Pick-Ups for bunched Beams

The image current at the beam pipe is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.

Beam Position Monitor BPM equals Pick-Up PU

Most frequent used instrument!

For relativistic velocities, the electric field is transversal:

$$
E_{\perp, l a b}(t)=\gamma \cdot E_{\perp, r e s t}\left(t^{\prime}\right)
$$

$>$ Signal treatment for capacitive pick-ups:
$>$ Longitudinal bunch shape
$>$ Overview of processing electronics for Beam Position Monitor (BPM)
$>$ Measurements:
$>$ Closed orbit determination
$>$ Tune and lattice function measurements (synchrotron only).

Principle of Signal Generation of capacitive BPMs

The image current at the wall is monitored on a high frequency basis i.e. ac-part given by the bunched beam.

Animation by Rhodri Jones (CERN)

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

The image current I_{im} at the plate is given by the beam current and geometry:
$I_{i m}(t)=-\frac{d Q_{i m}(t)}{d t}=\frac{-A}{2 \pi a l} \cdot \frac{d Q_{\text {beam }}(t)}{d t}=\frac{-A}{2 \pi a} \cdot \frac{1}{\beta \mathrm{c}} \cdot \frac{d I_{\text {beam }}(t)}{d t}=\frac{A}{2 \pi a} \cdot \frac{1}{\beta \mathrm{c}} \cdot i \omega I_{\text {beam }}(\omega)$
Using a relation for Fourier transformation: $I_{\text {beam }}=I_{0} e^{-i \omega t} \Rightarrow d I_{\text {beam }} / d t=-i \omega I_{\text {beam }}$.

Transfer Impedance for a capacitive BPM

At a resistor \boldsymbol{R} the voltage $\boldsymbol{U}_{\boldsymbol{i m}}$ from the image current is measured.
The transfer impedance \boldsymbol{Z}_{t} is the ratio between voltage $\boldsymbol{U}_{\boldsymbol{i m}}$ and beam current $\boldsymbol{I}_{\text {beam }}$ in frequency domain: $\boldsymbol{U}_{\text {im }}(\omega)=\boldsymbol{R} \cdot \boldsymbol{I}_{\text {im }}(\omega)=Z_{t}(\omega, \boldsymbol{\beta}) \cdot \boldsymbol{I}_{\text {beam }}(\omega)$.

Capacitive BPM:

$>$ The pick-up capacitance \boldsymbol{C} : plate \leftrightarrow vacuum-pipe and cable.
$>$ The amplifier with input resistor \boldsymbol{R}.
$>$ The beam is a high-impedance current source:

$$
\begin{aligned}
U_{i m} & =\frac{R}{1+i \omega R C} \cdot I_{i m} \\
& =\frac{A}{2 \pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i \omega R C}{1+i \omega R C} \cdot I_{\text {beam }} \\
& \equiv Z_{t}(\omega, \beta) \cdot I_{\text {beam }}
\end{aligned}
$$

equivalent circuit

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

$$
\begin{aligned}
& U_{\text {im }}(\omega)=Z_{t}(\omega) \cdot I_{\text {beam }}(\omega) \\
& \left|Z_{t}\right|=\frac{A}{2 \pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega / \omega_{\text {cut }}}{\sqrt{1+\omega^{2} / \omega_{\text {cut }}^{2}}} \\
& \varphi=\arctan \left(\omega_{\text {cut }} / \omega\right)
\end{aligned}
$$

Parameter for shoe-box BPM:
$\boldsymbol{C}=100 \mathrm{pF}, \boldsymbol{l}=10 \mathrm{~cm}, \boldsymbol{\beta}=50 \%$
$f_{\text {cut }}=\omega / 2 \pi=(2 \pi R C)^{-1}$
for $R=50 \Omega \Rightarrow f_{\text {cut }}=32 \mathrm{MHz}$
for $R=\mathbf{1 M} \Omega \Rightarrow f_{\text {cut }}=1.6 \mathrm{kHz}$

Large signal strength \rightarrow high impedance Smooth signal transmission $\boldsymbol{\rightarrow} \mathbf{5 0} \Omega$

Signal Shape for capacitive BPMs: differentiated \leftrightarrow proportional

Depending on the frequency range and termination the signal looks different:
$>$ High frequency range $\omega \gg \omega_{\text {cut }}$.

