When energetic beam particles penetrates matter, secondary particles are emitted:

this can be e^- , γ , protons, neutrons, excited nuclei, fragmented nuclei...

- \Rightarrow Spontaneous radiation and permanent activation is produced.
- \Rightarrow Large variety of Beam Loss Monitors (**BLM**) depending on the application.

Protection: Sensitive devices e.g. super-conducting magnets to prevent quenching (energy absorption by electronic stopping)

 \rightarrow interlock signal for fast beam abortion.

Beam diagnostics: Alignment of the beam to prevent for activation

 \rightarrow optimal transmission to the target.

Accelerator physics: using these sensitive particle detectors.

- > Several devices are used, depending on particle rate and required time resolution
- Some applications for usage

Secondary Particle Production for Electron Beams

Processes for interaction of electrons

For *E_{kin}*> 100 MeV:

Bremsstrahlungs-photon dominated

 $\Rightarrow \gamma \rightarrow e^+ + e^- \text{ or } \mu^{\pm}, \pi^{\pm} \dots$

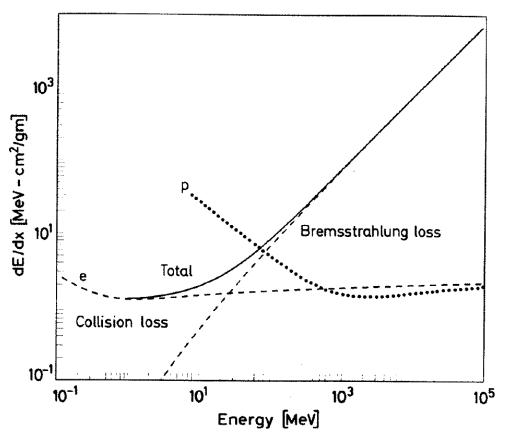
 \rightarrow electro-magnetic showers

 \Rightarrow excitation of

nuclear giant resonances $E_{res} \approx 6 \text{ MeV}$

via (γ, n) , (γ, p) or (γ, np)

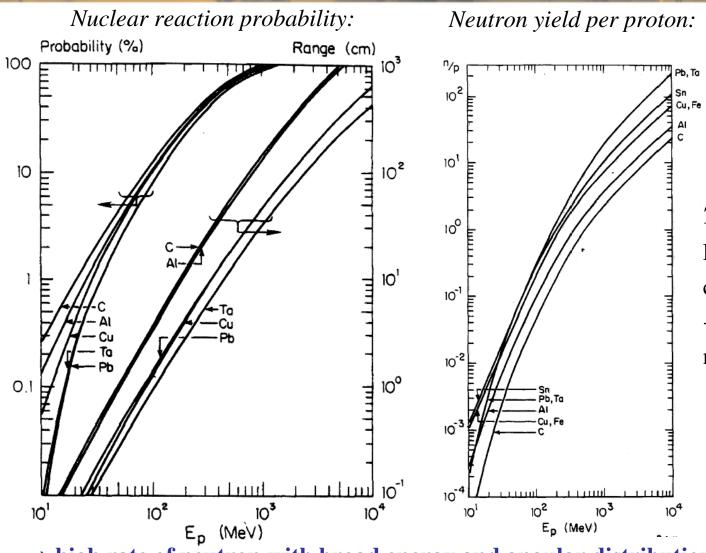
 \rightarrow fast neutrons emitted


 \rightarrow neutrons: Long ranges in matter due to lack of ele.-mag. interaction.

For $E_{kin} < 10$ MeV:

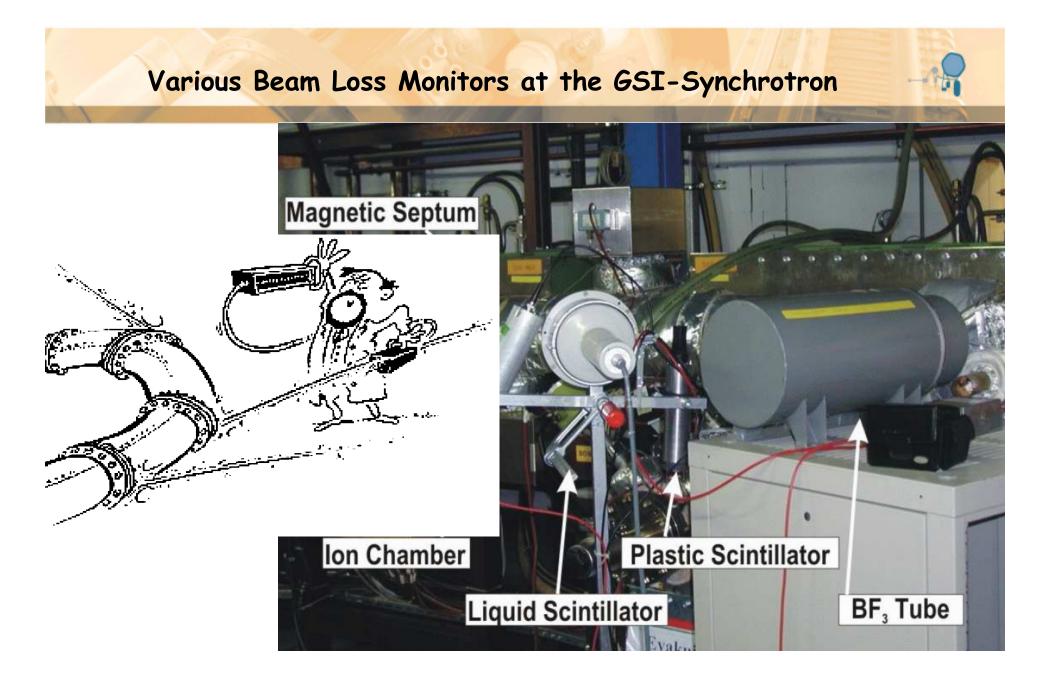
 \Rightarrow only electronic stopping

(x-rays, slow e⁻).


Energy loss for e^- in copper:

Beam Loss Monitors

Peter Forck, JUAS Archamps


Secondary Particle Production for Proton Beams

Thick target: Penetration depth comparable to range → different types of nuclear reaction .

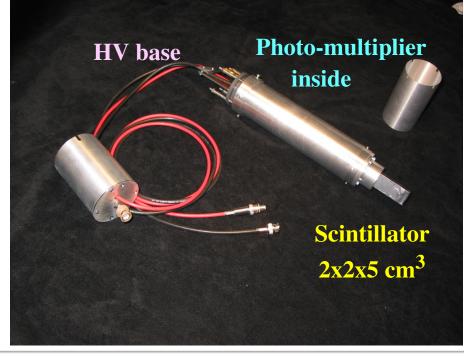
 \Rightarrow high rate of neutron with broad energy and angular distribution.

Peter Forck, JUAS Archamps

Outline:

- > Physical process from beam-wall interaction
- > Different types of Beam Loss Monitors

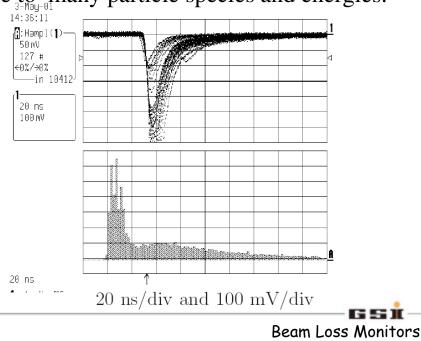
different methods for various beam parameters


- > Machine protection using BLMs
- ➤ Summary

Scintillators as Beam Loss Monitors

Plastics or liquids are used:

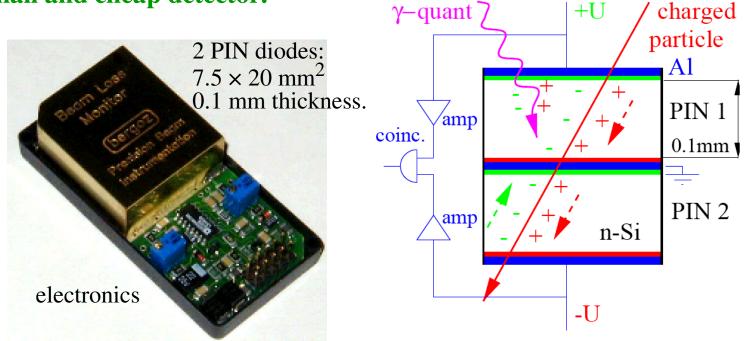
- detection of charged particles by electronic stopping
- detection of neutrons


by elastic collisions n on p in plastics and fast p electronic stopping.

