

Transformation through a system of lattice elements
combine the single element solutions by multiplication of the matrices

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator ,

19th century:

Ludwig van Beethoven: „Mondschein Sonate"

Sonate Nr. 14 in cis-Moll (op. 27/II, 1801)

7.) The Beta Function

General solution of Hill's equation:

$$
\text { (i) } \quad x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos (\psi(s)+\phi)
$$

$\varepsilon, \Phi=$ integration constants determined by initial conditions
$\beta(\mathrm{s})$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

$$
\beta(s+L)=\beta(s)
$$

Inserting (i) into the equation of motion ...

$$
\psi(s)=\int_{0}^{s} \frac{d s}{\beta(s)}
$$

$\Psi(s)=$ „phase advance" of the oscillation between point „0" and „s" in the lattice. For one complete revolution: number of oscillations per turn „Tune"

$$
Q_{y}=\frac{1}{2 \pi} \cdot \oint \frac{d s}{\beta(s)}
$$

8.) Beam Emittance and Phase Space Ellipse:

general solution of
Hill equation $\left\{\begin{array}{l}\text { (1) } x(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\psi(s)+\phi) \\ \text { (2) } x^{\prime}(s)=-\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}} *\{\alpha(s) * \cos (\psi(s)+\phi)+\sin (\psi(s)+\phi)\}\end{array}\right.$

from (1) we get

$$
\begin{array}{ll}
\cos (\psi(s)+\phi)=\frac{x(s)}{\sqrt{\varepsilon} * \sqrt{\beta(s)}} & \alpha(s)=\frac{-1}{2} \beta^{\prime}(s) \\
\text { Insert into (2) and solve for } \varepsilon & \gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}
\end{array}
$$

$\varepsilon=\gamma(s)^{*} x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime}(s)^{2}$

* ε is a constant of the motion ... it is independent of "s"
* parametric representation of an ellipse in the $x x^{\prime}$ space
* shape and orientation of ellipse are given by α, β, γ

Beam Emittance and Phase Space Ellipse

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties. Scientifiquely speaking: area covered in transverse x, x^{\prime} phase space ... and it is constant !!!

Particle Tracking in a Storage Ring

. and now the ellipse:

note for each turn x, x^{\prime} at a given position ${ }^{\prime} s_{1}$ " and plot in the phase space diagram
Calculate x, x^{\prime} for each linear accelerator element according to matrix formalism
plot x, x^{\prime} as a function of "s"

x,

Emittance \& The Phase Space Ellipse

$\begin{array}{ll}\text { particel trajectory: } & x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s)+\phi\} \\ \text { max. Amplitude: } & \hat{x}(s)=\sqrt{\varepsilon \beta} \quad \longrightarrow \quad \boldsymbol{x}^{\prime} \text { at that position } \ldots \text { ? }\end{array}$
. put $\hat{x}(s)$ into $\quad \varepsilon=\gamma(s) * x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime}(s)^{2}$ and solve for \boldsymbol{x}^{\prime}
$\varepsilon=\gamma \cdot \varepsilon \beta+2 \alpha \sqrt{\varepsilon \beta} \cdot x^{\prime}+\beta x^{\prime 2}$
$\longrightarrow x^{\prime}=-\alpha \cdot \sqrt{\varepsilon / \beta}$

* A high β-function means a large beam size and a small beam divergence. ! . et vice versa !!!
* In the middle of a quadrupole β is maximum,

$$
\alpha=z e r o
$$

$x^{\prime}=0$
.. and the ellipse is fla

$$
\begin{aligned}
& \text { Phase Space Ellipse } \\
& \varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s) \\
& \begin{array}{l}
\alpha(s)=\frac{-1}{2} \beta^{\prime}(s) \\
\gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}
\end{array} \\
& \longrightarrow \varepsilon=\frac{x^{2}}{\beta}+\frac{\alpha^{2} x^{2}}{\beta}+2 \alpha \cdot x x^{\prime}+\beta \cdot x^{\prime 2} \\
& \ldots \text { solve for } x^{\prime} \quad x_{1,2}^{\prime}=\frac{-\alpha \cdot x \pm \sqrt{\varepsilon \beta-x^{2}}}{\beta} \\
& \text {.. and determine } \hat{x}^{\prime} \text { via: } \quad \frac{d x^{\prime}}{d x}=0 \\
& \longrightarrow \quad \hat{x}^{\prime}=\sqrt{\varepsilon \gamma} \\
& \longrightarrow \hat{x}= \pm \alpha \sqrt{\varepsilon / \gamma}
\end{aligned}
$$