$$
Z_{t} \propto \frac{i \omega / \omega_{c u t}}{1+i \omega / \omega_{c u t}} \rightarrow 1 \Rightarrow U_{i m}(t)=\frac{1}{C} \cdot \frac{1}{\beta c} \cdot \frac{A}{2 \pi a} \cdot I_{\text {beam }}(t)
$$

\Rightarrow direct image of the bunch. Signal strength $Z_{t} \propto A / C$ i.e. nearly independent on length
$>$ Low frequency range $\omega \ll \omega_{\text {cut }}$.
$Z_{t} \propto \frac{i \omega / \omega_{\text {cut }}}{1+i \omega / \omega_{\text {cut }}} \rightarrow i \frac{\omega}{\omega_{\text {cut }}} \Rightarrow U_{\text {im }}(t)=R \cdot \frac{A}{\beta c \cdot 2 \pi a} \cdot i \omega I_{\text {beam }}(t)=R \cdot \frac{A}{\beta c \cdot 2 \pi a} \cdot \frac{d I_{\text {beam }}}{d t}$
\Rightarrow derivative of bunch, single strength $Z_{t} \propto A$, i.e. (nearly) independent on \boldsymbol{C}
Example from synchrotron BPM with 50Ω termination (reality at p -synchrotron : $\sigma \gg 1 \mathrm{~ns}$):

Calculation of Signal Shape (here single bunch)

The transfer impedance is used in frequency domain! The following is performed:

1. Start: Time domain Gaussian function $\boldsymbol{I}_{\text {beam }}(t)$ having a width of σ_{t}

2. FFT of $\boldsymbol{I}_{\text {beam }}(t)$ leads to the frequency domain Gaussian $I_{\text {beam }}(f)$ with $\sigma_{f}=\left(2 \pi \sigma_{t}\right)^{-1}$

3. Multiplication with $Z_{t}(f)$ with $f_{\text {cut }}=32 \mathrm{MHz}$ leads to $U_{\text {im }}(f)=Z_{t}(f) \cdot I_{\text {beam }}(f)$
4. Inverse FFT leads to $\boldsymbol{U}_{\text {im }}(t)$

Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Synchrotron filled with 8 bunches accelerated with $f_{\text {acc }}=1 \mathrm{MHz}$
BPM terminated with $\boldsymbol{R}=50 \Omega \Rightarrow f_{\text {acc }} \ll f_{\text {cut }}$:

Parameter: $R=50 \Omega \Rightarrow f_{\text {cut }}=32 \mathrm{MHz}$, all buckets filled $C=100 \mathrm{pF}, l=10 \mathrm{~cm}, \beta=50 \%, \sigma_{t}=100 \mathrm{~ns}$
$>$ Fourier spectrum is concentrated at acceleration harmonics with single bunch spectrum as an envelope.
$>$ Bandwidth up to typically $10 * f_{\text {acc }}$

Examples for differentiated \& proportional Shape

Proton LINAC, e"-LINAC\&synchtrotron:
$100 \mathrm{MHz}<f_{r f}<1 \mathrm{GHz}$ typically $\boldsymbol{R}=50 \Omega$ processing to reach bandwidth $C \approx 5 \mathrm{pF} \Rightarrow f_{\text {cut }}=1 /(2 \pi R C) \approx 700 \mathrm{MHz}$ Example: 36 MHz GSI ion LINAC

Proton synchtrotron:
$1 \mathrm{MHz}<f_{r f}<30 \mathrm{MHz}$ typically $\boldsymbol{R}=1 \mathrm{M} \Omega$ for large signal i.e. large Z_{t}
$C \approx 100 \mathrm{pF} \Rightarrow f_{\text {cut }}=1 /(2 \pi R C) \approx 10 \mathrm{kHz}$
Example: non-relativistic GSI synchrotron $f_{r f}: 0.8 \mathrm{MHz} \rightarrow 5 \mathrm{MHz}$

Remark: During acceleration the bunching-factor is increased: 'adiabatic damping'.

