

Linear imperfections and correction Yannis PAPAPHILIPPOU CERN

Joint University Accelerator School Archamps, FRANCE 24-25 January 2012

■ O. Bruning, Linear imperfections, CERN Accelerator School, Intermediate Level, Zeuthen 2003, http://cdsweb.cern.ch/record/941313/files/p129.pdf

References

- H. Wiedemann, Particle Accelerator Physics I, Springer, 1999.
- K. Wille, The physics of Particle Accelerators, Oxford University Press, 2000.
- S.Y. Lee, Accelerator Physics, 2nd edition, World Scientific, 2004.

■ Introduction: definitions and reminder

■ Steering error and closed orbit distortion

Example 1 Focusing error and beta beating correction

■ Linear coupling and correction

■ Chromaticity

Lorentz equation

 $\frac{d\mathbf{p}}{dt} = \mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$

- E : Total Energy
- T : Kinetic energy $E = \sqrt{p^2 + m_0^2 c^4} = T + m_0 c^2 = T + E_0$
- : Momentum

** note that *p* is used instead of *cp*

- β : reduced velocity
 γ : reduced energy
 $\beta \gamma$: reduced moment
	- γ : reduced energy
	- $\beta\gamma$: reduced momentum

 $\beta = \frac{v}{c} \quad \gamma = \frac{E}{m_0 c^2}$
 $\beta \gamma = \frac{p}{m_0 c^2}$

! Cartesian coordinates not useful to describe motion in a circular accelerator (not true for linacs)

Reference trajectory

! A system following an ideal path along the accelerator is used (**Frenet** reference system) $(\mathbf{u}_{\mathbf{x}}, \mathbf{u}_{\mathbf{y}}, \mathbf{u}_{\mathbf{z}}) \rightarrow (\mathbf{u}_{\mathbf{x}}, \mathbf{u}_{\mathbf{y}}, \mathbf{u}_{\mathbf{s}})$

Beam guidance

Consider uniform magnetic field $\mathbf{B} = \{0, B_u, 0\}$ in a direction perpendicular to particle motion. From the reference trajectory equation, after developing the cross product and considering that the transverse velocities v_x , $v_y \ll v_s$, the radius of curvature is

$$
\frac{1}{\rho} = |k| = \left|\frac{q}{p}B\right| = \left|\frac{q}{\beta E}\right|B
$$

- **No** We define the **magnetic rigidity** $|B\rho| = \frac{p}{\alpha}$
	- $\beta E[GeV] = 0.2998|B\rho| [Tm]$ In more practical units
- For ions with charge multiplicity *n* and atomic number *A*, the energy per nucleon is

$$
\beta\bar{E}[GeV/u]=0.2998\frac{n}{A}|B\rho|[Tm
$$

- ! Consider ring for particles with energy *E* with *N* dipoles of length *L* (or effective length *l*, i.e. measured on beam path)
- **Bending angle** $\theta = \frac{2\pi}{N}$
	- ! **Bending radius**
- ! **Integrated dipole strength**
- $Bl = \frac{2\pi}{N} \frac{\beta E}{q}$ Note:
	- By choosing a dipole field, the dipole length is imposed and vice versa
	- The higher the field, shorter or smaller number of dipoles can be used
	- \blacksquare Ring circumference (cost) is influenced by the field choice

Beam focusing

design orbit

- Consider a particle in the design orbit.
- In the **horizontal plane**, it performs harmonic oscillations $(t + \phi)$ with frequency
- **The horizontal acceleration is described by**
	- ! There is a **week focusing** effect in the horizontal plane.

B

! In the **vertical plane**, the only force present is gravitation. Particles are displaced vertically following the usual law $\Delta y = \frac{1}{2} a_g \Delta t^2$

Setting $a_q = 10$ m/s², the particle is displaced by **18mm** (LHC dipole aperture) in **60ms** (a few hundreds of turns in LHC)

x

y

s

ρ

Quadrupoles

! Quadrupoles are focusing in one plane and defocusing in the other

• The field is
$$
(B_x, B_y) = G(y, x)
$$

The resulting force $(F_x, F_y) = k(y, -x)$. with the normalised gradient defined as

$$
k=\frac{qG}{\beta E}
$$

In more practical units,

$$
k[m^{-2}] = 0.2998 \frac{G[T/m]}{\beta E[GeV]}
$$

Need to alternate focusing and defocusing in order to control the beam, i.e. **alternating gradient focusing**

