EUROPEAN

Preliminary remarks

An important consequence of classical electrodynamics is the
generation of electomagnetic waves by accelerated charges
particles.

The RF-voltage produces
Example: The antenna an electric field

E(t) = E sinut
It causes in the antenna

rod onto the electrons the
force

F(t) =eE,sinut

and consequently the
accelleration

a(t) = ; E, sinwt




As soon as a fast moving electron hits a solid state body it is
decelerated. Actually it is transversly bend by the coulomb field of
the atoms. Bending a charged patrticle is a transverse acceleration.
According to classical electrodynamics theese particles emit
electromagnetic radiation.

= X-ray radiation or ,Bremsstrahlung”

electron electron

E, \ shell
< The energy of the electrons is
E, =¢€U

Then the energy of the X-ray
is in the range of

O<E,_.,<E

X-ray — el

nucleus




Principal of a X-ray tube ) A
dinner Strahl

Abschirmung
(Blei)
Réntgenstrahlung

Réntgenrdhre

Kathode

AR

Spannung some 10 - 100 kV

An old example of a X-ray tube
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The X-ray radiation has been discovered by Wilhelm Conrad Rontgen

AT

1895: Discovery of the The hand of Mrs. Rontgen
X-ray radiation ]

X-rays are a powerful tool to
study the properties of all kinds
of material.

The X-ray tube provides a wide
wavelength spectrum of radiation.
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X-ray tube
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mono-crystal

Laue-interference of
a NaCl-cristal

collimator

Abb, 561




Powerlimit of X-ray tubes

hot spot

water cooling

Relativistic electons passing through a vertical magnetic field

bending magnet

In the dipole

magnet the

electrons feel a

horizontal
electron acceleration.
trajectory

/

This causes
also a kind of
electromagnetic
radiation

acceleration

synchrotron radiation
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In the center of mass frame of the electron the spartial power
distribution of the radiation is the same as of the Hertz' dipole
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Because of the relativistic velocity of the electrons one has to

apply the Lorentz transformation.

electron

trajectory

trans-

Lorentz

formation

S
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AR

SN

N
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Power distribution in the

laboratory frame

Power distribution in the
center of mass frame
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A synchrotron radiation beam
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Time structure of the synchrotron radiation
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Because of the short radiation flash we have a wide frequency
spectrum of the radiation emitted by the relativistic elevtrons.
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Spektrum of electromagnetic radiation
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Alfred-Marie Liénard
1869 - 1958

In 1898 Alfred-Marie Liénard has calculated
the radiation emitted by a moving charged
particle.

Due to his results the radiated power by
relativistic particles is given by the relativistic
invariant expression

e 2 () -2

At that time the possible electron energy in a laboratory was
strongly limited to some 100 keV. Therefore, it was not possible to
produce this kind of radiation.

In 1947 a 70 MeV-Synchrotron
was built by General-Electric.

This energy was high enough
to produce sufficient radiation
power.

= synchrotron radiation




Use of synchrotron radiation emitted by an electron storage
ring for high energy patrticle physics.

synchrotron syn.ch.rotron
radiation radiation
beam lines beam lines

particle
detector

e*-injection
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electron beam radiation fan

\_: \

electron beam

the synchrotron radiation from a
bending magnet is horizontally spread
out over a wide radiation fan.

= The radiation power at the
probe is limited.
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Much more intensity is provided by wigglers and undulators

undulator periode

/
A,

S

electron beam

magnet poles

21

Principal of a modern, dedicated storage ring for syncrotron
radiation

Undulator-
strahl

= Undulator

g Beschleunigungs-
strecke

Wigglerstrahl
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Workshop

Design
of a dedicated
synchrotron radiation source

25

The main elements of the SR-storage ring

beamline 3

wiggler /
undulator

_ rf-system
i)
c injector /
booster
synchrotron
wavr?_lfength magnet structure
beamline 2 shifter

26
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1. Beamline requirements

Beamline 1 (bending magnet)
critical energy E.>35keV
dN photons
2107
photon flux @ Ec - (3¢ /e)g@ = 0.1%BWIiinrads

important . ol
formulas radiated power R -
critical fre W :ﬂ
quency =",
= S(wj
photon flux dele Wi\,
spectral function S(§) = 98?“. Kgs(t)dt
:

27

Beamline 2 (wavelength shifter)
critical energy E.=20keV
dN 5102 photons
(de/e)do 0.1%BWIinrads

photon flux @ E,

Beamline 3 (undulator)

photon wavelength A=2-20nm
line width DA _ 104
A
important : E B,
formulas undulator field —cosr(ng/)\u)
_A,eB
undulator parameter K = 5
Tim.c
- A Koo
coherence condition A =_%|1+——+y©
2y 2

28
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2. General beam requirements

horizontal beam emittance

vertical beam emittance

g, <1[10°mrad
g, <012, =100°mrad

important

1l
H
formula . . . 55 h <p3 (S)>
eam emittance &, 732ﬁ%mec 7\] <1>
X p2

including the optics calculations of the storage ring (optics |

29

For the beam optics we coose a ,Chassman-Green lattice"”.

B
D B,
G, !
\ D(s)
D=0 ‘ 5
S()
) /

bending magnet

20 4 3
C,=3832(10"m

g, = ny263(\/(,l ~%o Boj <1[10°mrad
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For the minimum emittance the initial conditions are

BO=ZJ§|=1549I
a, =/15=23.873

_1+ag _10.329

Yom g T

This extreme slope q, is too high, it causes problems finding
stable beam optics. Therefore, it is recommended not to exceed
this value beond a,= 3,0.

31

3. The machine

type: electron storage ring

beamenergy E, =7

beam current |

I)

0
bending magnets  bending radius P = -
magnetlength | =7

bending angle / magnet A© =7?
total number of magnets N =? (N [AO = 2m)

beam optics (recommended: Cassman-Green lattice)

Insertion optics WLS (strong magnet)

undulator  (weak magnet)

32
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rf-system rf-frequency f; =7
rf-power P, =7

cavity type: pillbox, 3-cell, 5 cell,
superconductive etc.
injection
injection energy: E; = E,

Einj <E, (+SR-ramping)

injection rate ( maximum rate limited by radiaton

damping)

WO
2E,T,

damping constant a, = i o)

generally:  keep the design simple and cheep !

33

1. Introduction to Electromagnetic Radiation
1.1. Units and Dimensions

In the following only MKSA units will be used.

physical quantity | symbol dimension
length I meter [m]
mass m kilogram [kg]
time t second [s]
current I Ampere [A]
velocity of light c 2.99792!11C% m/s
charge q 1C=1As
charge of an electron e 1.602010*° C
dielectric constant & | 8.8541410% As/Vm
permeability Ho 4n(107 Vs/Am
voltage \% 1 volt [V]
electric field E V/m
magnetic field B 1 tesla [T]

34
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1.2. Rotating electric dipole

At first we will look at a static electrical dipole

-
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+ ey
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One can see that the delay (or “retardation”) of the electric field
spreading immediately leads to a wave of the electric field.

dipole observer
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1.3. Rotating magnetic dipole
The figures show three pattern with different rotation frequencies

between 200 Hzand 10 kHz One can directly see the generation of
spherical waves traveling from the center to the outside.
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1.4. Relativistic charged particle traveling throug h a bending
magnet

The last example is the radiation emitted by a charged particle moving
with a velocity close to the velocity of light.

V> e "retarded"

/ field
b - >

synchrotron
light

electron v<ce
trajectory
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2. Electromagnetic Waves

2.1. The wave equation

Oscillations are periodic changes with time S(t) = Sexriwt
It is the solution of the differential equation S(t) +w’S(t) =0

A wave describes a periodic change with time and space.

W(t) W (x)
Wik-— /- X=const. el o/ C t = const.

