Pick-Ups for bunched Beams

The image current at the beam pipe is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.

Beam Position Monitor **BPM** equals Pick-Up **PU**

Most frequent used instrument!

For relativistic velocities, the electric field is transversal:

$$E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t')$$

➢Signal treatment for capacitive pick-ups:

- Longitudinal bunch shape
- Overview of processing electronics for Beam Position Monitor (BPM)

> Measurements:

- Closed orbit determination
- > Tune and lattice function measurements (synchrotron only).

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

At a resistor **R** the voltage U_{im} from the image current is measured. The transfer impedance Z_t is the ratio between voltage U_{im} and beam current I_{beam} in *frequency domain*: $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega, \beta) \cdot I_{beam}(\omega)$.

Capacitive BPM:

Peter Forck, JUAS Archamps

Pick-Ups for bunched Beams

equivalent circuit

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

Large signal strength \rightarrow high impedance Smooth signal transmission \rightarrow 50 Ω

Signal Shape for capacitive BPMs: differentiated \leftrightarrow proportional

Depending on the frequency range *and* termination the signal looks different: > High frequency range $\omega >> \omega_{cut}$:

$$Z_{t} \propto \frac{i\omega/\omega_{cut}}{1+i\omega/\omega_{cut}} \rightarrow 1 \Longrightarrow U_{im}(t) = \frac{1}{C} \cdot \frac{1}{\beta c} \cdot \frac{A}{2\pi a} \cdot I_{beam}(t)$$

 \Rightarrow direct image of the bunch. Signal strength $Z_t \propto A/C$ i.e. nearly independent on length

$$\succ$$
 Low frequency range $\omega << \omega_{cut}$:

$$Z_{t} \propto \frac{i\omega/\omega_{cut}}{1+i\omega/\omega_{cut}} \rightarrow i\frac{\omega}{\omega_{cut}} \implies U_{im}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot i\omega I_{beam}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot \frac{dI_{beam}}{dt}$$

 \Rightarrow derivative of bunch, single strength $Z_t \propto A$, i.e. (nearly) independent on C

Example from synchrotron BPM with 50 Ω termination (reality at p-synchrotron : $\sigma >>1$ ns): proportional

The transfer impedance is used in frequency domain! The following is performed:

Peter Forck, JUAS Archamps

Pick-Ups for bunched Beams

Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Synchrotron filled with 8 bunches accelerated with f_{acc} =1 MHz

BPM terminated with $R=50 \ \Omega \Rightarrow f_{acc} << f_{cut}$:

Parameter: $R=50 \ \Omega \Rightarrow f_{cut}=32 \text{ MHz}$, all buckets filled $C=100 \text{pF}, l=10 \text{cm}, \beta=50\%, \sigma_t=100 \text{ ns}$

- Fourier spectrum is concentrated at acceleration harmonics with single bunch spectrum as an envelope.
- > Bandwidth up to typically $10*f_{acc}$

Examples for differentiated & proportional Shape

Proton LINAC, e⁻-LINAC&synchtrotron: 100 MHz $< f_{rf} < 1$ GHz typically $R=50 \Omega$ processing to reach bandwidth $C \approx 5 \text{ pF} \Rightarrow f_{cut} = 1/(2\pi RC) \approx 700 \text{ MHz}$ **Example:** 36 MHz GSI ion LINAC

Proton synchtrotron:

 $1 \text{ MHz} < f_{rf} < 30 \text{ MHz}$ typically $R=1 \text{ M}\Omega$ for large signal i.e. large Z_t $C \approx 100 \text{ pF} \Rightarrow f_{cut} = 1/(2\pi RC) \approx 10 \text{ kHz}$ **Example:** non-relativistic GSI synchrotron $f_{rf}: 0.8 \text{ MHz} \rightarrow 5 \text{ MHz}$ time [µs] 3 50 begin acceleration.: 11 MeV 25 voltage [mV] 0 -25 -50-75 -100 └ 0 100 150 200 50 synchrotron circumference [m] time [µs] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 150 end acceleration: 1000 MeV voltage [mV] 100 50 0 -50 -100[└]0

100

synchrotron circumference [m]

50

Remark: During acceleration the bunching-factor is increased: 'adiabatic damping'.

Peter Forck, JUAS Archamps

150

200

One ring in 50 Ω geometry to reach ≈ 1 GHz bandwidth.