Equations of motion – Linear fields

! Consider *s*-dependent fields from dipoles and normal quadrupoles

$$
B_y = B_0(s) - G(s)x \ , \ \ B_x = -G(s)y
$$

- **The total momentum can be written**
- **U** With magnetic rigidity $B_0 \rho = \frac{\rho_0}{\rho_0}$ and normalized gradient the equations of motion are

■ Inhomogeneous equations with *s*-dependent coefficients **I** The term $\frac{1}{\rho^2}$ corresponds to the dipole week focusing and \overline{a} $\frac{\Delta p}{\Delta t}$ respresents off-momentum particles

Hill's equations

- Solutions are combination of the homogeneous and inhomogeneous equations' solutions
- ! Consider particles with the design momentum. The equations of motion become

$$
x'' + K_x(s) x = 0
$$

$$
y'' + K_y(s) y = 0
$$

George Hill

$$
\text{with } K_x(s) = -\left(k(s) - \frac{1}{\rho(s)^2}\right) , \ \ K_y(s) = k(s)
$$

- ! **Hill**'**s equations of linear transverse particle motion**
- ! Linear equations with *s*-dependent coefficients (harmonic oscillator with time dependent frequency)
- In a ring (or in transport line with symmetries), coefficients are periodic $K_x(s) = K_x(s+C)$, $K_y(s) = K_y(s+C)$
- Not straightforward to derive analytical solutions for whole accelerator

The on-momentum linear betatron motion of a particle in both planes, is described by

$$
u(s) = \sqrt{\epsilon \beta(s)} \cos(\psi(s) + \psi_0) u \mapsto \{x, y\}
$$

$$
\alpha, \beta, \gamma \text{ the twists functions } \alpha(s) = -\frac{\beta(s)'}{2}, \gamma = \frac{1 + \alpha(s)^2}{\beta(s)}
$$

$$
\psi
$$
 the **betatron phase** $\psi(s) = \int \frac{ds}{\beta(s)}$

and the **beta function** β is defined by the **envelope equation** $2\beta\beta'' - \beta'^2 + 4\beta^2 K = 4$

! By differentiation, we have that the **angle** is

$$
u'(s) = -\sqrt{\frac{\epsilon}{\beta(s)}} \left(\sin(\psi(s) + \psi_0) + \alpha(s) \cos(\psi(s) + \psi_0) \right)
$$

with

Example 13 From the position and angle equations,

$$
\cos(\psi(s) + \psi_0) = \frac{u}{\sqrt{\epsilon \beta(s)}} , \quad \sin(\psi(s) + \psi_0) = \sqrt{\frac{\beta(s)}{\epsilon}} u' + \frac{\alpha(s)}{\sqrt{\epsilon \beta(s)}} u
$$

Expand the trigonometric formulas and set $\psi(0) = 0$ to get the transfer matrix from location 0 to s

$$
\begin{pmatrix} u(s) \\ u'(s) \end{pmatrix} = \mathcal{M}_{0 \to s} \begin{pmatrix} u_0 \\ u'_0 \end{pmatrix}
$$

with

$$
A_{0\to s} = \begin{pmatrix} \sqrt{\frac{\beta(s)}{\beta_0}} (\cos \Delta \psi + \alpha_0 \sin \Delta \psi) & \sqrt{\beta(s)\beta_0} \sin \Delta \psi \\ \frac{(a_0 - a(s)) \cos \Delta \psi - (1 + \alpha_0 \alpha(s)) \sin \Delta \psi}{\sqrt{\beta(s)\beta_0}} & \sqrt{\frac{\beta_0}{\beta(s)}} (\cos \Delta \psi - \alpha_0 \sin \Delta \psi) \end{pmatrix}
$$

and
$$
\mu(s) = \Delta \psi = \int_0^s \frac{ds}{\beta(s)}
$$
 the phase advance

13

 ${\cal N}$

! Consider a periodic cell of length *C* The optics functions are $\beta_0 = \beta(C) = \beta$, $\alpha_0 = \alpha(C) = \alpha$

and the phase advance
$$
\mu = \int_0^C \frac{ds}{\beta(s)}
$$

- The transfer matrix is $\mathcal{M}_C = \begin{pmatrix} \cos \mu + \alpha \sin \mu & \beta \sin \mu \\ -\gamma \sin \mu & \cos \mu - \alpha \sin \mu \end{pmatrix}$
- ! The cell matrix can be also written as

$$
\mathcal{M}_C = \mathcal{I}\cos\mu + \mathcal{J}\sin\mu
$$

with $\mathcal{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and the **Twiss matrix**