40
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The corresponding equations are
. 21
W(t) + «AN(t) =0 w= T (frequency) (2.1)
0AW(x)
ox°
and for all 3 dimensions

AR +RWr =0 K=(k,k, k)

At the time t, the wave has at the point X; the value W'. At the time t,,
the wave point has moved to the point X,

W' (x,t) =W, expi (wt, —kx ) =W expi (wt, - kx,)
= b~k =W, —kx
= ot —t,) =k(x —x,)

+kW(X) =0 k :2; (wave number) (2.2)

41

The wave velocity (phase velocity) becomes
g X %% _w
At t,-t K

(2.3)

From (2.1) we get

W) +aWx)=0 =  W(xi)= —(jz\/'\'/(x,t)

Inserting this result into (2.2) we get

AW (x 1)
ox°
PAW(x,1) K

ox? o?

+kW(x,t) =0

W(x,t)=0

42
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With the phase velocity (2.3) we find the one dimensional wave
equation

PW(xt) 1
ox? Va

The general tree dimensional wave equation has then the form

W(x,t)=0

AWGM—;WGM:O (2.4)

with the Laplace operator

2 2 2
A= 62+62+62 _
ox~ o0y~ o0z

43

2.2 Maxwell's equations

The electromagnetic radiation is based on Maxwell's equations. In
MKSA units these equations have the form

O :f Coulomb'’s law (2.5)
0

OmB=0 (2.6)

NxE= —a—B (2.7)
ot

OxB=p,] +Hy O%‘? AMperes — (2.g)

One can easily show that time dependent electric or magnetic fields
generates an electromagnetic wave. In the vacuum there is no
current and therefore | =0 .

a4

22



From (2.7)and (2.8) we get

OxE=-B :t OxE=-B
OxB=pgkE  [Ox 0x(0B)=nee,0xE

Inserting the first equation into the second one we get
Ox(0x B) = —u,g,B
Using the vector relation
Ox(Oxa)=0(0la)- 0%
and equation (2.6) we finally find
0?B-p,e,B=0
This is a wave equation of the form of (2.4). The phase velocity is

c=1/ /U, = 299792510

45

2.3 Wave equation of the vector and scalar potentia |

With the Maxwell equation [JB =0 and the relation [J((1xa) =0
we can derive the magnetic field from a vector potential A as

B=[xA (2.9)
We insert this definition into Maxwell ‘s equation (2.7) and get

DXE:—G—B:—DX 0A = [ E+6—A =0
ot ot ot

The expression (E + 6,5,/6'[) can be written as a gradient of a scalar
potential ¢(F',t) in the form

The electric field becomes ~
- 0A

E=- Up+— (2.11)
ot

46
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With Coulomb's law (2.5) we find

DE=—D(Dcp+6Aj=p
or ot &
0 (- = p
D%+ —|OCA)=-F 2.12
¢ at( ) 3 (2.12)

We take now the formula of Ampere's law (2.8) and insert the relations
for the magnetic and electric field (2.9)and (2.11)and get

N ) 0°A

0x(0% A) =, _“ogo( Do+ 5 )

OfOA)-0%A (2.13)
~ dp  0°A R
O?A- HOSOEDGt +6t2j ~00A) =

47

The relation becomes

=
°A- ano%tf\_ U [ém CA+pE, gf[pj =] (2.14)

Equations (2.12) and (2.14) create a coupled system for the potentials
A and @. We define now the following gauge transformation

e rdi n 6/\
A - A=A+0A o - @¢g=@——
ot
The free choice of /A(F,t) provides a set of potentials satisfying the
Lorentz condition

48
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With the gauge transformation we get

19 oA

O(A+ D/\)+at((p—) DA+ 10°A

19¢, giony -9 =0
c® ot ¢’ ot

=0

c? ot

If the function /A(F',t) is a solution of the wave equation

2
A= 18N g
c® ot

the Lorentz condition is fulfilled. In (2.12)we replace DA by —¢/02
(Lorentz condition) and get

2
Pp-199-_P (2.15)

c’ot® g,

49

With ¢° = H.E, the expression (2.14)becomes
0~0

2
DZA—la—D[éDD\ L aﬂ o]

il ¢ ot
_
The result is then =0
=
DZA—ClZaatf‘: I} (2.16)

The two expressions (2.15)and (2.16)are the decoupled equations
for the potentials A(T,t) and (F',t). These inhomogeneous wave
equations are the basis of all kind of electromagnetic radiation.

