

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion: x''(s) - k(s)x(s) = 0

restoring force \neq const, k(s) = depending on the position s k(s+L) = k(s), periodic function we expect a kind of quasi harmonic oscillation: amplitude & phase will depend on the position s in the ring.

Résumé:	
equation of motion:	$x''(s) + K(s) x(s) = 0$, $K = 1/\rho^2 - k$
general solution of Hill's equation:	$x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\psi(s) + \phi)$
phase advance & tune:	$\psi_{12}(s) = \int_{s1}^{s2} \frac{1}{\beta(s)} ds$, $Q(s) = \frac{1}{2\pi} \oint \frac{1}{\beta(s)} ds$
emittance:	$\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^2(s)$
transfer matrix from $s_1 \rightarrow s_2$:	$M_{1\rightarrow2} = \begin{pmatrix} \sqrt{\frac{\beta_2}{\beta_1}} (\cos\psi_{21} + \alpha_1 \sin\psi_{21}) & \sqrt{\beta_2\beta_1} \sin\psi_{21} \\ \frac{(\alpha_1 - \alpha_2)\cos\psi_{21} - (1 + \alpha_1\alpha_2)\sin\psi_{21}}{\sqrt{\beta_2\beta_1}} & \sqrt{\frac{\beta_1}{\beta_2}} (\cos\psi_{21} - \alpha_2 \sin\psi_{21}) \end{pmatrix}$
matrix for 1 turn:	$M(s) = \begin{pmatrix} \cos\psi_{turn} + \alpha_s \sin\psi_{turn} & \beta_s \sin\psi_{turn} \\ -\gamma_s \sin\psi_{turn} & \cos\psi_{turn} - \alpha_s \sin\psi_{turn} \end{pmatrix}$
stability criterion:	Trace(M) < 2