Pick-Ups at a LINAC for longitudinal Observation

One ring in 50Ω geometry to reach $\approx 1 \mathrm{GHz}$ bandwidth.
The impedance is like a strip-line with 100Ω due to the two passes of the signal:

$$
Z_{0}(l)=\frac{87[\Omega]}{\sqrt{\varepsilon_{r}+1.4}} \ln \left(\frac{5.98 h}{0.8 \cdot l+d}\right)
$$

\Rightarrow Impedance depends strongly on geometry

Principle of Position Determination by a BPM

The difference voltage between plates gives the beam's center-of-mass

\rightarrow most frequent application

'Proximity' effect leads to different voltages at the plates:

$$
\begin{aligned}
& \left.y=\frac{1}{S_{y}(\omega)} \cdot \frac{U_{u p}-U_{\text {down }}}{U_{u p}+U_{\text {down }}}+\delta_{y}(\omega) \quad \begin{array}{l}
\text { beam pipe } \\
\text { pick up }
\end{array} \right\rvert\, \frac{\mathrm{U}_{\mathrm{up}}}{\boldsymbol{y} \text { from } \Delta U=U_{u p}-U_{\text {down }}} \\
& \equiv \frac{1}{S_{y}} \cdot \frac{\Delta U_{y}}{\Sigma U_{y}}+\delta_{y} \\
& x=\frac{1}{S_{x}(\omega)} \cdot \frac{U_{\text {right }}-U_{\text {left }}}{U_{\text {right }}+U_{\text {left }}}+\delta_{x}(\omega)
\end{aligned}
$$

$\boldsymbol{S}(\boldsymbol{\omega}, \boldsymbol{x})$ is called position sensitivity, sometimes the inverse is used $\boldsymbol{k}(\boldsymbol{\omega}, \boldsymbol{x})=\mathbf{1 / S}(\boldsymbol{\omega}, \boldsymbol{x})$
S is a geometry dependent, non-linear function, which have to be optimized
Units: $\boldsymbol{S}=[\% / \mathrm{mm}]$ and sometimes $\boldsymbol{S}=[\mathrm{dB} / \mathrm{mm}]$ or $\boldsymbol{k}=[\mathrm{mm}]$.

The Artist View of a BPM

Outline:

$>$ Signal generation \rightarrow transfer impedance
$>$ Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
$>$ Capacitive shoe-box BPM for low frequencies
$>$ Electronics for position evaluation
$>$ BPMs for measurement of closed orbit, tune and further lattice functions
$>$ Summary

2-dim Model for a Button BPM

'Proximity effect': larger signal for closer plate

Ideal 2-dim model: Cylindrical pipe \rightarrow image current density via 'image charge method' for 'pensile' beam:

$$
j_{i m}(\phi)=\frac{I_{\text {beam }}}{2 \pi a} \cdot\left(\frac{a^{2}-r^{2}}{a^{2}+r^{2}-2 a r \cdot \cos (\phi-\theta)}\right)
$$

Image current: Integration of finite BPM size: $I_{i m}=a \cdot \int_{-\alpha / 2}^{\alpha / 2} j_{i m}(\phi) d \phi$

2-dim Model for a Button BPM

Ideal 2-dim model: Non-linear behavior and hor-vert coupling: Sensitivity: $x=1 / S \cdot \Delta U / \Sigma U$ with $S[\% / \mathrm{mm}]$ or $[\mathrm{dB} / \mathrm{mm}]$ For this example: center part $S=7.4 \% / \mathrm{mm} \Leftrightarrow k=1 / S=14 \mathrm{~mm}$

The measurement of U delivers: $x=\frac{1}{S_{x}} \cdot \frac{\Delta U}{\Sigma U} \rightarrow$ here $S_{x}=S_{x}(x, y)$ i.e. non-linear.

Button BPM Realization

LINACs, e-synchrotrons: $100 \mathrm{MHz}<f_{r f}<3 \mathrm{GHz} \rightarrow$ bunch length \approx BPM length $\rightarrow 50 \Omega$ signal path to prevent reflections
Button BPM with $50 \Omega \Rightarrow U_{i m}(t)=R \cdot \frac{A}{\beta c \cdot 2 \pi a} \cdot \frac{d I_{\text {beam }}}{d t}$
Example: LHC-type inside cryostat:
$\varnothing 24 \mathrm{~mm}$, half aperture $a=25 \mathrm{~mm}, C=8 \mathrm{pF}$
$\Rightarrow f_{\text {cut }}=400 \mathrm{MHz}, Z_{t}=1.3 \Omega$ above $f_{\text {cut }}$

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed
\Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity

PEP-realization

horizontal : $x=\frac{1}{S_{x}} \cdot \frac{\left(U_{2}+U_{4}\right)-\left(U_{1}+U_{3}\right)}{U_{1}+U_{2}+U_{3}+U_{4}}$

$$
\text { vertical: } y=\frac{1}{S_{y}} \cdot \frac{\left(U_{1}+U_{2}\right)-\left(U_{3}+U_{4}\right)}{U_{1}+U_{2}+U_{3}+U_{4}}
$$

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed
\Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity

$>$ Beam position swept with 2 mm steps
$>$ Non-linear sensitivity and hor.-vert. coupling
$>$ At center $S_{x}=8.5 \% / \mathrm{mm}$ in this example
horizontal : $x=\frac{1}{S_{x}} \cdot \frac{\left(U_{2}+U_{4}\right)-\left(U_{1}+U_{3}\right)}{U_{1}+U_{2}+U_{3}+U_{4}}$

$$
\text { vertical: } y=\frac{1}{S_{y}} \cdot \frac{\left(U_{1}+U_{2}\right)-\left(U_{3}+U_{4}\right)}{U_{1}+U_{2}+U_{3}+U_{4}}
$$

From S. Varnasseri, SESAME, DIPAC 2005

Outline:

$>$ Signal generation \rightarrow transfer impedance
$>$ Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
$>$ Capacitive shoe-box BPM for low frequencies used at most proton synchrotrons due to linear position reading
$>$ Electronics for position evaluation
$>$ BPMs for measurement of closed orbit, tune and further lattice functions
$>$ Summary

Shoe-box BPM for Proton Synchrotrons

Frequency range: $1 \mathrm{MHz}<f_{r f}<10 \mathrm{MHz} \Rightarrow$ bunch-length \gg BPM length.

Signal is proportional to actual plate length: beam

$$
l_{\text {right }}=(a+x) \cdot \tan \alpha, \quad l_{\text {left }}=(a-x) \cdot \tan \alpha
$$

$$
\Rightarrow x=a \cdot \frac{l_{\text {right }}-l_{\text {left }}}{l_{\text {right }}+l_{\text {left }}}
$$

In ideal case: linear reading
$x=a \cdot \frac{U_{\text {right }}-U_{\text {left }}}{U_{\text {right }}+U_{\text {left }}} \equiv a \cdot \frac{\Delta U}{\Sigma U}$

Shoe-box BPM:

Advantage: Very linear, low frequency dependence i.e. position sensitivity \boldsymbol{S} is constant

Disadvantage: Large size, complex mechanics high capacitance

Technical Realization of a Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for $7 \mathrm{MeV} / \mathrm{u} \rightarrow 440 \mathrm{MeV} / \mathrm{u}$ BPM clearance: 180x70 mm^{2}, standard beam pipe diameter: 200 mm .

Technical Realization of a Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for $7 \mathrm{MeV} / \mathrm{u} \rightarrow 440 \mathrm{MeV} / \mathrm{u}$ BPM clearance: 180x70 mm^{2}, standard beam pipe diameter: 200 mm .

Comparison Shoe-Box and Button BPM

	Shoe-Box BPM	Button BPM
Precaution	Bunches longer than BPM	Bunch length comparable to BPM
BPM length (typical)	10 to 20 cm length per plane	$\varnothing 1$ to 5 cm per button
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz
Coupling	$1 \mathrm{M} \Omega$ or $\approx 1 \mathrm{k} \Omega$ (transformer)	50Ω
Cutoff frequency (typical) $)$	$0.01 \ldots 10 \mathrm{MHz}(C=30 \ldots 100 \mathrm{pF})$	$0.3 \ldots 1 \mathrm{GHz}(C=2 \ldots 10 \mathrm{pF})$
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling
Sensitivity	Good, care: plate cross talk	Good, care: signal matching
Usage	At proton synchrotrons, $f_{r f}<10 \mathrm{MHz}$	All electron acc., proton Linacs, $f_{r f}>100 \mathrm{MHz}$

Outline:

$>$ Signal generation \rightarrow transfer impedance
$>$ Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
$>$ Capacitive shoe-box BPM for low frequencies used at most proton synchrotrons due to linear position reading
$>$ Electronics for position evaluation
analog signal conditioning to achieve small signal processing (today's technology based on digital signal processing)
$>$ BPMs for measurement of closed orbit, tune and further lattice functions
$>$ Summary

