III.) The „not so ideal" World

Lattice Design in Particle Accelerators Bernhard Holzer, CERN-LHC

1952: Courant, Livingston, Snyder:
Theory of strong focusing in particle beams

Recapitulation: ...the story with the matrices !!!

Equation of Motion:

 Solution of Trajectory Equations$$
\begin{array}{lll}
x^{\prime \prime}+\boldsymbol{K} \boldsymbol{x}=0 & K=1 / \rho^{2}-k & \text {... hor. plane: } \\
& K=k & \text {.. vert. Plane: }
\end{array}
$$

$$
\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 1}=M^{*}\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 0}
$$

$$
M_{\text {arift }}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

$$
\stackrel{\square}{9}
$$

$$
M_{f c}=\left(\begin{array}{cc}
\cos (\sqrt{|K|} \mid) & \frac{1}{\sqrt{\mid K}} \sin (\sqrt{|K|} \mid) \\
-\sqrt{|K|} \sin (\sqrt{|K|}) & \cos (\sqrt{|K|} l)
\end{array}\right)
$$

$$
\frac{\square}{\square}
$$

$$
M_{\text {total }}=M_{Q F} * M_{D} * M_{B} * M_{D} * M_{Q D} * M_{D} * \ldots
$$

Recapitulation: ...and for the complete particle ensemble the betas and epsilons !!!

general solution of
Hill equation $\left\{\begin{array}{l}\text { (1) } x(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\psi(s)+\phi) \\ \text { (2) } x^{\prime}(s)=-\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}} *\{\alpha(s) * \cos (\psi(s)+\phi)+\sin (\psi(s)+\phi)\}\end{array}\right.$
from (1) we get
$\cos (\psi(s)+\phi)=\frac{x(s)}{\sqrt{\varepsilon} * \sqrt{\beta(s)}}$
$\alpha(s)=\frac{-1}{2} \beta^{\prime}(s)$
Insert into (2) and solve for ε
$\gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}$

$\varepsilon=\gamma(s)^{*} x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime}(s)^{2}$

* ε is a constant of the motion ... it is independent of „s"
* parametric representation of an ellipse in the $x x^{\star}$ space
* shape and orientation of ellipse are given by α, β, γ

Beam Emittance and Phase Space Ellipse

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
Scientifiquely speaking: area covered in transverse x, x^{\prime} phase space ... and it is constant !!!

Transfer Matrix M

Transformation of particle coordinates: $\quad\binom{x}{x^{\prime}}_{s}=M\binom{x}{x^{\prime}}_{0}$
using matrix notation in magnet parameters:
$\boldsymbol{M}_{\text {total }}=\boldsymbol{M}_{\boldsymbol{Q F}} * \boldsymbol{M}_{\boldsymbol{D}} * \boldsymbol{M}_{\boldsymbol{B}} * \boldsymbol{M}_{\boldsymbol{D}} * \boldsymbol{M}_{\boldsymbol{Q} \boldsymbol{D}} * \boldsymbol{M}_{\boldsymbol{D}} * \quad \ldots \quad \boldsymbol{M}_{\text {foc }}=\left(\begin{array}{cc}\cos (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) & \frac{1}{\sqrt{|\boldsymbol{K}|}} \sin (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) \\ -\sqrt{|\boldsymbol{K}|} \sin (\sqrt{|\boldsymbol{K}|} l) & \cos (\sqrt{|\boldsymbol{K}|} l)\end{array}\right)$
using matrix notation in Twiss form:

Transformation of Twiss parameters:

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C^{2} & -2 S C & S^{2} \\
-C C^{\prime} & S C^{\prime}+C S^{\prime} & -S S^{\prime} \\
C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}
\end{array}\right) \cdot\left(\begin{array}{l}
\beta_{0} \\
\alpha_{0} \\
\gamma_{0}
\end{array}\right)
$$

III. Lattice Design in Particle Accelerators

„... how to build a storage ring"