Tune and working point

■ In a ring, the **tune** is defined from the 1-turn phase advance $Q_{x,y} = \frac{1}{2\pi} \oint \frac{ds}{\beta_{x,y}(s)} = \frac{\nu_{x,y}}{2\pi}$

i.e. number betatron oscillations per turn

■ Taking the average of the betatron tune around the ring we have in **smooth approximation**

$$
\nu = 2\pi Q = \frac{C}{\langle \beta \rangle} \to Q = \frac{R}{\langle \beta \rangle}
$$

- \blacksquare Extremely useful formula for deriving scaling laws
	- The position of the tunes in a diagram of horizontal versus vertical tune is called a **working point**
- \blacksquare The tunes are imposed by the choice of the quadrupole strengths
- One should try to avoid **resonance conditions**

Effect of dipole on off-momentum particles

p0+Δp

p0

ρ

ρ+Δρ

- \blacksquare Up to now all particles had the same momentum p_0
- What happens for off-momentum particles, i.e. particles with momentum $p_0 + \Delta p$?
- ! Consider a dipole with field *B* and bending radius ρ
- Recall that the magnetic rigidity is $B\rho = \frac{p_0}{r}$ and for off-momentum particles
 $B(\rho + \Delta \rho) = \frac{p_0 + \Delta p}{\rho} \Rightarrow \frac{\Delta \rho}{\rho} = \frac{\Delta p}{n_e}$ *θ*
	- ! Considering the effective length of the dipole unchanged

$$
\theta \rho = l = \text{const.} \Rightarrow \rho \Delta \theta + \theta \Delta \rho = 0 \Rightarrow \frac{\Delta \theta}{\theta} = -\frac{\Delta \rho}{\rho} = -\frac{\Delta p}{p_0}
$$

! Off-momentum particles get different deflection (different orbit)

$$
\Delta \theta = -\theta \frac{\Delta p}{p_0}
$$

Dispersion equation

! Consider the equations of motion for off-momentum particles

$$
x'' + K_x(s)x = \frac{1}{\rho(s)}\frac{\Delta p}{p}
$$

- ! The solution is a sum of the **homogeneous** (on-momentum) and the **inhomogeneous** (off-momentum) equation solutions $x(s) = x_H(s) + x_I(s)$
	- In that way, the equations of motion are split in two parts $x''_H + K_x(s)x_H = 0$ The **dispersion function** can be defined as $D(s) = \frac{x_I(s)}{\sum_{n=1}^{\infty} a_n}$
	- The dispersion equation is

$$
D''(s)+K_x(s)\,\,D(s)=\frac{1}{\rho(s)}
$$

Closed orbit

- Design orbit defined by main dipole field
- ! On-momentum particles oscillate around design orbit
- ! Off-momentum particles are not oscillating around design orbit, but around "chromatic" closed orbit
- Distance from the design orbit depends linearly to momentum spread and dispersion

Beam orbit stability

- Beam orbit stability very critical
	- Injection and extraction efficiency of synchrotrons
	- Stability of collision point in colliders
	- Stability of the synchrotron light spot in the beam lines of light sources
- ! Consequences of orbit distortion
	- Miss-steering of beams, modification of the dispersion function, resonance excitation, aperture limitations, lifetime reduction, coupling of beam motion, modulation of lattice functions, poor injection and extraction efficiency

Causes

- Long term (Years months)
	- Ground settling, season changes
- Medium (Days –Hours)
	- Sun and moon, day-night variations (thermal), rivers, rain, wind, refills and start-up, sensor motion, drift of electronics, local machinery, filling patterns
- Short (Minutes Seconds)
	- ! Ground vibrations, power supplies, injectors, experimental magnets, air conditioning, refrigerators/compressors, water cooling

Closed orbit distortion

- Magnetic imperfections distorting the orbit
	- **□** Dipole field errors (or energy errors)
	- □ Dipole rolls
	- \Box Quadrupole misalignments
		- **Example 1** Consider the displacement of a particle δx from the ideal orbit. The vertical field in the quadrupole is

$$
B_y = G\bar{x} = G(x + \delta x) = \underbrace{Gx}_{\text{quadrupole dipole}}
$$
\n**Remark:** Dispression creates a closed orbit distortion for off-momentum particles with $\delta x = D(s)\frac{\delta p}{p}$

\n**Effect of orbit errors in any multi-pole magnet**

$$
B_y = b_n \bar{x}^n = b_n (x + \delta x)^n = b_n (x^n + n\delta x x^{n-1} + \frac{n(n-1)}{2} (\delta x)^2 x^{n-2} + \dots + (\delta x)^n)
$$

