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1952: Courant, Livingston, Snyder:  
                      Theory of strong focusing in particle beams  

Recapitulation:   ...the story with the matrices !!! 
Solution of Trajectory Equations 
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Equation of Motion: 

           …  hor. plane: 

            … vert. Plane: 
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general solution of 
Hill equation 

 from (1) we get 

Insert into (2) and solve for ε 

* ε is a constant of the motion  … it is independent of „s“ 
* parametric representation of an ellipse in the x x‘ space 
* shape and orientation of ellipse are given by α, β, γ 

Recapitulation:   ...and for the complete particle ensemble   
                                the betas and epsilons !!! 

Beam Emittance and Phase Space Ellipse 
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Liouville: in reasonable storage rings  
area in phase space is constant. 

               A = π*ε=const  

ε  beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter,  
                                 cannot be changed by the foc. properties.  

Scientifiquely speaking: area covered in transverse x, x´ phase space … and it is constant !!!  
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using matrix notation in Twiss form: 

Transformation of particle coordinates:  

Transformation of Twiss parameters:  

using matrix notation in magnet parameters: 

p = momentum of the particle, 
ρ = curvature radius 

Bρ= beam rigidity Example: heavy ion storage ring TSR 
8 dipole magnets of equal bending strength  

High energy accelerators  circular machines 
                                              somewhere in the lattice we need a number of dipole magnets,                
                                              that are bending the design orbit to a closed ring  
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The angle run out in one revolution  
must be 2π, so 

field map of a storage ring dipole magnet 

ρ 

α 

ds 

 … for a full circle 

Nota bene:  is usually required !! 

… defines the integrated  
     dipole field around  
     the machine. 

7000 GeV  Proton storage ring 
     dipole magnets  N = 1232 
                                 l = 15 m 
                                q = +1 e 

Example LHC: 
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● 
ρ 

Solution for a focusing magnet 

y 
hor. plane 

vert. plane 

dipole magnet 

quadrupole magnet 

Example: LHC Ring:         
     Bending radius:          ρ = 2.8 km 
     Quadrupol Gradient: g = 220 T/m 

      k     =  9.4*10-3 /m2 
      1/ρ2  = 1.3 *10-7 /m2 

For estimates in large accelerators the weak focusing term 1/ρ2 can  
in general be neglected  

The Twiss parameters α, β, γ can be transformed through the lattice via the  
matrix elements defined above. 

Question: „ What does that mean ???? “ 
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Most simple example:   drift space 

particle coordinates 

transformation of twiss parameters: 

Stability ...? 
 A periodic solution doesn‘t  
    exist in a lattice built exclusively  
    out of drift spaces. 

      Arc: regular (periodic) magnet structure:  
   bending magnets  define the energy of the ring 
   main focusing & tune control, chromaticity correction, 
   multipoles for higher order corrections 

      Straight sections:  drift spaces for injection, dispersion suppressors,   
   low beta insertions, RF cavities, etc.... 
  ... and the high energy experiments if they cannot be avoided  



7 

A magnet structure consisting of focusing and defocusing quadrupole lenses in  
alternating order with nothing in between. 
(Nothing = elements that can be neglected on first sight: drift, bending magnets,  
 RF structures ... and especially experiments...) 

Starting point for the calculation: in the middle of a focusing quadrupole 
Phase advance per cell µ = 45°,  
 calculate the twiss parameters for a periodic solution  

Output of the optics program: 

Nr Type Length Strength βx αx φx βz αz φz 
m 1/m2 m 1/2π m 1/2π 

0 IP 0,000 0,000 11,611 0,000 0,000 5,295 0,000 0,000 
1 QFH 0,250 -0,541 11,228 1,514 0,004 5,488 -0,781 0,007 
2 QD 3,251 0,541 5,488 -0,781 0,070 11,228 1,514 0,066 
3 QFH 6,002 -0,541 11,611 0,000 0,125 5,295 0,000 0,125 
4 IP 6,002 0,000 11,611 0,000 0,125 5,295 0,000 0,125 

QX= 0,125 QZ= 0,125 

Periodic Solution of a FoDo Cell 

0.125 * 2π = 450     
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Can we understand, what the optics code is doing? 

strength and length of the FoDo elements          K  = +/- 0.54102 m-2 

     lq = 0.5 m 
     ld = 2.5 m 

Putting the numbers in and multiplying out ... 

The matrix for the complete cell is obtained by multiplication of the element matrices 

matrices 

The transfer matrix for one period gives us all the information that we need ! 

