Diagnostics is the 'organ of sense' for the beam. It required for operation and development of accelerators

Three types of demands leads to different installations:

- > Quick, non-destructive measurements leading to a single number or simple plots.
- ▶ Instrumentation for daily check, malfunction diagnosis and wanted parameter variation.
- > Complex instrumentation used for hard malfunction and accelerator development.
- A clear interpretation of the results is a important design criterion.

General comments:

- ➤ Good knowledge of accelerators, general physics and technologies needed.
- > Quite different technologies are used, based on various physics processes.
- \succ Each task and each technology calls for an expert.
- > Accelerator development goes parallel to diagnostics development.
- \Rightarrow Interesting and challenging subject!

LINAC & transport lines: Single pass \leftrightarrow **Synchrotron:** multi pass **Electrons:** always relativistic \leftrightarrow **Protons/Ions:** non-relativistic for $E_{kin} < 1$ GeV/u **Depending on application:** Low current \leftrightarrow high current

Overview of the most commonly used systems:

Beam quantity		LINAC & transfer line	Synchrotron
Current I	General	Transformer, dc & ac	Transformer, dc & ac
		Faraday Cup	
	Special	Particle Detectors	Pick-up Signal (relative)
Profile <i>x</i> _{width}	General	Screens, SEM-Grids	Residual Gas Monitor
,,		Wire Scanners, OTR Screen	Wire Scanner,
			Synchrotron Light Monitor
	Special	MWPC, Fluorescence Light	
Position <i>x_{cm}</i>	General	Pick-up (BPM)	Pick-up (BPM)
	Special	Using position measurement	
Transverse Emittance ε_{tran}	General	Slit-grid	Residual Gas Monitor
		Quadrupole Variation	Wire Scanner
	Special	Pepper-Pot	Transverse Schottky

Beam Quantities and their Diagnostics II

Beam quantity		LINAC & transfer line	Synchrotron
Bunch Length <i>∆φ</i>	General	Pick-up	Pick-up
			Wall Current Monitor
	Special	Secondary electrons	Streak Camera, Laser
Momentum <i>p</i> and	General	Pick-ups (Time-of-Flight)	Pick-up (e.g. tomography)
Momentum Spread <i>∆p/p</i>	Special	Magnetic Spectrometer	Schottky Noise Spectrum
Longitudinal Emittance ε_{long}	General	Buncher variation	
	Special	Magnetic Spectrometer	Pick-up & tomography
Tune and Chromaticity Q, ξ	General		Exciter + Pick-up
	Special		Transverse Schottky Spectrum
Beam Loss r _{loss}	General	Particle Detectors	
Polarization P	General	Particle Detectors	
	Special	Laser Scattering (Compton scattering)	
Luminocity L	General	Particle Detectors	

>Destructive and non-destructive devices depending on the beam parameter.

 \succ Different techniques for the same quantity \leftrightarrow Same technique for the different quantities.

Conclusion for Beam Diagnostics Course tooM cits **Diagnostics** Equipment group Weight group Armament group Power plant group Wing group Stress group For a successful construction and operation of an accelerator,

the understand and right balance of all disciplines is required!

Peter Forck, JUAS Archamps

Beam Current Measurement