50
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2.4.The solution of the inhomogeneous wave equation s

We have now to find the solution of the inhomogeneous wave
equations (2.15)and (2.16).We start assuming a point charge in the
origin of the coordinate system of the form

dg=p(r,t)&*(r)dVv

Outside the origin, i.e. \ﬂ % (0 the charge density p vanishes. The
wave equations of the potential becomes

1 0%
Top-— 0 =
? c? ot?

The potential has now a spherical symmetry as

51

We have now to evaluate the expression °@(r) for a point charge.
A straight forward calculation yields

rog ¢, 0%¢ _ 20¢ , 0°¢
%q(r) =0 g(r) =0 O | =

«r)= «r)= (arj ( jar or® ror 6r
On the other hand we find the relation

0° 0 acpj acp ach )
r—+ — =rQd
or? ( cp) or ((p or or ar ¢

Combining these two expressions we get the wave equation

in the form
1a¢ 10> 10°
2 = ———re)=0
. c? ot? (ar czatzj( 9

52
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with the general solution
Qr,t) = 1 f.(r—ct) 1 f,(r +ct)
r r

The second term on the right hand side represents a reflected wave,
which doesn't exist in this case. Therefore, the solution is reduced to

cp(r,t):rlf(r—ct)

In order to evaluate the function f (r — ct) one has to calculate the
potential @(r, t) in the origin of the coordinate system. The problem is

that _
r-0 = (p(r,t):u_,oo

r
A better way is to compare the first and second derivatives of the
potential. Forr — Owe get

o¢ - f(=ct) . 3¢ 19F (=c)
or r? ot r ot

53

The ratio of the second spatial derivative to the second time derivative
is even much larger

0’ 10°

o

or c” ot
and we can simplify the wave equation (2.15)to

(T t) = —5 (r - 0)

for r -0

This is the well known Poisson equation for a static point charge.

Forr — Othe potential @r , t ) approaches the Coulomb potential.
Therefore, we can write

arn="fr-c) 0. Tfcy=— POy
r r aTe, r

54
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Because of the limited velocity C of the electromagnetic fields, at a
point I outside the origin the time dependent potential is delayed by
r r
At =— = t-t1—
C C
At this point we have the "retarded"
potential

o]
da(r ,t) = SZ5\Y,
4 r

0

If the charge is not in the origin but at
any point ' in a Volume dVwe get

frity
1 AT
der.t) =, dv

0 ‘T’—T'

r—r'
retarded by At = ‘7
C

55

Since under real conditions one do not has a point charge the
potential must be integrated over a finite volume containing the
charge distribution. The result is then

Ft-
1 p(
4TE, r-r

r—r

o(F,t) = jdv (2.17)

Vv

The vector potential A(r,t) can according to (2.15)and (2.16)easily

evaluated by replacing the expression P/ €, by Hy] . In this way we
find

*(r,’t_r—rj
A(F 1) :ZO ~C Jgv (2.18)
Tt F-r
\

These solutions of the two wave equations are called Liénard-
Wiechert potentials.

56
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2.5. Liénard-Wiechert potentials of a moving charge

We now replace the distance between the charge and the observer
by

—>

R=r'-r \
Radiation observed at the p(X Y2 ) diati
point P comes from all r(% tli?nlgtn

charges within a spherical
shell with the center P,
the radius H and the
thickness |dF] If dois the d
surface element of the
shell the volume element
is g at timet’

dV =dodr

P

observer

Pa_rticle
rajectory

57

The retarded time for radiation from the outer surface of the shell is
t'=t- B
C

and from the inner surface
" - tr _ m
C

The electromagnetic field at P at time tis generated by the charge
within the volume element dV . The charge in this volume element is

with dr=dr

t

dqg =pdadr

For charges moving with the velocity V one has to add all charge
that penetrate the inner shell surface during the time dt=dr/c ,
le.

dg, =pvndtdo

58
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with the vector N normal to the outer surface defined by N = I?/R
The total effective charge element is then

dg=dq +dq, =pdo(dr + vdt) = pdo(dr +\7ﬁOD

=p(1+np)drdo
With this relation we can write
dg
drdo=pdV = — 2.19
P P 140 (2.19)

Insertion into equation (2.17)gives

1 dg _ 1 g 1
or,t) = ey J Ri+np)~ ae, RlL+ ) (2.20)

59

The current density an be written as T = PV. With this relation the
vector potential (2.18)becomes

A(r.t) :Z;JvadV

With (2.19)we get finally

ieo b (g _cpq B
A= R1+nB) 4mR{1+np)

(2.21)

t

It is important to notice that the parameter in the expression on the
right hand side must be taken at the retarded time t'. The equations
(2.20)and (2.21)are the Liénard-Wiechert potentials for a moving
point charge.