1.) is the motion stable? <  2 

2.) Phase advance per cell 

3.) hor β-function  4.) hor α-function 
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Can we do it a little bit easier ?     
                                        We can:  …  the „thin lens approximation“  

Matrix of a focusing quadrupole magnet: 

If the focal length f is much larger than the length of the quadrupole magnet, 

the transfer matrix can be aproximated using 

lD

Calculate the matrix for a half cell, starting in the middle of a foc. quadrupole: 

for the second half cell set f  -f 

L 
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Matrix for the complete FoDo cell: 

Now we know, that the phase advance is related to the transfer matrix by 

After some beer and with a little bit of trigonometric gymnastics  

we can calculate the phase advance as a function of the FoDo parameter … 

Example:  
            45-degree Cell 

LCell    =    lQF + lD + lQD +lD      =   0.5m+2.5m+0.5m+2.5m = 6m 

1/f   =   k*lQ   =   0.5m*0.541 m-2 = 0.27 m-1 

Remember: 
Exact calculation yields: 
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general solution of Hills equation: 

* ε is a constant of the motion  … it is independent of „s“ 
* parametric representation of an ellipse in the x x‘ space 
* shape and orientation of ellipse are given by α, β, γ 

equation of motion: 

beam size: 
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Beam Emittance corresponds to the area covered in the  
x, x´ Phase Space Ellipse 

Liouville: Area in phase space is constant. 

But so sorry ...  ε ≠ const ! 

●

Classical Mechanics:  

 phase space = diagram of the two canonical variables  
                  position    &  momentum                                           
                      x                         px 

According to Hamiltonian mechanics:     
phase space diagram relates the variables q and p 

Liouvilles Theorem: 

for convenience (i.e. because we are lazy bones) we use in accelerator theory: 

where βx= vx / c 

the beam emittance  
shrinks during  
acceleration   ε ~ 1 / γ 

q = position = x 
p = momentum = γmv = mcγβx 

ε 



13 

1.)  A proton machine … or an electron linac … needs the highest aperture at injection energy !!! 
      as soon as we start to accelerate the beam size shrinks as γ -1/2 in both planes. 

2.) At lowest energy the machine will have the major aperture problems,  
       here we have to minimise  

3.) we need different beam optics adopted to the energy:  
     A Mini Beta concept will only be adequate at flat top.  

LHC injection  
optics at 450 GeV 

LHC mini beta  
optics at 7000 GeV 

Example: HERA proton ring 

injection energy: 40 GeV        γ = 43 
flat top  energy: 920 GeV        γ = 980 

emittance ε (40GeV)   = 1.2 * 10 -7 

                 ε (920GeV) = 5.1 * 10 -9 

7 σ beam envelope at E = 40 GeV  

… and at E = 920 GeV  
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„nearly ideal“ accelerator: Cockroft Walton or van de Graaf  

MP Tandem van de Graaf Accelerator  
at MPI for Nucl. Phys. Heidelberg 

Vivitron, Straßbourg, inner  
structure of the acc. section 

Linear Accelerator 1928, Wideroe schematic Layout: 

+  +  +  + -̶  -̶ -̶ 

* RF Acceleration: multiple application of  
  the same acceleration voltage; 
  brillant idea to gain higher energies 

Energy Gain per „Gap“: 

500 MHz cavities in an electron storage ring 

drift tube structure at a proton linac 
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Problem: panta rhei !!! 
(Heraklit: 540-480 v. Chr.) 

Bunch length of Electrons ≈ 1cm Example:  HERA RF: 

U0 

t

typical momentum spread of an electron bunch:  

Question: do you remember last session, page 12 ? … sure you do 

y
ρ 

s 
● x 

remember: x ≈ mm , ρ ≈ m …   develop for small x 

consider only linear fields,  and change independent variable: t → s  

● 

p=p0+Δp 

Force acting on the particle 

… but now take a small momentum error into account !!! 
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develop for small momentum error 

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion. 
 inhomogeneous differential equation. 

general solution: 

Normalise with respect to Δp/p: 

Dispersion function D(s)  

        * is that special orbit, an ideal particle would have  for Δp/p = 1  

        * the orbit of any particle is the sum of the well known xβ  and the dispersion 

        * as D(s) is just another orbit it will be subject to the focusing properties of the lattice  
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. ρ 

xβ 

Closed orbit for Δp/p > 0 

Matrix formalism: 

Dispersion 
 Example: homogeneous dipole field 

xβ 

beam emittance  

beta function in a drift 

… and for α = 0  

particle trajectory for Δp/p ≠ 0 
inhomogenious equation 

… and its solution 