\n**Fred-down**
\n2(n+1)-pole
\n2n-pole
\n2(n-1)-pole
\n*2*(n-1)-pole
\n*2*(n-1)-pole

Effect of single dipole kick

- Consider a single dipole kick $\theta = \delta u'_0 = \delta u'(s_0) = \frac{\delta(Bl)}{B\rho}$ at $s=s_0$
- The coordinates before and after the kick are

$$
\begin{pmatrix} u_0 \\ u'_0 - \theta \end{pmatrix} = \mathcal{M} \begin{pmatrix} u_0 \\ u'_0 \end{pmatrix}
$$

with the 1-turn transfer matrix

$$
\mathcal{M} = \begin{pmatrix}\n\cos 2\pi Q + \alpha_0 \sin 2\pi Q & \beta_0 \sin 2\pi Q \\
-\gamma_0 \sin 2\pi Q & \cos 2\pi Q - \alpha_0 \sin 2\pi Q\n\end{pmatrix}
$$
\nThe final coordinates are

\n
$$
u_0 = \theta \frac{\beta_0}{2 \tan \pi Q} \quad \text{and} \quad u'_0 = \frac{\theta}{2} \left(1 - \frac{\alpha_0}{\tan \pi Q}\right)
$$

For any location around the ring it can be shown that

$$
u(s) = \theta \frac{\sqrt{\beta(s)\beta_0}}{2\sin(\pi Q)} \cos(\pi Q - |\psi(s) - \psi_0|)
$$

Maximum distortion amplitude

$$
\boxed{\text{CERN}}
$$

- Consider a transport matrix between positions 1 and 2 $\mathcal{M}_{1\rightarrow2}=\begin{pmatrix} m_{11} & m_{12}\ m_{21} & m_{22} \end{pmatrix}.$
- The transport of transverse coordinates is written as

$$
u_2 = m_{11}u_1 + m_{12}u'_1
$$

$$
u'_2 = m_{21}u_1 + m_{22}u'_1
$$

- Consider a single dipole kick at position 1 $\theta_1 = \frac{\partial (B_l)}{B_o}$
- Then, the first equation may be rewritten $u_2 + \delta u_2 = m_{11}u_1 + m_{12}(u'_1 + \theta_1) \rightarrow \delta u_2 = m_{12}\theta_1$
- Replacing the coefficient from the general betatron matrix

$$
\delta u_2 = \sqrt{\frac{\beta_1 \beta_2 \sin(\psi_{12})\theta_1}{\beta_2} [\cos(\psi_{12})\theta_1 - \alpha_2 \sin(\psi_{12})]}
$$

Integer and half integer resonance

- Dipole perturbations add-up in consecutive turns for $Q = n$
- Integer tune excites orbit oscillations (resonance)
- Dipole kicks get cancelled in $Q = n$ consecutive turns for $Q = n/2$
	- Half-integer tune cancels orbit oscillations

Global orbit distortion

! Orbit distortion due to many errors

Courant and Snyder, 1957

$$
u(s) = \frac{\sqrt{\beta(s)}}{2\sin(\pi Q)} \int_s^{s+C} \theta(\tau) \sqrt{\beta(\tau)} \cos(\pi Q - |\psi(s) - \psi(\tau)|) d\tau
$$

! By approximating the errors as delta functions in *n* locations, the distortion at *i* observation points (Beam Position Monitors) is

$$
u_i = \frac{\sqrt{\beta_i}}{2\sin(\pi Q)} \sum_{j=i+1}^{i+n} \theta_j \sqrt{\beta_j} \cos(\pi Q - |\psi_i - \psi_j|)
$$

with the kick produced by the *j*th error

- Integrated dipole field error
- **Dipole roll**
- Quadrupole displacement

$$
\theta_j = \frac{\delta(B_j l_j)}{B \rho}
$$

$$
\theta_j = \frac{B_j l_j \sin \phi_j}{B \rho}
$$

$$
\theta_j = \frac{G_j l_j \delta u_j}{B \rho}
$$

Example: Orbit distortion for the SNS ring

! In the SNS accumulator ring, the beta function is **6m** in the dipoles and **30m** in the quadrupoles.

- ! Consider dipole error of **1mrad**
- ! The tune is **6.2**
- The maximum orbit distortion in the dipoles is $u_0 = \frac{\sqrt{6 \cdot 6}}{2 \sin(6.2\pi)} \cdot 10^{-3} \approx 5 \text{mm}$
- ! For quadrupole displacement with **0.5mm** error, the maximum orbit distortion is $u_0 \approx 2.5$ cm, that is 25% of the available aperture is lost!!!