Scintillator + photo-multiplier:

counting (large PMT amplification) or analog voltage ADC (low PMT amp.). Radiation hardness: plastics 1 Mrad = 10^4 Gy liquid 10 Mrad = 10^5 Gy

Example: Analog pulses of plastic scintillator: \Rightarrow broad energy spectrum due to many particle species and energies.



Peter Forck, JUAS Archamps

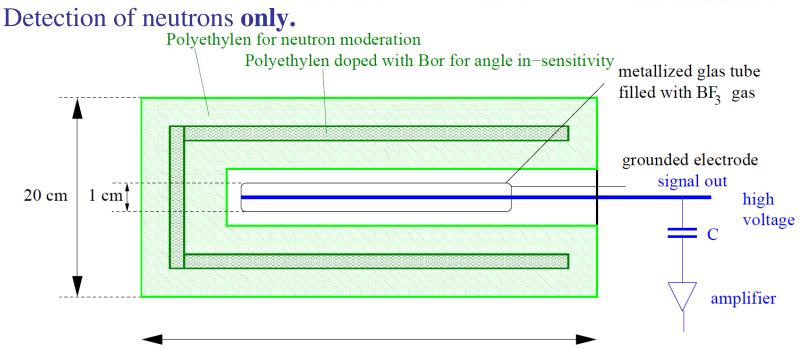
Solid-state detector: Detection of charged particles.

Working principle

- > About 10^4 e⁻-hole pairs are created by a Minimum Ionizing Particle (MIP).
- \succ A coincidence of the two PIN reduces the background due to low energy photons.
- \triangleright A counting module is used with threshold value comparator for alarming.
- \rightarrow small and cheap detector.

Ionization Chamber as BLM

Detection of charged particles only.


Sealed tube Filled with Ar or N₂ gas:

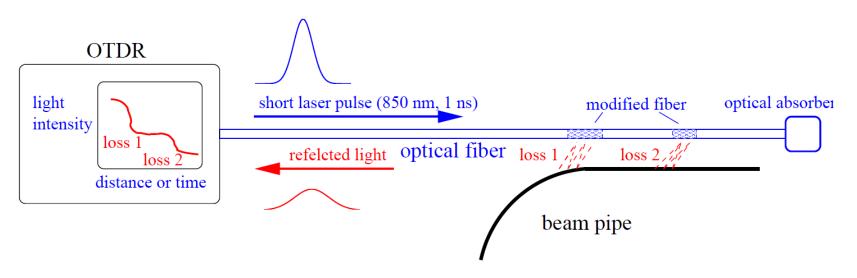
- > Creation of Ar^+-e^- pairs, average energy W=32 eV/pair
- measurement of this current
- > Slow time response due to 100 μ s drift time of Ar⁺.

Per definition: direct measurement of dose.

BF₃ Proportional Tubes as BLM

typically 50 cm

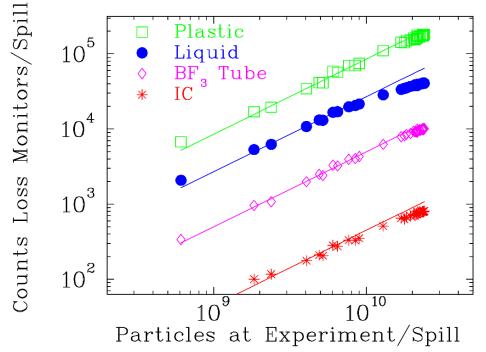
Physical processes of signal generation:


- 1. Slow down of fast neutrons by elastic collisions with p
- 2. Nuclear reaction inside BF_3 gas in tube:

¹⁰B + n \rightarrow ⁷Li + α with Q = 2.3 MeV.

3. Electronic stopping of ⁷Li and α leads to signal.

Modification of fiber material is used as a measure of dose.



- ➤ several km long fibers (cheap due to use in tele-communication)
- ➤ 1 ns infra-red laser pulse
- OTDR (optical time domain reflector):

time and amplitude of reflected light \Rightarrow location of modification.

Different detectors are sensitive to various physical processes.