High energy accelerators \rightarrow circular machines
somewhere in the lattice we need a number of dipole magnets, that are bending the design orbit to a closed ring
12.) Geometry of the ring:
centrifugal force $=$ Lorentz force

Example: heavy ion storage ring TSR
Example: heavy ion storage ring
8 dipole magnets of equal bending strength

$$
\begin{aligned}
& e^{*} v^{*} B=\frac{m v^{2}}{\rho} \\
& \rightarrow e^{*} B=\frac{m v}{\rho}=p / \rho \\
& \rightarrow B^{*} \rho=p / e \\
& p=\text { momentum of the particle, } \\
& \rho=\text { curvature radius }
\end{aligned}
$$

B $\boldsymbol{\rho}=$ beam rigidity

14.) Focusing forces ... single particle trajectories

$K=-k+1 / \rho^{2} \quad$ hor. plane
$K=k \quad$ vert. plane
$\left.\begin{array}{ll}\text { dipole magnet } & \frac{1}{\rho}=\frac{B}{p / q} \\ \text { quadrupole magnet } & k=\frac{g}{p / q}\end{array}\right\}$
Example: LHC Ring: Bending radius: $\quad \rho=2.8 \mathrm{~km}$
 $\mathrm{k}=9.4 * 10^{-3} / \mathrm{m}^{2}$
$1 / \mathrm{\rho}^{2}=1.3 * 10^{-7} / \mathrm{m}^{2}$

For estimates in large accelerators the weak focusing term $1 / \rho^{2}$ can
in general be neglected

Solution for a focusing magne

$$
\begin{aligned}
& x(\boldsymbol{s})=x_{0} * \cos (\sqrt{\boldsymbol{K}} * \boldsymbol{s})+\frac{\boldsymbol{x}_{0}^{\prime}}{\sqrt{\boldsymbol{K}}} * \sin (\sqrt{\boldsymbol{K}} * \boldsymbol{s}) \\
& \boldsymbol{x}^{\prime}(\boldsymbol{s})=-\boldsymbol{x}_{0} \sqrt{\boldsymbol{K}} * \sin (\sqrt{\boldsymbol{K}} * \boldsymbol{s})+\boldsymbol{x}_{0}^{\prime} * \cos (\sqrt{\boldsymbol{K}} * \boldsymbol{s})
\end{aligned}
$$

The Twiss parameters α, β, γ can be transformed through the lattice via the matrix elements defined above.

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{S}=\left(\begin{array}{ccc}
C^{2} & -2 S C & S^{2} \\
-C C^{\prime} & S C^{\prime}+S^{\prime} C & -S S^{\prime} \\
C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}
\end{array}\right) *\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{0}
$$

Question: "What does that mean ???? "

Most simple example: drift space

$$
M=\left(\begin{array}{ll}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

particle coordinates

$$
\binom{x}{x^{\prime}}_{l}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right) *\binom{x}{x^{\prime}}_{0} \quad \rightarrow \quad \begin{aligned}
& x(l)=x_{0}+l^{*} x_{0}{ }^{\prime} \\
& x^{\prime}(l)=x_{0}{ }^{\prime}
\end{aligned}
$$

transformation of twiss parameters:
$\left(\begin{array}{l}\beta \\ \alpha \\ \gamma\end{array}\right)_{l}=\left(\begin{array}{ccc}1 & -2 l & l^{2} \\ 0 & 1 & -l \\ 0 & 0 & 1\end{array}\right) *\left(\begin{array}{l}\beta \\ \alpha \\ \gamma\end{array}\right)_{0}$

Stability ...?

$$
\operatorname{trace}(M)=1+1=2
$$

$\beta(s)=\beta_{0}-2 l * \alpha_{0}+l^{2} * \gamma_{0}$
\rightarrow A periodic solution doesn't exist in a lattice built exclusively out of drift spaces.

3.) The FoDo-Lattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in between
Nothing = elements that can be neglected on first sight: drift, bending magnets, RF structures ... and especially experiments...)