- In the ESRF storage ring, the beta function is **1.5m** in the dipoles and **30m** in the quadrupoles.
- Consider dipole error of **1mrad**
	- ! The horizontal tune is **36.44**
	- ! Maximum orbit distortion in dipoles

$$
u_0 = \frac{\sqrt{1.5 \cdot 1.5}}{2 \sin(36.44\pi)} \cdot 10^{-3} \approx 1 \text{mm}
$$

- For quadrupole displacement with **1mm**, the distortion is $u_0 \approx 8 \text{mm}$!!!
- Magnet alignment is critical

 δ Statistical estimation of orbit errors

Consider random distribution of errors in N magnets The expectation (rms) value is given by

$$
u_{\rm rms}(s) = \frac{\sqrt{\beta(s)}}{2\sqrt{2}\sin(\pi Q)} \sum_{i} \sqrt{\beta_i} \theta_i = \frac{\sqrt{\beta(s)\beta_{\rm rms}}\sqrt{N}}{2\sqrt{2}\sin(\pi Q)} \theta_{\rm rms}
$$

Example:

■ In the SNS ring, there are 32 dipoles and 54 quadrupoles The rms value of the orbit distortion in the dipoles

$$
u_{\rm rms}^{\rm dip} = \frac{\sqrt{6 \cdot 6} \sqrt{32}}{2\sqrt{2} \sin(6.2\pi)} \cdot 10^{-3} \approx 2 \text{cm}
$$

 \Box In the quadrupoles

$$
u_{\rm rms}^{\rm quad} = \frac{\sqrt{30 \cdot 30} \sqrt{54}}{2\sqrt{2} \sin(6.2\pi)} \cdot 10^{-3} \approx 13 \text{cm}
$$

ERN:

Correcting the orbit distortion

- **Place horizontal and vertical dipole correctors close to focusing** and defocusing quads, respectively
- ! Simulate (random distribution of errors) or measure orbit in BPMs (downstream of the correctors)
- ! Minimize orbit distortion with several methods
	- \Box Globally
		- **EXTERCH** External Harmonic, which minimizes components of the orbit frequency response after a Fourier analysis
		- ! Most efficient corrector (MICADO), finding the most efficient corrector for minimizing the rms orbit
		- **EXECUTE:** Least square minimization using the orbit response matrix of the correctors
	- □ Locally
		- Sliding Bumps
		- **Example 3 In Singular Value Decomposition (SVD)**

Linear imperfections and correction, JUAS, January 2012

72 monitors / 72 correctors

=> Minimization of the RMS orbit (=0 in case of "Matrix Inversion" using all Eigenvalues)

Orbit feedback

■ Closed orbit stabilization performed using slow and fast orbit feedback system.

- **Slow feedback operates every few seconds (** \sim **30s for ESRF storage** ring) and uses complete set of BPMs (~200 at ESRF) for both planes **Efficient in correcting distortion due to current decay in magnets or** other slow processes
- Fast orbit correction system operates in a wide frequency range (0.1Hz to 150Hz for the ESRF) correcting distortions induced by quadrupole and girder vibrations.
- Local feedback systems used to damp oscillations in areas where beam stabilization is critical (interaction points, insertion devices)

Feedback performance

Summary of integrated rms beam motion (1-100 Hz) with FOFB and comparison with 10% beam stability target

 $*$ up to 500 Hz

** up to 200 Hz

!**Trends on Orbit Feedback**

- restriction of tolerances w.r.t. to beam size and divergence
- higher frequencies ranges
- integration of XBPMs
- feedback on beamlines components

R. Bartolini, LER2010

Gradient error and optics distortion CERN

- **...** Optics functions perturbation can induce aperture restrictions
- **The perturbation can lead to dynamic aperture loss**
- **Broken super-periodicity -> excitation of all resonances**
- **Causes**
	- \Box Errors in quadrupole strengths (random and systematic)
	- \Box Injection elements
	- \Box Higher-order multi-pole magnets and errors
- **Observables**
	- \Box Tune-shift
	- \Box Beta-beating
	- \Box Excitation of integer and half integer resonances