General: Noise Consideration

1. Signal voltage given by: $\quad U_{\text {im }}(f)=Z_{t}(f) \cdot I_{\text {beam }}(f)$
2. Position information from voltage difference: $x=1 / S \cdot \Delta U / \Sigma U$
3. Thermal noise voltage given by: $U_{e f f}(R, \Delta f)=\sqrt{4 k_{B} \cdot T \cdot R \cdot \Delta f}$
\Rightarrow Signal-to-noise $\Delta U_{i m} / U_{\text {eff }}$ is influenced by: Example: GSI-LINAC with $f_{r f}=36 \mathrm{MHz}$
$>$ Input signal amplitude
\rightarrow large or matched Z_{t}
$>$ Thermal noise at $\boldsymbol{R}=50 \Omega$ for $\boldsymbol{T}=300 \mathrm{~K}$ (for shoe box $\boldsymbol{R}=1 \mathrm{k} \Omega \ldots 1 \mathrm{M} \Omega$)
$>$ Bandwidth $4 f$
\Rightarrow Restriction of frequency width because the power is concentrated on the harmonics of $f_{r f}$

Remark: Additional contribution by non-perfect electronics typically a factor 2
Moreover, pick-up by electro-magnetic interference can contribute \Rightarrow good shielding required

Comparison: Filtered Signal \leftrightarrow Single Turn

Example: GSI Synchr.: $\mathrm{U}^{73+}, E_{\text {inj }}=11.5 \mathrm{MeV} / \mathrm{u} \rightarrow 250 \mathrm{MeV} / \mathrm{u}$ within $0.5 \mathrm{~s}, 10^{9}$ ions

However: not only noise contributes but additionally beam movement by betatron oscillation \Rightarrow broadband processing i.e. turn-by-turn readout for tune determination.

Broadband Signal Processing

$>$ Hybrid or transformer close to beam pipe for analog $\boldsymbol{U} \boldsymbol{U} \& \boldsymbol{\Sigma} \boldsymbol{U}$ generation or $\boldsymbol{U}_{\text {left }} \& \boldsymbol{U}_{\text {right }}$
> Attenuator/amplifier
$>$ Filter to get the wanted harmonics and to suppress stray signals
$>$ ADC: digitalization \longrightarrow followed by calculation of of $\boldsymbol{\Delta} \boldsymbol{U} / \boldsymbol{\Sigma} \boldsymbol{U}$
Advantage: Bunch-by-bunch possible, versatile post-processing possible
Disadvantage: Resolution down to $\approx 100 \mu \mathrm{~m}$ for shoe box type , i.e. $\approx 0.1 \%$ of aperture, resolution is worse than narrowband processing

Narrowband Processing for improved Signal-to-Noise

Narrowband processing equals heterodyne receiver (e.g. AM-radio or spectrum analyzer)
> Attenuator/amplifier
$>$ Mixing with accelerating frequency $f_{r f} \Rightarrow$ signal with sum and difference frequency
$>$ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
$>$ Rectifier: synchronous detector
$>$ ADC: digitalization \rightarrow followed calculation of $\boldsymbol{\Delta} \boldsymbol{U} / \boldsymbol{\Sigma} \boldsymbol{U}$
Advantage: spatial resolution about 100 time better than broadband processing
Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'
For non-relativistic p-synchrotron: \rightarrow variable $\boldsymbol{f}_{r \boldsymbol{f}}$ leads via mixing to constant intermediate freq.

Mixer and Synchronous Detector

Mixer: A passive rf device with
$>$ Input RF (radio frequency): Signal of investigation $A_{R F}(t)=A_{R F} \cos \omega_{R F} t$
$>$ Input LO (local oscillator): Fixed frequency $A_{L O}(t)=A_{L O} \cos \omega_{L O} t$
$>$ Output IF (intermediate frequency)

$$
\begin{aligned}
A_{I F}(t) & =A_{R F} \cdot A_{L O} \cos \omega_{R F} t \cdot \cos \omega_{L O} t \\
& =A_{R F} \cdot A_{L O}\left[\cos \left(\omega_{R F}-\omega_{L O}\right) t+\cos \left(\omega_{R F}+\omega_{L O}\right) t\right]
\end{aligned}
$$

\Rightarrow Multiplication of both input signals, containing the sum and difference frequency.
Synchronous detector: A phase sensitive rectifier
Input Output

Outline:

$>$ Signal generation \rightarrow transfer impedance
$>$ Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
$>$ Capacitive shoe-box BPM for low frequencies used at most proton synchrotrons due to linear position reading
$>$ Electronics for position evaluation
analog signal conditioning to achieve small signal processing
(today's technology based on digital signal processing)
$>$ BPMs for measurement of closed orbit, tune and further lattice functions frequent application of BPMs
$>$ Summary

Close Orbit Measurement with BPMs

Detected position on a analog narrowband basis \rightarrow closed orbit with ms time steps.
It differs from ideal orbit by misalignments of the beam or components.
Example from GSI-Synchrotron:

Closed orbit:
Beam position averaged over many betatron oscillations.