Starting point for the calculation: in the middle of a focusing quadrupole
Phase advance per cell $\mu=45^{\circ}$,
\rightarrow calculate the twiss parameters for a periodic solution

Can we understand, what the optics code is doing?
matrices $\quad \boldsymbol{M}_{f o c}=\left(\begin{array}{cc}\cos \left(\sqrt{|\boldsymbol{K}|} \boldsymbol{l}_{q}\right) & \frac{1}{\sqrt{|\boldsymbol{K}|}} \sin \left(\sqrt{|\boldsymbol{K}|} \boldsymbol{l}_{q}\right) \\ -\sqrt{|\boldsymbol{K}|} \sin \left(\sqrt{|\boldsymbol{K}|} \boldsymbol{l}_{q}\right) & \cos \left(\sqrt{\left.|\boldsymbol{K}| \boldsymbol{l}_{q}\right)}\right.\end{array}\right) \quad \boldsymbol{M}_{\text {drift }}=\left(\begin{array}{cc}1 & \boldsymbol{l}_{d} \\ 0 & 1\end{array}\right)$
$\begin{array}{ll}\text { strength and length of the FoDo elements } & K=+/-0.54102 m^{-2} \\ & I q=0.5 m\end{array}$ $l q=0.5 \mathrm{~m}$ $l d=2.5 \mathrm{~m}$

The matrix for the complete cell is obtained by multiplication of the element matrices

$$
M_{F o D o}=M_{q f h} * M_{l d} * M_{q d}^{*} M_{l d}^{*} M_{q f}
$$

Putting the numbers in and multiplying out ...

$$
M_{F o D o}=\left(\begin{array}{cc}
0.707 & 8.206 \\
-0.061 & 0.707
\end{array}\right)
$$

The transfer matrix for one period gives us all the information that we need !

1.) is the motion stable?

$$
\operatorname{trace}\left(M_{\text {FoDo }}\right)=1.415 \rightarrow
$$

$$
\underline{<2}
$$

2.) Phase advance per cell

3.) hor $\boldsymbol{\beta}$-function

$$
\beta=\frac{\boldsymbol{M}_{1,2}}{\sin \psi}=\underline{\underline{11.611} \boldsymbol{m}}
$$

4.) hor α-function)

$$
\alpha=\frac{\boldsymbol{M}_{1,1}-\cos \psi}{\sin \psi}=0
$$

We can: ... the „thin lens approximation"

Matrix of a focusing quadrupole magnet:

$$
M_{Q F}=\left(\begin{array}{cc}
\cos (\sqrt{K} * l) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} * l) \\
-\sqrt{K} \sin (\sqrt{K} * l) & \cos (\sqrt{K} * l)
\end{array}\right)
$$

If the focal length f is much larger than the length of the quadrupole magnet,

$$
f=1 / k l_{Q} \gg l_{Q}
$$

the transfer matrix can be aproximated using J

$$
k l_{q}=\text { const }, l_{q} \rightarrow 0
$$

$$
M=\left(\begin{array}{ll}
1 & 0 \\
1 / f & 1
\end{array}\right)
$$

FoDo in thin lens approximation

Calculate the matrix for a half cell, starting in the middle of a foc. quadrupole:

$$
M_{\text {half cell }}=M_{q d h} * M_{l d} * M_{q f h}
$$

$$
M_{\text {half Cell }}=\left(\begin{array}{cc}
1 & 0 \\
1 / \tilde{f} & 1
\end{array}\right) *\left(\begin{array}{cc}
1 & l_{D} \\
0 & 1
\end{array}\right) *\left(\begin{array}{cc}
1 & 0 \\
-1 / \tilde{f} & 1
\end{array}\right)
$$

$$
M_{\text {half cell }}=\left(\begin{array}{cc}
1-l_{D} / \tilde{f} & l_{D} \\
-l_{D} / \tilde{f}^{2} & 1+l_{D} / \tilde{f}
\end{array}\right)
$$

for the second half cell set $f \rightarrow-f$

FoDo in thin lens approximation

Matrix for the complete FoDo cell:

$$
\begin{aligned}
& M=\left(\begin{array}{cc}
1+l_{D} / \tilde{f} & l_{D} \\
-l_{D} / \tilde{f}^{2} & 1-l_{D} / \tilde{f}
\end{array}\right) *\left(\begin{array}{cc}
1-l_{D} / \tilde{f} & l_{D} \\
-l_{D} / \tilde{f}^{2} & 1+l_{D} / \tilde{f}
\end{array}\right) \\
& M=\left(\begin{array}{cc}
1-\frac{2 l_{D}^{2}}{\tilde{f}^{2}} & 2 l_{D}\left(1+\frac{l_{D}}{\tilde{f}}\right) \\
2\left(\frac{l_{D}^{2}}{\tilde{f}^{3}}-\frac{l_{D}}{\tilde{f}^{2}}\right) & 1-2 \frac{l_{D}^{2}}{\tilde{f}^{2}}
\end{array}\right)
\end{aligned}
$$

Now we know, that the phase advance is related to the transfer matrix by

$$
\cos \psi=\frac{1}{2} \operatorname{trace}(\boldsymbol{M})=\frac{1}{2}\left(2-\frac{4 l_{D}^{2}}{\tilde{\boldsymbol{f}}^{2}}\right)=1-\frac{2 \boldsymbol{l}_{D}^{2}}{\tilde{\boldsymbol{f}}^{2}}
$$

After some beer and with a little bit of trigonometric gymnastics
$\cos (x)=\cos ^{2}(x / 2)-\sin ^{2}(x / 2)=1-2 \sin ^{2}(x / 2)$
we can calculate the phase advance as a function of the FoDo parameter ...

$$
\begin{aligned}
& \cos \psi_{\text {cell }}=1-2 \sin ^{2}\left(\frac{\psi_{\text {cell }}}{2}\right)=1-\frac{2 l_{D}^{2}}{\widetilde{f}^{2}} \\
& \sin \frac{\psi_{\text {cell }}}{2}=\frac{l_{D}}{\tilde{f}}=\frac{\boldsymbol{L}_{\text {cell }}}{2 \widetilde{f}} \\
& \sin \frac{\psi_{\text {cell }}}{2}=\frac{\boldsymbol{L}_{\text {cell }}}{4 \boldsymbol{f}}
\end{aligned}
$$

Example:
45-degree Cell
$L_{C e l l}=l_{Q F}+l_{D}+l_{Q D}+l_{D}=0.5 m+2.5 m+0.5 m+2.5 m=6 m$ $1 / f=k l_{l}=0.5 m * 0.541 m^{-2}=0.27 m^{-1}$

$$
\begin{aligned}
\sin \frac{\psi_{\text {cell }}}{2} \approx \frac{\boldsymbol{L}_{\text {cell }}}{4 \boldsymbol{f}} & =0.405 \\
& \rightarrow \psi_{\text {cell }} \approx 47.8^{\circ} \\
& \rightarrow \beta \approx 11.4 \mathrm{~m}
\end{aligned}
$$

Remember: Exact calculation yields:
$\rightarrow \psi_{\text {cell }} \approx 45^{\circ}$
$\rightarrow \quad \beta \approx 11.6 \mathrm{~m}$

Remember:

Beam Emittance and Phase Space Ellipse:

equation of motion:	$\boldsymbol{x}^{\prime \prime}(\boldsymbol{s})-\boldsymbol{k}(\boldsymbol{s}) \boldsymbol{x}(\boldsymbol{s})=0$
general solution of Hills equation:	$\boldsymbol{x}(\boldsymbol{s})=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos (\psi(s)+\varphi)$
beam size:	$\sigma=\sqrt{\varepsilon \beta} \approx " m m "$

$$
\varepsilon=\gamma(\boldsymbol{s}) \boldsymbol{x}^{2}(\boldsymbol{s})+2 \alpha(\boldsymbol{s}) \boldsymbol{x}(\boldsymbol{s}) \boldsymbol{x}^{\prime}(\boldsymbol{s})+\beta(\boldsymbol{s}) \boldsymbol{x}^{\prime 2}(\boldsymbol{s})
$$