! Consider the transfer matrix for 1-turn

Gradient error

- $\mathcal{M}_0 = \begin{pmatrix} \cos(2\pi Q) + \alpha_0 \sin(2\pi Q) & \beta_0 \sin(2\pi Q) \ -\gamma_0 \sin(2\pi Q) & \cos(2\pi Q) \alpha_0 \sin(2\pi Q) \end{pmatrix}$
	- ! Consider a gradient error in a quad. In thin element approximation the quad matrix with and without error are

$$
m_0 = \begin{pmatrix} 1 & 0 \\ -K_0(s)ds & 1 \end{pmatrix} \text{ and } m = \begin{pmatrix} 1 & 0 \\ -(K_0(s) + \delta K)ds & 1 \end{pmatrix}
$$

\n• The new 1-turn matrix is $\mathcal{M} = mm_0^{-1}\mathcal{M}_0 = \begin{pmatrix} 1 & 0 \\ -\delta K ds & 1 \end{pmatrix}\mathcal{M}_0$
\nwhich yields

Gradient error and tune-shift

Consider a new matrix after 1 turn with a new tune $\chi = 2\pi (Q + \delta Q)$

$$
\mathcal{M}^{\star} = \begin{pmatrix} \cos(\chi) + \alpha_0 \sin(\chi) & \beta_0 \sin(\chi) \\ -\gamma_0 \sin(\chi) & \cos(\chi) - \alpha_0 \sin(\chi) \end{pmatrix}
$$

! The traces of the two matrices describing the 1-turn should be $\text{Tra}(\mathcal{M}^*) = \text{Tra}(\mathcal{M})$ equal which gives $2\cos(2\pi Q) - \delta K ds \beta_0 \sin(2\pi Q) = 2\cos(2\pi (Q + \delta Q))$ Developing the left hand side
 $\cos(2\pi(Q + \delta Q)) = \cos(2\pi Q) \cos(2\pi \delta Q) - \sin(2\pi Q) \sin(2\pi \delta Q)$

1 and finally $4\pi \delta Q = \delta K d s \beta_0$ ■ For a quadrupole of finite length, we have $\delta Q = \frac{1}{4\pi} \int_{s_0}^{s_0+i} \delta K \beta_0 ds$

Gradient error and beta distortion

! Consider the unperturbed transfer matrix for one turn

$$
\mathcal{M}_0 = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = B \cdot A \text{ with } A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \text{ and } \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}
$$

! Introduce a gradient perturbation between the two matrices

$$
\mathcal{M}_0^{\star} = \begin{pmatrix} m_{11}^{\star} & m_{12}^{\star} \\ m_{21}^{\star} & m_{22}^{\star} \end{pmatrix} = B \begin{pmatrix} 1 & 0 \\ -\delta K ds & 1 \end{pmatrix} A
$$

Recall that $m_{12} = \beta_0 \sin(2\pi Q)$ and write the perturbed term as $m_{12}^{\star} = (\beta_0 + \delta \beta) \sin(2\pi (Q + \delta Q)) = m_{12} + \delta \beta \sin(2\pi Q) + 2\pi \delta Q \beta_0 \cos(2\pi Q)$ **.** On the other hand $m_{12}^* = b_{11}a_{12} + b_{12}a_{22} - a_{12}b_{12}\delta K ds = m_{12} - a_{12}b_{12}\delta K ds$ and $\sum_{n=1}^{\infty} a_{12} = \sqrt{\beta_0 \beta(s_1)} \sin \psi, b_{12} = \sqrt{\beta_0 \beta(s_1)} \sin (2\pi Q - \psi)$ ■ Equating the two terms and integrating through the quad $\frac{\delta \beta}{\beta_0} = -\frac{1}{2\sin(2\pi Q)} \int_{s_1}^{s_1+t} \beta(s) \delta K(s) \cos(2\psi - 2\pi Q) ds$ 37

Example: Gradient error in the SNS storage ring

- ! Consider **18** focusing quads in the SNS ring with **0.01T/m** gradient error. In this location *β*=**12m**. The length of the quads is **0.5m** The tune-shift is $\delta Q = \frac{1}{4\pi} 18 \cdot 12 \frac{0.01}{5.6567} 0.5 = 0.015$ For a random distribution of errors the beta beating is $\frac{\delta \beta}{\beta_{0}} = -\frac{1}{2\sqrt{2}|\sin(2\pi Q)|} (\sum_{i} \delta k_i^2 \beta_i^2)^{1/2}$ Optics functions beating $> 20\%$ by putting random errors (1% of
	- the gradient) in high dispersion quads of the SNS ring
	- ! Justifies the choice of corrector strength (trim windings)

 $\frac{3}{m}$

Example: Gradient error in the ESRF storage ring

! Consider **128** focusing arc quads in the ESRF storage ring with **0.001T/m** gradient error. In this location β=**30m**. The length of the quads is around **1m**

