → e−-beam with Ekin > 100 MeV, proton-beam with Ekin > 100 GeV

Scint. Screen: for all beams
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Outline:

� Scintillation screens: 

emission of light, universal  usage, limited dynamic range 

� SEM-Grid: emission of electrons, workhorse, limited resolution  

� Wire scanner: emission of electrons, workhorse, scanning method

� Ionization Profile Monitor and Beam Induced Fluorescence Monitor: 

secondary particle detection from interaction beam-residual gas  

� Optical Transition Radiation: 

crossing optical boundary, for relativistic beams only 

� Synchrotron Light Monitors

photon detection of emitted synchrotron light

� Summary
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Synchrotron Light Monitor

An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light. 

This light is emitted 

into a cone of  

opening 2/γ in lab-frame.

⇒Well suited for rel. e-

For protons: 

Only for energies E>100 GeV

The light is focused to  a 

intensified CCD.

Advantage: 

Signal anyhow available!

2

4

 :Power
ρ

γ
∝P
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γγγγ-beam

dipole

Realization of a Synchrotron Light Monitor

Extracting out of the beam’s plane by a (cooled) mirror

→ Focus to a slit + wavelength filter for optical wavelength

→ Image intensified CCD camera

Example: CERN LEP-monitor with bending radius 3.1 km (blue or near UV)

e--beam
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Result from a Synchrotron Light Monitor

Example: Synchrotron radiation facility APS accumulator ring and blue wavelength:

Advantage: Direct measurement of 2-dim distribution, only mirror installed in the vacuum pipe

Realization: Optics outside of vacuum pipe

Disadvantage: Resolution limited by the diffraction due to finite apertures in the optics.

σ

σ
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The Artist View of a Synchrotron Light Monitor
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Diffraction Limit for a Synchrotron Light Monitor 

Use of optical wavelength and CCD: λ above critical λcrit (spectrum fall-off).

Example 1:1 image: Cone of emission for horizontally polarized light: α = 0.41 (λ/ρ)1/3

General Fraunhofer diffraction limit (given by emission cone): 

Opening angle of optics: D = 2α · L

Diffraction pattern with

LD /2

λ
σ =

( ) 3/12 /6.0 ρλσ ⋅≅⇒

A good resolution for:

� large dipole bending radius ρ, but fixed by the accelerator

� short wavelength, but good optics only for λ > 300 nm
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Synchrotron Light Monitor overcoming Diffraction Limit

The diffraction limit is

Possible improvements:

� Shorter wavelength: Using x-rays and an aperture of Ø 1mm
→ ‘x-ray pin hole camera’.

� Interference technique: At optical wavelength using a double slit

→ interference fringes with resolution down to µm range.

( ) 3/12 /6.0 ρλσ ⋅≅⇒



L. Groening, Sept. 15th, 2003GSI-Palaver, Dec. 10th, 2003, A dedicated proton accelerator for  p-physics at the future GSI facilitiesPeter Forck, JUAS Archamps Beam Profile Measurement 46

Summary for Beam Profile

Different techniques are suited for different beam parameters:

e−-beam: typically Ø 0.3 to 3 mm, protons: typically Ø 3 to 30 mm

Intercepting ↔ non-intercepting methods

Direct observation of electrodynamics processes:

� Synchrotron radiation monitor: non-destructive, only for e−-beams, complex

� OTR screen: nearly non-destructive, large relativistic γ needed, e−-beams mainly

Detection of secondary photons, electrons or ions:

� Scintillation screen: destructive, large signal, simple, all beams

� Ionization profile monitor: non-destructive, expensive, limited resolution, for protons

� Residual fluorescence monitor: non-destructive, limited signal strength, for protons

Wire based electronic methods:

� SEM-grid: partly destructive, large signal and dynamic range, limited resolution

� Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan.

� MWPC-grid: internal amplification, for low current proton-beam.