* ε is a constant of the motion ... it is independent of „s" * parametric representation of an ellipse in the $x x^{\text {' }}$ space * shape and orientation of ellipse are given by α, β, γ

$\alpha(s)=\frac{-1}{2} \beta^{\prime}(s)$
$\gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}$

16.) Liouville during Acceleration

$\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)$

Beam Emittance corresponds to the area covered in the x, x^{\prime} Phase Space Ellipse

Liouville: Area in phase space is constant

$$
\text { But so sorry ... } \varepsilon \neq \text { const ! }
$$

Classical Mechanics:
phase space $=$ diagram of the two canonical variables
position \& momentum
$\begin{array}{ll}\boldsymbol{x} & \boldsymbol{p}_{x}\end{array}$
$p_{j}=\frac{\partial L}{\partial \dot{q}_{j}} \quad ; \quad L=T-V=$ kin. Energy - pot. Energy

According to Hamiltonian mechanics:
phase space diagram relates the variables q and p

$q=$ position $=x$

$\boldsymbol{p}=\boldsymbol{m o m e n t u m}=\boldsymbol{m} \boldsymbol{v}=\boldsymbol{m} \boldsymbol{c} \gamma \boldsymbol{\beta}_{\boldsymbol{x}} \quad \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad ; \quad \beta_{x}=\frac{\dot{x}}{c}$
Liouvilles Theorem: $\quad \int p d q=$ const
for convenience (i.e. because we are lazy bones) we use in accelerator theory:

$$
x^{\prime}=\frac{d x}{d s}=\frac{d x}{d t} \frac{d t}{d s}=\frac{\beta_{x}}{\beta} \quad \text { where } \boldsymbol{\beta}_{x}=v_{x} / c
$$

$\int p d q=m c \int \gamma \beta_{x} d x$

$$
\int p d q=m c \gamma \beta \underbrace{\int x^{\prime} d x}_{\varepsilon} \quad \Rightarrow \varepsilon=\int x^{\prime} d x \propto \frac{1}{\beta \gamma} \quad \begin{aligned}
& \text { the beam emittance } \\
& \text { shrinks during } \\
& \text { acceleration } \varepsilon \sim 1 / \gamma
\end{aligned}
$$

Nota bene:
1.) A proton machine ... or an electron linac ... needs the highest aperture at injection energy !!! as soon as we start to accelerate the beam size shrinks as $\gamma^{-1 / 2}$ in both planes.
$\sigma=\sqrt{\varepsilon \beta}$
2.) At lowest energy the machine will have the major aperture problems,
\rightarrow here we have to minimise $\hat{\beta}$
3.) we need different beam optics adopted to the energy: 3.) we Mini Beta concept will only be adequate at flat top:

LHC injection LHC injection
optics at 450 GeV

7σ beam envelope at $E=40 \mathrm{GeV}$

. and at $E=920 \mathrm{GeV}$

18.) Dispersion: trajectories for $\Delta p / p \neq 0$

Question: do you remember last session, page 12 ? ... sure you do

Force acting on the particle

$$
F=\boldsymbol{m} \frac{d^{2}}{d t^{2}}(x+\rho)-\frac{\boldsymbol{m} v^{2}}{x+\rho}=e B_{y} v
$$

remember: $x \approx m m, \rho \approx m \ldots \rightarrow$ develop for small x

$$
m \frac{d^{2} x}{d t^{2}}-\frac{m v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=e B_{y} v
$$

consider only linear fields, and change independent variable: $t \rightarrow s \quad \boldsymbol{B}_{y}=\boldsymbol{B}_{0}+\boldsymbol{x} \frac{\partial \boldsymbol{B}_{y}}{\partial \boldsymbol{x}}$