shape and orientation of the phase space ellipse depend on the Twiss parameters β a γ

9.) Transfer Matrix M ... yes we had the topic already

> general solution of Hill's equation

$$
\begin{aligned}
& x(s)=\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left\{\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right\} x_{0}+\left\{\sqrt{\beta_{s} \beta_{0}} \sin \psi_{s}\right\} x_{0}^{\prime} \\
& x^{\prime}(s)=\frac{1}{\sqrt{\beta_{s} \beta_{0}}}\left\{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}\right\} x_{0}+\sqrt{\frac{\beta_{0}}{\beta_{s}}}\left\{\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right\} x_{0}^{\prime}
\end{aligned}
$$

which can be expressed ... for convenience ... in matrix form $\quad\binom{x}{x^{\prime}}_{s}=M\binom{x}{x^{\prime}}_{0}$
$x(s)=\sqrt{\varepsilon} \sqrt{\beta_{s}}\left(\cos \psi_{s} \cos \phi-\sin \psi_{s} \sin \phi\right)$
$x^{\prime}(s)=\frac{-\sqrt{\varepsilon}}{\sqrt{\beta_{s}}}\left[\alpha_{s} \cos \psi_{s} \cos \phi-\alpha_{s} \sin \psi_{s} \sin \phi+\sin \psi_{s} \cos \phi+\cos \psi_{s} \sin \phi\right]$
starting at point $s(0)=s_{\theta}$, where we put $\Psi(0)=0$

$$
\left.\begin{array}{l}
\cos \phi=\frac{x_{0}}{\sqrt{\varepsilon \beta_{0}}}, \\
\sin \phi=-\frac{1}{\sqrt{\varepsilon}}\left(x_{0}^{\prime} \sqrt{\beta_{0}}+\frac{\alpha_{0} x_{0}}{\sqrt{\beta_{0}}}\right)
\end{array}\right\} \quad \text { inserting above } \ldots
$$

* we can calculate the single particle trajectories between two locations in the ring, if we know the $\alpha \beta \gamma$ at these positions.
* and nothing but the $\alpha \beta \gamma$ at these positions.
* ... !
* Aqquivalenz der Martrizen

10.) Periodic Lattices transfer matrix for particle trajectories as a function of the lattice parameters	
	„This rather formidable looking matrix simplifies considerably if $\boldsymbol{w e}$ consider one complete turn ..."
$\boldsymbol{M}(\boldsymbol{s})=\left(\begin{array}{cc} \cos \psi_{\text {turn }}+\alpha_{s} \sin \psi_{\text {turn }} & \beta_{s} \sin \psi_{\text {turn }} \\ -\gamma_{s} \sin \psi_{\text {turn }} & \cos \psi_{\text {turn }}-\alpha_{s} \sin \psi_{\text {turn }} \end{array}\right)$	$\psi_{\text {turn }}=\int_{s}^{s+L} \frac{d s}{\beta(s)} \quad \begin{aligned} & \psi_{\text {turn }}=\text { phase advance } \\ & \text { per period } \end{aligned}$
Tune: Phase advance per turn in units of $2 \boldsymbol{\pi}$	$Q=\frac{1}{2 \pi} * \oint \frac{d s}{\beta(s)}$

Stability Criterion:

Question: what will happen, if we do not make too many mistakes and your particle performs many mistakes and
one complete turn?