The tune-shift is

 $\delta Q = \frac{1}{4\pi} 128 \cdot 30 \frac{0.001}{20} 1 = 0.014$

Gradient error correction

- Windings on the core of the quadrupoles or individual correction magnets (trim windings or quadrupoles)
- Simulation by introducing random distribution of quadrupole errors
- ! Compute tune-shift and optics function beta distortion
- ! Move working point close to integer and half integer resonance
- ! Minimize beta wave or quadrupole resonance width with TRIM windings
- \blacksquare To correct certain resonance harmonics N, strings should be powered accordingly
- ! Individual powering of TRIM windings can provide flexibility and beam based alignment of BPM
- ! Modern methods of response matrix analysis (LOCO) can fit optics model to real machine and correct optics distortion

Linear Optics from Closed Orbit

R. Bartolini, LER2010

Modified version of LOCO with constraints on gradient variations **(see ICFA Newsl, Dec**'**07)**

$β$ - beating reduced to 0.4% rms

Quadrupole variation reduced to 2% Results compatible with mag. meas. and calibrations

Quad number

J. Safranek et al.

LOCO allowed remarkable progress with the correct implementation of the linear optics

\blacksquare Combine the matrices for each plane

$$
\begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} = \begin{pmatrix} C_x(s) & S_x(s) \\ C'_x(s) & S'_x(s) \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}
$$

$$
\begin{pmatrix} y(s) \\ y'(s) \end{pmatrix} = \begin{pmatrix} C_y(s) & S_y(s) \\ C'_y(s) & S'_y(s) \end{pmatrix} \begin{pmatrix} y_0 \\ y'_0 \end{pmatrix}
$$

to get a total 4x4 matrix

Linear coupling

- ! Betatron motion is coupled in the presence of skew quadrupoles
- The field is $(B_x, B_y) = k_s(x, y)$ and Hill's equations are coupled
- ! Motion still linear with two new eigen-mode tunes, which are always split. In the case of a thin quad:

$$
\delta Q \propto |k_s| \sqrt{\beta_x \beta_y}
$$

Coupling coefficients

$$
C_{\pm}| = \left| \frac{1}{2\pi} \oint ds k_s(s) \sqrt{\beta_x(s)} \beta_y(s) e^{i(\psi_x \pm \psi_y - (Q_x \pm Q_y - q_{\pm})2\pi s/C)} \right|
$$

- As motion is coupled, vertical dispersion and optics function distortion appears
- Causes:
	- \Box Random rolls in quadrupoles
	- \Box Skew quadrupole errors
	- \Box Off-sets in sextupoles

- Introduce skew quadrupole correctors
- **Example 13 India** Simulation by introducing random distribution of quadrupole errors
- **Correct globally/locally coupling coefficient (or** resonance driving term)
- **Correct optics distortion (especially vertical** dispersion)
- Move working point close to coupling resonances and repeat
- Correction especially critical for flat beams

Example: Coupling correction for the SNS ring

- Local decoupling by super period using 16 skew quadrupole correctors
- Results of $Q_x=6.23 Q_y=6.20$ after a **2mrad** quad roll
- Additional 8 correctors used to compensate vertical dispersion

Example: Coupling correction for the ESRF ring

- Local decoupling using 16 skew quadrupole correctors and coupled response matrix reconstruction
- Achieved correction of below 0.25% reaching vertical emittance of below 5pm $k_c < 0.25\%$

ECONOMICITY

- Linear equations of motion depend on the energy (term proportional to dispersion)
- Chromaticity is defined as: $\xi_{x,y} = \frac{\delta Q_{x,y}}{\delta n/n}$
- Recall that the gradient is $k = \frac{G}{B_0} = \frac{eG}{n} \rightarrow \frac{\delta k}{k} = \pm \frac{\delta p}{n}$
- \blacksquare This leads to dependence of tunes and optics function on energy
- For a linear lattice the tune shift is:
 $\delta Q_{x,y} = \frac{1}{4\pi} \oint \beta_{x,y} \delta k(s) ds = -\frac{1}{4\pi} \frac{\delta p}{n} \oint \beta_{x,y} k(s) ds$
- ! So the **natural** chromaticity is:

Linear imperfections and correction, JUAS, January 2012

-inear imperfections and correction, JUAS, January 2012

Sometimes the chromaticity is quoted as $\overline{\xi_{x,y}} = \frac{\xi_{x,y}}{Q_{x,y}}$