$$
\begin{aligned}
& \qquad x^{\prime \prime}-\frac{1}{\rho}\left(1-\frac{\boldsymbol{x}}{\rho}\right)=\frac{e \boldsymbol{B}_{0}}{m v v}+\frac{e x g}{m v} \\
& \text {... but now take a small momentum error into account !!!! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dispersion: } \\
& \text { develop for small momentum error } \quad \Delta \boldsymbol{p} \ll \boldsymbol{p}_{0} \Rightarrow \frac{1}{\boldsymbol{p}_{0}+\Delta \boldsymbol{p}} \approx \frac{1}{\boldsymbol{p}_{0}}-\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}^{2}} \\
& x^{\prime \prime}-\frac{1}{\rho}+\frac{\boldsymbol{x}}{\rho^{2}} \approx \underbrace{\frac{\boldsymbol{e} \boldsymbol{B}_{0}}{\boldsymbol{p}_{0}}}_{-\frac{1}{\rho}}-\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}^{2}} \boldsymbol{e} \boldsymbol{B}_{0}+\underbrace{\frac{\boldsymbol{x e g}}{\boldsymbol{p}_{0}}}_{k * x}-\boldsymbol{x e g} \underbrace{\boldsymbol{\operatorname { s i p }} \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}^{2}}}_{\approx 0} \\
& \boldsymbol{x}^{\prime \prime}+\frac{\boldsymbol{x}}{\rho^{2}} \approx \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}} * \frac{\left(-\boldsymbol{e} \boldsymbol{B}_{0}\right)}{\boldsymbol{p}_{0}}+\boldsymbol{k}^{*} \boldsymbol{x}=\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}} * \frac{1}{\rho}+\boldsymbol{k} * \boldsymbol{x} \\
& \frac{1}{\rho} \\
& \boldsymbol{x}^{\prime \prime}+\frac{\boldsymbol{x}}{\rho^{2}}-\boldsymbol{k x}=\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}} \frac{1}{\rho} \quad \longrightarrow \quad \boldsymbol{x}^{\prime \prime}+\boldsymbol{x}\left(\frac{1}{\rho^{2}}-\boldsymbol{k}\right)=\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}} \frac{1}{\rho}
\end{aligned}
$$

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion. \rightarrow inhomogeneous differential equation.

Dispersion:

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}-k\right)=\frac{\Delta p}{p} \cdot \frac{1}{\rho}
$$

general solution:

Normalise with respect to $\Delta p / p$

$$
D(s)=\frac{x_{i}(s)}{\Delta p / p}
$$

Dispersion function $D(s)$

* is that special orbit, an ideal particle would have for $\Delta p / p=1$
* the orbit of any particle is the sum of the well known x_{β} and the dispersion
* as $D(s)$ is just another orbit it will be subject to the focusing properties of the lattice

Dispersion
Example: homogeneous dipole field

Matrix formalism:
$\left.\begin{array}{l}x(s)=x_{\beta}(s)+D(s) \cdot \frac{\Delta p}{p} \\ x(s)=C(s) \cdot x_{0}+S(s) \cdot x_{0}^{\prime}+D(s) \cdot \frac{\Delta p}{p}\end{array}\right\} \quad\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s}=\left(\begin{array}{ll}\boldsymbol{C} & \boldsymbol{S} \\ \boldsymbol{C}^{\prime} & \boldsymbol{S}^{\prime}\end{array}\right)\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{0}+\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}}\binom{\boldsymbol{D}}{\boldsymbol{D}^{\prime}}_{0}$

Resume':

beam emittance	$\varepsilon \propto \frac{1}{\beta \gamma}$
beta function in a drift	$\beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2}$
. and for $\alpha=0$	$\beta(s)=\beta{0}+\frac{s^{2}}{\beta_{0}}$
particle trajectory for $\Delta p / p \neq 0$ inhomogenious equation	$\boldsymbol{x}^{\prime \prime}+\boldsymbol{x}\left(\frac{1}{\rho^{2}}-\boldsymbol{k}\right)=\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}} \frac{1}{\rho}$
... and its solution	$x(s)=x_{\beta}(s)+D(s) \cdot \frac{\Delta p}{p}$