60
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2.6 The electric field of a moving charged particle

Using the formula (2.10) we can derive the electric field at the point P
by inserting the potentials as

= (4, 0A__a -, 1 a0 P
. {D“” j are, R{+rf) 4 KL+ )

After longer calculations (see script) the electrical field finally
becomes

g= @ {_1_EZ(F“2+BR)+13|§><[|§ BR) [3} (2.28)

g o a ca

with a:= R{1+np)

61

Since the expression1/R?drops down with the distance Rthe
first term vanishes at longer distances. The second term,
however, reduces only inversely proportional to the distance R.
It determines the radiation far away from the source charge.
Therefore, we can we can neglect the first term in (2.28)and get

e=_9 1{Rx[(R+BR)xB]} (2.29)

62
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2.8 The magnetic field of a moving charged particle

With the relations (2.9) and (2.21)we can calculate the magnetic field
of a moving charged particle and we find

B:D’XA:WD’X(BJ cuoq( O xfB- ( )XBJ (2.30)

41t a 41t

Again after longer calculations (see script) the magnetic field
becomes

-:%Q{_ .szﬁ_ R [Bxﬁ]+(ﬁB+B +— Bj[Bxﬁ]} (2.33)

4 a

63

For the long distance field only termes proportional to 1/Rare
important. We get

B:cuoq(_ Bxn (Bﬁ)BXﬁj
cRI+m) cRL+np)

we modify the formula (2.26)in the following way

E= { [-n—-p+ R - ZB+H3b}

AT

The vector multiplication of this equation with the unit vector N gives
exrl= 3 {Lln-peid]- Bpe Bon

64
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el & | & -foxel-oletfpee] |- 2 ool Mo
4ﬂ£{ [B:ﬁ] R[an] R(nﬁﬂ} +0 B)[an]}

Comparison with the equation (2.33)leads directly to the following
simple relation between the magnetic and electric field

i
B= [Exn

We can now state the Poynting vector of the radiation in the form

o 1. 21 lre (o
S=—[ExB|=—-|EX|E
exe= 2 [ex(ex)

65

We apply again the vector relation ax (5 x C) = B(%) - é(?:ﬁ)
and get E x(Exn)= E(En)-nE? = -nE>
The Poynting vector finally becomes

=t 1 -
S=-"FEn
Qo
This is the power density of the radiation parallel to N observed at
the point P per unit cross section. We now evaluate the Poynting

vector at the retarded time t’. With (2.23)we find

gosllo Ledl__ 1gag
d' ai, d  q R
and finally
S :—1E2(1+ ﬁB)ﬁ
CHo

66
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3 Synchrotron Radiation

3.1 Radiation power and energy loss

We choose a coordinate system K* which moves with the particle

of the charge g = €. In this reference frame the particle velocity
vanishes and the charge oscillates about a fixed point. We get

V=0 - B=0 -~ a=R

It is important to notice that B #Z 0! The expression (2.29)is then

modified to
e- ¢ Llod]-,E Lehod]

4Tl'.£0

67

The radiated power per unit solid angle at the distance Rfrom the
generating charge is

e 2 o]

:Wj(ﬁx[ﬁxﬁ*])z

With the vector relation & X (6 x C) = B(E‘C) - C(E‘B) and MN=n"=1
we find

[rxln<8 1] = (n( )t (m)] 52
) D) g p )

(3.1)

68
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Since

np =np cow=F cod

O is the angle between the direction of the particle acceleration and
the direction of observation the relation (3.2) becomes

(ﬁX[ﬁXf&*])z =B*-B“cogo= fi*z(l—co§ G)) =psiro
The power per unit solid angle is then

P__€ o (33
dQ  (41m)°ce,

The spatial power distribution corresponds to the power distribution
of a Hertz' dipole.