Tune Measurement: General Considerations

Coherent excitations are required for the detection by a BPM

Beam particle's in-coherent motion
\Rightarrow center-of-mass stays constant

Excitation of all particles by rf
\Rightarrow Coherent motion
\Rightarrow center-of-mass variation turn-by-turn

Graphics by R. Singh, GSI

Tune Measurement: General Considerations

The tune Q is the number of betatron oscillations per turn.
The betatron frequency is $f_{\beta}=\boldsymbol{Q} f_{0}$.
Measurement: excitation of coherent betatron oscillations + position from one BPM.
From a measurement one gets only the non-integer part \boldsymbol{q} of \boldsymbol{Q} with $\boldsymbol{Q}=\boldsymbol{n} \pm \boldsymbol{q}$.
Moreover, only $0<\boldsymbol{q}<0.5$ is the unique result.
Example: Tune measurement for six turns with the three lowest frequency fits:

To distinguish for $\boldsymbol{q}<0.5$ or $\boldsymbol{q}>0.5$:

Changing the tune slightly, the direction of \boldsymbol{q} shift differs.

Tune Measurement: The Kick-Method in Time Domain

The beam is excited to coherent betatron oscillation \rightarrow the beam position measured each revolution ('turn-by-turn')
\rightarrow Fourier Trans. gives the non-integer tune \boldsymbol{q}. Short kick compared to revolution.

The de-coherence time limits the resolution:
N non-zero samples
$\stackrel{N}{\Rightarrow}$ non-zero samples General limit of discrete FFT: $\Delta q>\frac{1}{2 N}$

$N=200$ turn $\Rightarrow \Delta q>0.003$ as resolution (tune spreads are typically $\Delta q \approx 0.001$!)

Tune Measurement: De-Coherence Time

The particles are excited to betatron oscillations, but due to the spread in the betatron frequency, they getting out of phase ('Landau damping'):

Scheme of the individual trajectories of four particles after a kick (top) and the resulting coherent signal as measured by a pick-up (bottom).
\Rightarrow Kick excitation leads to limited resolution
Remark: The tune spread is much lower for a real machine.

Tune Measurement: Beam Transfer Function in Frequency Domain

Instead of one kick, the beam can be excited by a sweep of a sine wave, called 'chirp'
\rightarrow Beam Transfer Function (BTF) Measurement as the velocity response to a kick

Prinziple:

Beam acts like a driven oscillator!
Using a network analyzer:
$>$ RF OUT is feed to the beam by a kicker (reversed powered as a BPM)
$>$ The position is measured at one BPM
$>$ Network analyzer: amplitude and phase of the response
> Sweep time up to seconds due to de-coherence time per band
$>$ resolution in tune: up to 10^{-4}

Tune Measurement: Result for BTF Measurement

BTF measurement at the GSI synchrotron, recorded at the 25th harmonics.

A wide scan with both sidebands at

$$
h=25^{\text {th___harmonics: }}
$$

A detailed scan for the lower sideband

From the position of the sidebands $\boldsymbol{q}=0.306$ is determined. From the width

$$
\Delta f / f \approx 5 \cdot 10^{-4} \text { the tune spread can be calculated via } \Delta f_{h}^{-}=\eta \frac{\Delta p}{p} \cdot h f_{0}\left(h-q+\frac{\xi}{\eta} Q\right)
$$

Advantage: High resolution for tune and tune spread (also for de-bunched beams)
Disadvantage: Long sweep time (up to several seconds).

Tune Measurement: Gentle Excitation with Wideband Noise

Instead of a sine wave, noise with adequate bandwidth can be applied
\rightarrow beam picks out its resonance frequency: Example: Vertical tune within 2048 turn at GSI synchrotron $11 \rightarrow 250 \mathrm{MeV} / \mathrm{u}$
$>$ broadband excitation with white noise of $\approx 10 \mathrm{kHz}$ bandwidth
$>$ turn-by-turn position measurement by fast ADC
$>$ Fourier transformation of the recorded data
\Rightarrow Continues monitoring with low disturbance

Advantage:

Fast scan with good time resolution
Disadvantage: Lower precision
2048 turn FFT equals $\simeq 5 \mathrm{~ms}$.