Matrix for 1 turn:

$$
M=\left(\begin{array}{cc}
\cos \psi_{t u m}+\alpha_{s} \sin \psi_{t u m} & \beta_{s} \sin \psi_{t u m} \\
-\gamma_{s} \sin \psi_{t u m n} & \cos \psi_{t u r n}-\alpha_{s} \sin \psi_{t u m}
\end{array}\right)=\cos \psi \cdot \underbrace{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)}_{\boldsymbol{I}}+\sin \psi \underbrace{\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right)}_{\boldsymbol{J}}
$$

Matrix for N turns:

$$
\boldsymbol{M}^{\boldsymbol{N}}=(\boldsymbol{I} \cos \psi+\boldsymbol{J} \sin \psi)^{\mathrm{N}}=\boldsymbol{I} \cos \boldsymbol{N} \psi+\boldsymbol{J} \sin \boldsymbol{N} \psi
$$

The motion for N turns remains bounded, if the elements of M^{N} remain bounded
$\psi=$ real
$\leftrightarrow \quad|\cos \psi|<1$
$\leftrightarrow \quad|\operatorname{Trace}(M)|<2$

$$
\begin{aligned}
& \text { stability criterion proof for the disbelieving collegues !! }
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{M}^{2}=\left(\boldsymbol{I} * \cos \psi_{1}+\boldsymbol{J} * \sin \psi_{1}\right) *\left(\boldsymbol{I}^{*} \cos \psi_{2}+\boldsymbol{J} * \sin \psi_{2}\right) \\
& =\boldsymbol{I}^{2}{ }^{*} \cos \psi_{1} \cos \psi_{2}+\boldsymbol{I} \boldsymbol{J}^{*} \cos \psi_{1} \sin \psi_{2}+\boldsymbol{J} \boldsymbol{I}^{*} \sin \psi_{1} \cos \psi_{2}+\boldsymbol{J}^{2} \sin \psi_{1} \sin \psi_{2} \\
& \text { now ... } \\
& I^{2}=I \\
& \boldsymbol{I}^{*} \boldsymbol{J}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) *\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right)=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) \\
& \boldsymbol{J} * \boldsymbol{I}=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) *\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) \\
& \boldsymbol{J}^{2}=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) *\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right)=\left(\begin{array}{cc}
\alpha^{2}-\gamma \beta & \alpha \beta-\beta \alpha \\
-\gamma \alpha+\alpha \gamma & \alpha^{2}-\gamma \beta
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-\boldsymbol{I}
\end{aligned}
$$

$\boldsymbol{M}^{2}=\boldsymbol{I} * \cos \left(\psi_{1}+\psi_{2}\right)+\boldsymbol{J} * \sin \left(\psi_{1}+\psi_{2}\right)$
$\boldsymbol{M}^{2}=\boldsymbol{I} * \cos (2 \psi)+\boldsymbol{J} * \sin (2 \psi)$
11.) Transformation of α, β, γ
consider two positions in the storage ring: s_{0}, s

$$
\binom{x}{x^{\prime}}_{s}=M \cdot\binom{x}{x^{\prime}}_{s_{0}} \quad \text { where } \ldots \quad \quad M=M_{Q F} \cdot M_{Q D} \cdot M_{B} \cdot M_{D r f f} \cdot M_{Q F} \cdot \ldots
$$

$$
M=\left(\begin{array}{ll}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)
$$

$$
\text { express } x_{0}, x_{0}^{\prime} \text { as a function of } x, x^{\prime} \text {. }
$$

$$
\binom{x}{x^{\prime}}_{s}=M \cdot\binom{x}{x^{\prime}}_{s_{0}}
$$

. renember $W=C S S C=1$

$$
\left.\begin{array}{l}
\binom{x}{x^{\prime}}_{0}=M^{-1} \cdot\binom{x}{x^{\prime}}_{s} \\
M^{-1}=\left(\begin{array}{cc}
S^{\prime} & -S \\
-C^{\prime} & C
\end{array}\right)
\end{array}\right\} \Rightarrow \begin{aligned}
& x_{0}=S^{\prime} x-S x^{\prime} \\
& x_{0}^{\prime}=-C^{\prime} x+C x^{\prime}
\end{aligned}
$$