69

7 The total power radiated by the charged
"~ particle can be achieved by integrating
| (3.3)over all solid angle. With

| dQ = sinddadg

we can write

ez 4*221111 .
P=, B ||sin’©dodp
(41" ce, ! !

x,f -2 where Qis the azimuth angle with respect
/-1 to the direction of the acceleration. the

v /o total power becomes
s 2
g L e 252
05 / 2= B
S e 6TEC

70
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This result was first found by Lamor . One can directly see that
radiation only occurs while the charged particle is accelerated. With
the modification

gy P
C mc mc

we get
icla)
6re,mc’\ dt

This is the radiation of a non-relativistic particle. To get an expression

for extreme relativistic particles we have to replace the time t by the
Lorentz-invariant time dt = dt/y and the momentum P by the 4-
momentum P,,..

71

1 . E
dt - dr==dt with y= =
y y n,.bCZ 1_[32
p - P (4-momentum)

(ob)z SR (objz _1(0'5)2

dt dt dt c*\ dr

With this modification we get the radiated power in the relativistic
invariant form

e (B A ] | e

or

72
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There are two different cases:

1. linear acceleration: EHV

2. circular acceleration: al]v

73

3.1.1 Linear acceleration
The particle energy is

2

E2 = (rTbCZ) + p202

After differentiating we get
Ed7E = Czpip
dt dt
Using E =ym,c® and P=YmMyV we have
dE_,dp
dt dt

Insertion into (3.4) gives

 6rey(me?)

= T T e

-5

dpj2
dt

74

37



with 1-p? =1/y? we can write

€ ( dp T € (dp)z
g kvl B b et b1
61, (mye?f \vdt ) Bre,(m,c?) | dt
For linear acceleration holds
dp_cdp _dE
dt cdt dx

e’c dEY
"= o, (mc) Lox
67, () dx
In modern electron linacs one can achieve

C]l—E=15®/ = PS:4ElU”Watt(!)
dx m

and we get

75

3.1.2 Circular acceleration

Completely different is the situation when the acceleration is perpen-
dicular to the direction of particle motion. In this case the particle
energy stays constant. Equation (3.4) reduces to

P =9202(dp)2 :ezcyzz(dp)z (3.5)
61, (e \dt)  6re,(me2) L dt

On a circular trajectory with the radius p a change of the orbit angle
da causes momentum variation

dp= pda
With v = cand E = pcfollows
dt P P
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We insert this result in (3.5)and get with Yy = E/rTbC2

b= ec FE
) 6T[£0(n'bC2)4 p’

Comparison of radiation from an electron and a proton with the
same energy gives

m.c® = 0.511MeV
m.c’ = 938.19MeV

(3.6)

2 4
ESE - (rr::gzj = 113010%())

sp
This radiation is therefore observed in most of the cases from
electrons.

7

In a circular accelerator the energy loss per turn is

AE = [Rdt=Pt, = Pszzp (3.7)

We insert (3.6) into (3.7) and get

5 Z
A= ¢ E

3, (mc?)' P

For electrons one can reduce this formula to a very simple expression

E'[GeV]

AE [keV]=885
p[m]
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The synchrotron radiation was investigated the first time by Liénard
at the end of the 20th century. It was observed almost 50 years later

at the 70 GeV-synchrotron of General Electric in the USA.

The energy loss per revolution is

4

AEI]E

P
L[m] | E[GeV]| p[m] B [T] |AE [keV]
BESSY I| 62.4 0.80 1.78 1.500 20.3
DELTA 115 1.50 3.34 1500 134.1
DORIS 288 5.00 12.21 1.370 4.5310°
ESRF 844 6.0C 23.4 0.85% 4.9010°
PETRA | 2304 2350 1954 0.404 1.3810°
LEP 27010° 70.00 3000 0.0794 7.0810°
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3.2. Opening angle of synchrotron radiation

In the center of mass system K’ the spartial intensity distribution is
the same as at the Hertz' dipole.