β-Function Measurement from Bunch-by-Bunch BPM Data

Excitation of coherent betatron oscillations: From the position deviation

 $\boldsymbol{x}_{\boldsymbol{i} k}$ at the BPM \boldsymbol{i} and turn \boldsymbol{k} the $\boldsymbol{\beta}$-function $\boldsymbol{\beta}\left(\boldsymbol{s}_{\boldsymbol{i}}\right)$ can be evaluated.The position reading is: (\hat{x}_{i} amplitude, μ_{i} phase at i, Q tune, s_{0} reference location)

$$
x_{i k}=\hat{x}_{i} \cdot \cos \left(2 \pi Q k+\mu_{i}\right)=\hat{x}_{0} \cdot \sqrt{\beta\left(s_{i}\right) / \beta\left(s_{0}\right)} \cdot \cos \left(2 \pi Q k+\mu_{i}\right)
$$

\rightarrow a turn-by-turn position reading at many location (4 per unit of tune) is required.
The ratio of $\boldsymbol{\beta}$-functions at different location:

$$
\frac{\beta\left(s_{i}\right)}{\beta\left(s_{0}\right)}=\left(\frac{\hat{x}_{i}}{\hat{x}_{0}}\right)^{2}
$$

The phase advance is:

$$
\Delta \mu=\mu_{i}-\mu_{0}
$$

Without absolute calibration, $\boldsymbol{\beta}$-function is more precise:

$$
\Delta \mu=\int_{S 0}^{S i} \frac{d s}{\beta(s)}
$$

Dispersion and Chromaticity Measurement

Dispersion $\boldsymbol{D}\left(s_{i}\right)$: Excitation of coherent betatron oscillations and change of momentum \boldsymbol{p} by detuned rf-cavity:
\rightarrow Position reading at one location: $x_{i}=D\left(s_{i}\right) \cdot \frac{\Delta p}{p}$
\rightarrow Result from plot of $\boldsymbol{x}_{\boldsymbol{i}}$ as a function of $\boldsymbol{\Delta p} / \boldsymbol{p} \Rightarrow$ slope is local dispersion $\boldsymbol{D}\left(\boldsymbol{s}_{\boldsymbol{i}}\right)$.
Chromaticity ξ : Excitation of coherent betatron oscillations and change of momentum \boldsymbol{p} by detuned rf-cavity:
\rightarrow Tune measurement
(kick-method, BTF, noise excitation):

$$
\frac{\Delta Q}{Q}=\xi \cdot \frac{\Delta p}{p}
$$

Plot of $\Delta Q / Q$ as a function of $\Delta p / p$
\Rightarrow slope is dispersion ξ.

Summary Pick-Ups for bunched Beams

The electric field is monitored for bunched beams using rf-technologies
('frequency domain'). Beside transfromers they are the most often used instruments!
Differentiated or proportional signal: rf-bandwidth \leftrightarrow beam parameters
Proton synchrotron: 1 to 100 MHz , mostly $1 \mathrm{M} \Omega \rightarrow$ proportional shape
LINAC, e--synchrotron: 0.1 to $3 \mathrm{GHz}, 50 \Omega \rightarrow$ differentiated shape
Important quantity: transfer impedance $\boldsymbol{Z}_{\boldsymbol{t}}(\boldsymbol{\omega}, \boldsymbol{\beta})$.
Types of capacitive pick-ups:
Shoe-box (p-synch.), button (p-LINAC, e--LINAC and synch.)
Remark: Stripline BPM as traveling wave devices are frequently used
Position reading: difference signal of four pick-up plates (BPM):
$>$ Non-intercepting reading of center-of-mass \rightarrow online measurement and control
slow reading \rightarrow closed orbit, fast bunch-by-bunch \rightarrow trajectory
$>$ Excitation of coherent betatron oscillations and response measurement excitation by short kick, white noise or sine-wave (BTF)
\rightarrow tune \boldsymbol{q}, chromaticity $\boldsymbol{\xi}$, dispersion \boldsymbol{D} etc.