Example: Beam loss for 800 MeV/u O ⁸⁺ with different BLMs at GSI-synchr.:

 $\Rightarrow \text{Linear behavior for all detectors}$ but quite different count rate: $r_{\text{IC}} < r_{\text{BF3}} < r_{\text{liquid}} < r_{\text{plastic}}$

Outline:

- > Physical process from beam-wall interaction
- Different types of Beam Loss Monitors different methods for various beam parameters

> Machine protection using BLMs

interlock generation for beam abort

➤ Summary

Losses lead to permanent activation \Rightarrow maintenance is hampered and to material heating (vacuum pipe, super-cond. magnet etc.) \Rightarrow destruction. **Types of losses:**

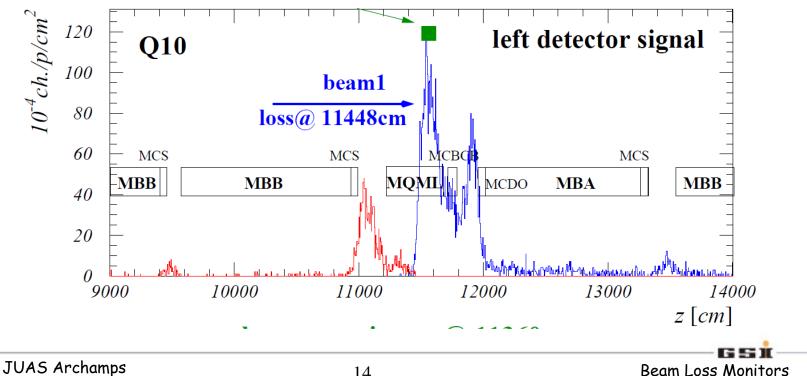
- ➢ Irregular or fast losses by malfunction of devices (magnets, cavities etc.)
 - \rightarrow BLM as online control of the accelerator functionality and **interlock generation**.
- > Regular or slow losses e.g. by lifetime limits or due to collimator
 - \rightarrow BLM used for alignment.

Demands for BLM:

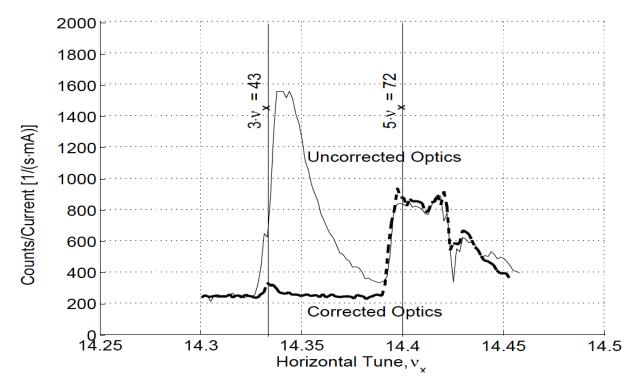
- ➢ High sensitivity to detect behavior of beam halo e.g. at collimator
- Large dynamic range:
 - \rightarrow low signal during normal operation, but large signal in case of malfunction
 - \rightarrow detectable without changing the full-scale-range
 - e.g. scintillators from 10^2 1/s up to 10^7 1/s in counting mode.

Monitoring of loss rate in control room *and* as interlock signal for beam abortion.

Application: BLMs for Quench-Protection


Super-conducting magnets can be heated above critical temperature T_c by the lost beam

- \Rightarrow breakdown of super-conductivity = 'quenching'.
- \Rightarrow Interlock within 1 ms for beam abortion generated by BLM.


Position of detector at quadruples due to maximal beam size.

High energy particles leads to a shower in forward direction \rightarrow Monte-Carlo simulation.

Example: LHC proton beam at 7 TeV: shower maximum @ 11560cm

Example: Loss rate at a scraper inside the synchrotron as a function of the tune (i.e. small changes of quadrupole setting):

Beam blow-up by weak resonances can be avoided by proper tune value \rightarrow very sensitive device for optimization.

Peter Forck, JUAS Archamps

Summary Beam Loss Monitors

Measurement of the lost fraction of the beam:

- detection of secondary products
- \succ sensitive particle detectors are used outside the vacuum
- cheap installations used at many location

Used as interlock in all high current machines for protection. Additionally used for sensitive 'loss studies'.

Depending on the application different types are used:

- Scintillators: sensitive, fast response, largest dynamics, not radiation hard
- > PIN diode: insensitive, fast response, not radiation hard, cheap
- Electron Multiplier: medium sensitive, fast response, radiation hard
- ➤ IC: medium sensitive, slow response, radiation hard, cheap
- > BF₃ tube: only neutrons, slow response, radiation hard, expensive
- > Optical fibers: insensitive, very slow, radiation hard, very high spatial resolution.