1 Ay’
K Elektronen-
bahn ' K'

Biegeradius

81

A photon emitted parallel to the y’-axis has the momentum
[ [ E;
py - DO - ? n
E; is the photon energy. The 4-momentum becomes
P =(p. PPy p.)=(E/c,0, p, 0)
Using the Lorentztransformation we get the 4-momentum in K

y 0 0 By)(E/c) (YE/C
0 10 0| 0 0

"0 01 0| R P

By 0 0 y)L O YBE,/c
With p, = E./C we get the opening angle
ano=Pr= i -1
P, YR v
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3.3 Spatial distribution of the radiation of a rela  tivistic particle

The power per unit solid angle was given in (3.3) as
dP_ €
dQ  (4m)ce

for the radiation of a charged particle in the reference frame K*.

The angular distribution corresponds to that of the Hertz' dipole.

The radiation of relativistic particles is focused with the opening
angle of .

B°sin o

The radiation power per unit solid angle is given in (3.1)

ﬁ:—r1§R2
dQ

83

With the relation for the Poynting vector at the radiated time we
get

dPl

dQ qy,

Inserting the electrical field (2.29)and with the charge of an
electron g = € we find

EX(1+np)R?

dP 1 .

o o (e one TR e e
1 2 R (3.8)
_Clio(4T?£ )zczaf*{ﬁx[(mB )<l
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sin@cosg

z R=-R| sinOsing
i coP
- OPSeVel and the correlated unit vector
—sinGcosg
A3 —sin@sing| (3.9)
particle” \ —-Cco%

trajectory \\
A The Lorentz force of an elec-
tron traveling through a magnet

IS

The vector R pointing from Fhe . F=—-a/xB=- \(;BZ =ymyv
observer to the moving particle is
O 85
with 0 v, 0
v=|0|, v={0| and B=|B, (3.10)
Vv 0 0

A straight forward calculation yields
ymy, =evB, =edf3B,

On the other hand the bending radius p of a trajectory in a magnet
can be evaluated according to

1 € eB V

P P ymv ep
The transverse acceleration of the particle can now be written in the
form
, _CP’
V, =—— (3.11)
P
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0) (0
B=v={0}=(0] (3.12)
ve) \B
- (w/e) ((eB?)p
B=| 0 |=| © (3.13)
0 0

Using again the vector relation
ax(pxc)=b(ac)-c(ab)

The double product in (3.8) becomes

{nx([n+B]xB)}=(n+B)lnB)- B+ np)

and

87

Inserting (3.9), (3.12) and (3.13) we get

=

(n-+B)B)- B+ np) =

—sin@cosp , cB?)/p
=| —sin@sing (—sin@co CBJ— 0 |(1-Bcosd)
B-cos® P 0
) sin?@cos ¢ 1-Bcosd
_ch sin@singcosp |- 0
P — (B -cosD)sin@cosp 0
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From the definition of a we derive with (3.9)and (3.12)

(3.14)

)

R(1-Bcosd

+np

a=R(1

Some further calculations finally privide

Bcosd)’

(L~

*Ocos g+
(1-Bcod)’

(B2 -1sin

PZ\

4

B

4

e

a1,

dP

)

(

Ho

3

dQ c¢

(3.15)

Acceleration
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D

A
NN =

(it
st

.,?
SRR

e
el
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With the dimensionless
particle energy

E 1

Mo 1+p

we vary the angle © bet-
ween the direction of par-
ticle motion and the direc-
tion of photon emission
according to

y:

u
® =" (u = dimension-
Y less number)
and calculate the photon
intensity using equation
(3.15).
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It is directly to see that the radiation is mainly concentrated within a
cone of an opening angle of. In equation (3.15) we set ¢ = Tl/2 and
the fraction on the right hand side reduces to

1
Q)= (3.16)
We) (1-Bcosd)’
With the conditionsy >>1and © << 1 we find the approximations
2
B= 1-t=1- 1 and cosG)zl—9
Vo 2y 2

and we get from (3.16)