The impedance is like a strip-line with 100 Ω due to the two passes of the signal:

$$Z_0(l) = \frac{87 \ [\Omega]}{\sqrt{\varepsilon_r + 1.4}} \ln\left(\frac{5.98h}{0.8 \cdot l + d}\right)$$

 \Rightarrow Impedance depends strongly on geometry

Pick-Ups for bunched Beams

Principle of Position Determination by a BPM

The difference voltage between plates gives the beam's center-of-mass \rightarrow most frequent application

'Proximity' effect leads to different voltages at the plates:

S is a geometry dependent, non-linear function, which have to be optimized Units: S = [%/mm] and sometimes S = [dB/mm] or k = [mm].

The Artist View of a BPM

Outline:

- \succ Signal generation \rightarrow transfer impedance
- > Capacitive *button* BPM for high frequencies

used at most proton LINACs and electron accelerators

- > Capacitive *shoe-box* BPM for low frequencies
- > Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- ➤ Summary

2-dim Model for a Button BPM

'Proximity effect': larger signal for closer plate Ideal 2-dim model: Cylindrical pipe \rightarrow image current density via 'image charge method' for 'pensile' beam:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)}\right)$$

Image current: Integration of finite BPM size: $I_{im} = a \cdot \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$

2-dim Model for a Button BPM

а Ideal 2-dim model: Non-linear behavior and hor-vert coupling: button Sensitivity: $x=1/S \cdot \Delta U/\Sigma U$ with S [%/mm] or [dB/mm] *For this example:* center part $S=7.4\%/\text{mm} \Leftrightarrow k=1/S=14\text{mm}$ beam *'Position Map':* Horizontal plane: button 1.0 a=25mm, α =30° 20 $\theta = 0^0$ $\theta = 20^{\circ}$ 0.5 10 $\theta = 45^{\circ}$ ΔU/ΣU $\theta = 60^{\circ}$ y [mm] 0.0 -0.5-10 • real position -1.0 -20 measured posi. 20 -20-100 10 -30 -20 -10 10 20 30 0 real beam position [mm] x [mm] The measurement of U delivers: $x = \frac{1}{S_x} \cdot \frac{\Delta U}{\Sigma U} \rightarrow \text{here } S_x = S_x(x, y) \text{ i.e. non-linear.}$

Peter Forck, JUAS Archamps

Pick-Ups for bunched Beams

Button BPM Realization

LINACs, e⁻-synchrotrons: 100 MHz $< f_{rf} < 3$ GHz \rightarrow bunch length \approx BPM length

 \rightarrow 50 Ω signal path to prevent reflections

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed \Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed \Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity **Optimization:** horizontal distance and size of buttons 0.8 by numerical calc. SMA connector housing transition obeying 50 Ω insulator -1.5 115 -0.8 button Ø15 Beam position swept with 2 mm steps ►Non-linear sensitivity and hor.-vert. coupling >At center $S_r = 8.5\%$ /mm in this example Ø15 horizontal: $x = \frac{1}{S_x} \cdot \frac{(U_2 + U_4) - (U_1 + U_3)}{U_1 + U_2 + U_3 + U_4}$ 45 vertical: $y = \frac{1}{S_v} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$ **PEP-realization** From S. Varnasseri, SESAME, DIPAC 2005 Peter Forck, JUAS Archamps Pick-Ups for bunched Beams 18

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive *button* BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive <u>shoe-box</u> BPM for low frequencies

used at most proton synchrotrons due to linear position reading

- **>** Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

Shoe-box BPM for Proton Synchrotrons

Frequency range: 1 MHz $< f_{rf} < 10$ MHz \Rightarrow bunch-length >> BPM length.

Technical Realization of a Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Technical Realization of a Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Comparison Shoe-Box and Button BPM

	Shoe-Box BPM	Button BPM
Precaution	Bunches longer than BPM	Bunch length comparable to BPM
BPM length (typical)	10 to 20 cm length per plane	Ø1 to 5 cm per button
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz
Coupling	1 M Ω or \approx 1 k Ω (transformer)	50 Ω
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling
Sensitivity	Good, care: plate cross talk	Good, care: signal matching
Usage	At proton synchrotrons, $f_{rf} < 10 \text{ MHz}$	All electron acc., proton Linacs, $f_{rf} > 100 \text{ MHz}$

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive shoe-box BPM for low frequencies used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation

analog signal conditioning to achieve small signal processing (today's technology based on *digital* signal processing)

- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

General: Noise Consideration

- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $x = 1/S \cdot \Delta U / \Sigma U$
- 3. Thermal noise voltage given by: $U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$

Moreover, pick-up by electro-magnetic interference can contribute \Rightarrow good shielding required

Comparison: Filtered Signal ↔ Single Turn

Example: GSI Synchr.: U^{73+} , $E_{inj}=11.5$ MeV/u $\rightarrow 250$ MeV/u within 0.5 s, 10^9 ions

However: not only noise contributes but additionally **beam movement** by betatron oscillation \Rightarrow broadband processing i.e. turn-by-turn readout for tune determination.