Example: Chromaticity in the SNS ring

- \blacksquare In the SNS ring, the natural chromaticity is -7. **Consider that momentum spread** $\frac{\delta P}{D} = \pm 1\%$
- The tune-shift for off-momentum particles is

$$
\delta Q_{x,y} = \xi_{x,y} \frac{\delta P}{P} = \pm 0.07
$$

Sextupoles

In order to correct chromaticity introduce particles which can focus off-momentum particle

Chromaticity from sextupoles

-
- **The sextupole field component in the** *x***-plane is:** $B_y =$
- In an area with non-zero dispersion $x = x_0 + D \frac{\delta P}{P}$
- Than the field is

$$
B_y = \frac{S}{2}x_0^2 + SD\frac{\delta P}{P}x_0 + \frac{S}{2}D^2\frac{\delta P^2}{P}
$$

quadrupole
dipole

- **E** Sextupoles introduce an equivalent focusing correction
	- The sextupole induced chromaticity is

$$
\xi^S_{x,y}=-\frac{1}{4\pi}\oint \beta_{x,y}(s)S(s)D_x(s)ds
$$

The total chromaticity is the sum of the natural and sextupole induced chromaticity

$$
\xi_{x,y}^{tot} = -\frac{1}{4\pi} \oint \beta_{x,y}(s)(S(s)D_x(s) + k(s))ds
$$

- Introduce sextupoles in high-dispersion areas
- **Tune them to achieve desired chromaticity**
- Two families are able to control horizontal and vertical chromaticity
- **Sextupoles introduce non-linear fields (chaotic motion)**
- Sextupoles introduce tune-shift with amplitude ■ Example:
	- □ The SNS ring has natural chromaticity of –7
	- **T** Placing two sextupoles of length **0.3m** in locations where *β*=**12m**, and the dispersion *D*=**4m**
	- For getting 0 chromaticity, their strength should be $S = \frac{7 \cdot 4\pi}{12 \cdot 4 \cdot 2 \cdot 0.3} \approx 3 \text{m}^{-3}$ or a gradient of **17.3 T/m²**

Two vs. four families for chromaticity correction

- Two families of sextupoles not enough for correcting off-momentum optics functions' distortion and second order chromaticity
- Solutions:
	- Place sextupoles accordingly to eliminate second order effects (difficult)
	- Use more families (4 in the case of of the SNS ring)
- Large optics function distortion for momentum spreads of $\pm 0.7\%$, when using only two families of sextupoles
	- Absolute correction of optics beating with four families

Eddy current sextupole component

$$
\xi_{x,y}^{\text{eddy}} = \pm \frac{1}{4\pi} \oint S^{\text{eddy}}(s,t) D_x(s) \beta_{x,y}(s) ds
$$

Sextupole component due to Eddy currents in an elliptic vacuum chamber of a pulsing dipole

$$
Seddy(t) = \frac{1}{B\rho} \frac{d^2 B_y}{dx^2} = \frac{1}{B\rho} \frac{\mu_0 \sigma_c t B_y}{h} F(a, b)
$$

ESRF booster example

Example: ESRF booster chromaticity

1) A **proton** ring with kinetic energy of **1GeV** and a **circumference** of **248m** has **18, 1m-long** focusing quads with **gradient** of **5T/m**, with an horizontal and vertical **beta** function of **12m** and **2m** respectively. The **average beta** function around the ring is **8m**. With a **horizontal tune** of **6.23** and a vertical of **6.2**, compute the expected horizontal and vertical orbit distortions on the focusing quads given by **horizontal** and by **vertical** misalignments of **1mm**.What happens to the horizontal and vertical orbit distortions if the horizontal tune drops to **6.1** and **6.01**?

Problems

- 2) Three correctors are placed at locations with phase advance of **π/4** between them and beta functions of **12**, **2** and **12m**. How are the corrector kicks related to each other in order to achieve a closed 3-bump.
- 3) Consider a **400GeV** proton synchrotron with **108 3.22m-long** focusing and defocusing quads of **19.4 T/m**, with a horizontal and vertical **beta** of **108m** and **18m** in the focusing quads which are **18m** and **108m** for the defocusing ones. Find the tune change for systematic gradient errors of **1%** in the focusing and **0.5%** in the defocusing quads. What is the chromaticity of the machine?
- 4) Derive an expression for the resulting magnetic field when a normal sextupole with field **B = S/2 x2** is displaced by **δx** from its center position. At what type of fields correspond the resulting components? Do the same for an octupole with field $\mathbf{B} = \mathbf{O}/3 \mathbf{x}^3$. What is the leading order multi-pole field error when displacing a general **2n**-pole magnet?