inserting into ε

$$
\begin{aligned}
& \varepsilon=\beta x^{\prime 2}+2 \alpha x x^{\prime}+\gamma x^{2} \\
& \varepsilon=\beta_{0}\left(C x^{\prime}-C^{\prime} x\right)^{2}+2 \alpha_{0}\left(S^{\prime} x-S x^{\prime}\right)\left(C x^{\prime}-C^{\prime} x\right)+\gamma_{0}\left(S^{\prime} x-S x^{\prime}\right)^{2}
\end{aligned}
$$

sort via x, x^{\prime} and compare the coefficients to get

$$
\begin{aligned}
& \beta(s)=C^{2} \beta_{0}-2 S C \alpha_{0}+S^{2} \gamma_{0} \\
& \alpha(s)=-C C^{\prime} \beta_{0}+\left(S C^{\prime}+S^{\prime} C\right) \alpha_{0}-S S^{\prime} \gamma_{0} \\
& \gamma(s)=C^{\prime 2} \beta_{0}-2 S^{\prime} C^{\prime} \alpha_{0}+S^{\prime 2} \gamma_{0}
\end{aligned}
$$

in matrix notation:
$\left(\begin{array}{l}\beta \\ \alpha \\ \gamma\end{array}\right)_{s}=\left(\begin{array}{ccc}C^{2} & -2 S C & S^{2} \\ -C C^{\prime} & S C^{\prime}+C S^{\prime} & -S S^{\prime} \\ C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}\end{array}\right) \cdot\left(\begin{array}{l}\beta_{0} \\ \alpha_{0} \\ \gamma_{0}\end{array}\right)$

1.) this expression is important

2.) given the twiss parameters α, β, γ at any point in the lattice we can transform them and calculate their values at any other point in the ring.
3.) the transfer matrix is given by the focusing properties of the lattice elements, .) the elements of M are just those that we used to calculate single particle trajectories.
the
4.) go back to point 1.)

Résumé:	
equation of motion:	$\boldsymbol{x}^{\prime \prime}(\boldsymbol{s})+\boldsymbol{K}(\boldsymbol{s}) \boldsymbol{x}(\boldsymbol{s})=0, \quad K=1 / \rho^{2}-k$
general solution of Hill's equation:	$x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos (\psi(s)+\phi)$
phase advance \& tune:	$\psi_{L_{2}(s)}=\int_{s=1}^{n 2} \frac{1}{\beta(s)} d s, \quad Q(s)=\frac{1}{2 \pi} \rho_{\beta(s)} \frac{1}{\beta} d s$
emittance:	$\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(\boldsymbol{s})+\beta(s) x^{\prime 2}(s)$
transfer matrix from $s_{l} \rightarrow s_{2}$:	$M_{1-2}=\left(\begin{array}{cc} \sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \psi_{21}+\alpha_{1} \sin \psi_{21}\right) & \sqrt{\sqrt{\beta_{2} \beta_{1}} \sin \psi_{21}} \\ \left.\frac{\left(\alpha_{1}-\alpha_{2}\right) \cos \psi_{21}-\left(1+\alpha_{1} \alpha_{2}\right) \sin \psi_{21}}{\sqrt{\frac{\beta_{1}}{\beta_{2}}\left(\cos \psi_{21}-\alpha_{2} \sin \psi_{21}\right)}}\right) \end{array}\right)$
matrix for 1 turn:	$\boldsymbol{M}(s)=\left(\begin{array}{cc} \cos \psi_{\mu m m}+\alpha_{s} \sin \psi_{u m m} & \beta_{s} \sin \psi_{u m m} \\ -\gamma_{s} \sin \psi_{u m m} & \cos \psi_{u m m}-\alpha_{s} \sin \psi_{u m m} \end{array}\right)$
stability criterion:	$\|\operatorname{Trace}(\boldsymbol{M})\|<2$