Broadband Signal Processing

> Hybrid or transformer close to beam pipe for analog $\Delta U \& \Sigma U$ generation or $U_{left} \& U_{right}$

- Attenuator/amplifier
- \succ Filter to get the wanted harmonics and to suppress stray signals
- > ADC: digitalization \rightarrow followed by calculation of of $\Delta U / \Sigma U$

Advantage: Bunch-by-bunch possible, versatile post-processing possible

Disadvantage: Resolution down to $\approx 100 \,\mu\text{m}$ for shoe box type , i.e. $\approx 0.1\%$ of aperture,

resolution is worse than narrowband processing

Narrowband Processing for improved Signal-to-Noise

Narrowband processing equals heterodyne receiver (e.g. AM-radio or spectrum analyzer)

- Attenuator/amplifier
- > Mixing with accelerating frequency $f_{rf} \Rightarrow$ signal with sum and difference frequency
- ➤ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- Rectifier: synchronous detector
- → ADC: digitalization → followed calculation of $\Delta U/\Sigma U$

Advantage: spatial resolution about 100 time better than broadband processing

Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'

For non-relativistic p-synchrotron: \rightarrow variable f_{rf} leads via mixing to constant intermediate freq.

Mixer: A passive rf device with

- > Input RF (radio frequency): Signal of investigation $A_{RF}(t) = A_{RF} \cos \omega_{RF} t$
- > Input LO (local oscillator): Fixed frequency $A_{LO}(t) = A_{LO} \cos \omega_{LO} t$
- ► Output IF (intermediate frequency) $A_{IF}(t) = A_{RF} \cdot A_{LO} \cos \omega_{RF} t \cdot \cos \omega_{LO} t$ $= A_{RF} \cdot A_{LO} \left[\cos(\omega_{RF} - \omega_{LO})t + \cos(\omega_{RF} + \omega_{LO})t \right]$

 \Rightarrow Multiplication of both input signals, containing the sum and difference frequency.

Synchronous detector: A phase sensitive rectifier

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive shoe-box BPM for low frequencies used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation
 analog signal conditioning to achieve small signal processing
 (today's technology based on *digital* signal processing)
- > BPMs for measurement of closed orbit, tune and further lattice functions frequent application of BPMs
- > Summary

Close Orbit Measurement with BPMs

Detected position on a analog narrowband basis \rightarrow closed orbit with ms time steps. It differs from ideal orbit by misalignments of the beam or components. *Example from GSI-Synchrotron:*

Closed orbit:

Beam position averaged over many betatron oscillations.

Tune Measurement: General Considerations

Coherent excitations are required for the detection by a BPM

Beam particle's in-coherent motion \Rightarrow center-of-mass stays constant

Excitation of all particles by rf

- \Rightarrow Coherent motion
- \Rightarrow center-of-mass variation turn-by-turn

Graphics by R. Singh, GSI

The tune Q is the number of betatron oscillations per turn.

The betatron frequency is $f_{\beta} = Qf_{0}$. **Measurement:** excitation of *coherent* betatron oscillations + position from one BPM.

From a measurement one gets only the non-integer part q of Q with $Q=n\pm q$. Moreover, only 0 < q < 0.5 is the unique result.

Example: Tune measurement for six turns with the three lowest frequency fits:

The particles are excited to betatron oscillations, but due to the spread in the betatron frequency, they getting out of phase ('Landau damping'):

Scheme of the individual trajectories of four particles after a kick (top) and the resulting *coherent* signal as measured by a pick-up (bottom).

 \Rightarrow Kick excitation leads to limited resolution

Remark: The tune spread is much lower for a real machine.

Tune Measurement: Beam Transfer Function in Frequency Domain

Instead of one kick, the beam can be excited by a sweep of a sine wave, called 'chirp'

 \rightarrow Beam Transfer Function (BTF) Measurement as the velocity response to a kick

Prinziple:

Beam acts like a driven oscillator!

Using a network analyzer:

- RF OUT is feed to the beam by a kicker (reversed powered as a BPM)
- The position is measured at one BPM
- Network analyzer: amplitude and phase of the response
- Sweep time up to seconds due to de-coherence time per band
- \succ resolution in tune: up to 10^{-4}

BTF measurement at the GSI synchrotron, recorded at the 25th harmonics.

From the position of the sidebands q = 0.306 is determined. From the width $\Delta f/f \approx 5 \cdot 10^{-4}$ the tune spread can be calculated via $\Delta f_h^- = \eta \frac{\Delta p}{p} \cdot h f_0 \left(h - q + \frac{\xi}{\eta} Q \right)$

Advantage: High resolution for tune and tune spread (also for de-bunched beams) **Disadvantage:** Long sweep time (up to several seconds).

Instead of a sine wave, noise with adequate bandwidth can be applied

 \rightarrow beam picks out its resonance frequency: *Example:* Vertical tune within 2048 turn

- ➢ broadband excitation with white noise of ≈ 10 kHz bandwidth
- turn-by-turn position measurement by fast ADC
- Fourier transformation of the recorded data

 \Rightarrow Continues monitoring with low disturbance

Advantage:

Fast scan with good time resolution **Disadvantage:** Lower precision

Example: Vertical tune within 2048 turn at GSI synchrotron $11 \rightarrow 250 \text{ MeV/u}$ 2048 turn FFT equals $\approx 5 \text{ ms.}$

 β -Function Measurement from Bunch-by-Bunch BPM Data

Excitation of coherent betatron oscillations: From the position deviation x_{ik} at the BPM *i* and turn *k* the β -function $\beta(s_i)$ can be evaluated.

The position reading is: (\hat{x}_i amplitude, μ_i phase at i, Q tune, s_0 reference location)

$$x_{ik} = \hat{x}_i \cdot \cos(2\pi Qk + \mu_i) = \hat{x}_0 \cdot \sqrt{\beta(s_i) / \beta(s_0)} \cdot \cos(2\pi Qk + \mu_i)$$

 \rightarrow a turn-by-turn position reading at many location (4 per unit of tune) is required. The ratio of β -functions at different location:

$$\frac{\beta(s_i)}{\beta(s_0)} = \left(\frac{\hat{x}_i}{\hat{x}_0}\right)^2$$

The phase advance is:

$$\Delta \mu = \mu_i - \mu_0$$

Without absolute calibration,

 β -function is more precise:

$$\Delta \mu = \int_{S0}^{Si} \frac{ds}{\beta(s)}$$

Peter Forck, JUAS Archamps

Pick-Ups for bunched Beams

Dispersion and Chromaticity Measurement

Dispersion $D(s_i)$: Excitation of coherent betatron oscillations and change of momentum *p* by detuned rf-cavity:

 \rightarrow Position reading at one location: $x_i = D(s_i) \cdot \frac{\Delta p}{\Delta p}$

 \rightarrow Result from plot of x_i as a function of $\Delta p/p \Rightarrow$ slope is local dispersion $D(s_i)$.

Chromaticity ξ : Excitation of coherent betatron oscillations and momentum shift $\Delta p/p$ |%| change of momentum *p* by detuned rf-cavity:

 \rightarrow Tune measurement

Plot of $\Delta Q/Q$ as a function of $\Delta p/p$ \Rightarrow slope is dispersion ξ .

The electric field is monitored for bunched beams using rf-technologies ('frequency domain'). Beside transfromers they are the most often used instruments! **Differentiated or proportional signal:** rf-bandwidth \leftrightarrow beam parameters **Proton synchrotron:** 1 to 100 MHz, mostly 1 M $\Omega \rightarrow$ proportional shape LINAC, e--synchrotron: 0.1 to 3 GHz, 50 $\Omega \rightarrow$ differentiated shape Important quantity: transfer impedance $Z_t(\omega, \beta)$.

Types of capacitive pick-ups:

Shoe-box (p-synch.), button (p-LINAC, e--LINAC and synch.)

Remark: Stripline BPM as traveling wave devices are frequently used

Position reading: difference signal of four pick-up plates (BPM):

- ➢ Excitation of *coherent betatron oscillations* and response measurement excitation by short kick, white noise or sine-wave (BTF)
 → tune *q*, chromaticity ξ, dispersion *D* etc.