2\773 2 2773
wo)=|1- 1—12 1—e— = 1_1+@ + 12—92
2y 2 2 2y 4y

93

@ 1)°
o= +
o) [2 2v2j

We chose now an angle of
© =1y and find the relation

)
wiLy) _\2y" 2y°

)
22

E
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A sychrotron radiation beam

95

3.4. Time structure and radiation spectrum

A detailed evaluation
of the spectral functi-
ons can be derived
in

J.D. JacksorClassical
ElectrodynamicsSect.
14

orin

H. WiedemannParticle
Accelerator Physics ||
chapter 7.4
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The synchrotron radiation is focused within a cone of an angle
C) =ZI/ Y. An observer locking onto the particle trajectory can see
the radiation the first time when the electron has reached the point

electron
trajectory p

97

The photons from A fly directly to the observer with the velocity of
light. The electron takes the circular trajectory and its velocity is less
than the velocity of light. B is the last position from which radiation
can be observed. The duration of the light flash is the difference of
the time used by the electron and by the photon moving from the
point A to point B

At=t,—t = 200 2psin©
cP C
or
3
=P g |22 1 1.1
c\pB 3 cly-12y y 6y
With

1 1 1 1[ 1)_1 1
= 2:7 +72 =+ =
y=12y vi-12y* yU 2¥*) y 2y
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We get 5
At = p(

1+1_1+1j=4p
Y 2y vy 6y) 3y

In order to calculate the pulse length we assume a bending radius of
p = 3.3 mand a beam energy of E = 1.5 GeV, i.ey = 2935 Wwith
this parameters the pulse length becomes

At =58[10"°sec
This extremely short pulse causes a broad frequency spectrum with

C

the typical frequenc
yp q y _2n_3 3
“e At 2p
More often the critical frequency
wczﬁzﬂ
m 2p

99

is used. The exact calculation of the radiation spectrum has been
carried out the first time by Schwinger. He found

N _Rg(w o 17
de/e wih \w, (3:17)
With the radiation power given in (3.6)
_ éc FE*
F= oV A2
61, (m,c’)’ P
the total power radiated by N electrons is
2 .4 4
R= s N= ¥,
6TE P 3P
_Nec
21p

with the beam current
I b
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The spectral function in (3.17) has the form

_93
§(8)= an ol Ky3(E)d&

where Kg;(§)is the modified Bessel function and & = o/«

Because of energy conservation the spectral function satisfies the
normalization condition

[s.()de=1
0
Integrating until the upper limit & = 1, i.e.0 = W, gives

h 1
{ S,(8)de =

This result shows that the critical frequency w, divides the spectrum
into two parts of identical radiation power.

101

Synchrotron radiation spectrum from a bending magnet

T T TUILIT L T

critical frl?quency
* = = e
[ - =

0.01

0.001

0.00071
0,001 0.01 0.1 1 W/ 10

102




4 Electron Dynamics with Radiation
4.1 The particles as harmonic oscillators

In cyclic machines we have synchrotron and betatron oscillations.
In a good approximation we can consider the system to be a
harmonic oscillator.

o
[
<

o5
v
o

103

4.1.1 Synchrotron oscillation

In a circular accelerator we have to compensate the energy loss by a
rf-cavity ("phase focusing").

For an on-momentum particle (Ap/p = 0) the energy change per
revolution is

E, =eUsinW. -W, (4.1)

with the reference phase W, the peak voltage U, and the energy
loss W, For any particle with a phase deviation AW we find

E=dJsin(¥. +A¥)-W (4.2)
The energy loss can be expanded as

w=w, +9Wae
dE

104

52



The difference between (4.1)and (4.2)is
AE = E - E, =eU,[sin¥, + AW) -sinW] ~IWAe

dE

The frequency of the phase oscillations is very low compared to
the revolution frequency f, = U/T,,. It follows

pE=2E = eUO[sir(LIJS +AW) -sinWy| _AWAE (4 5
T T dE T,

The phase difference AW is caused by the variation of the revolution
time of the particles
AL _ o OE

AT =T,— =T,
L, E
with the momentum-compaction-factor a defined as
AL A
AL _  Ap
L P

4.4)
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With the period of the rf-voltage T,; we get

AW = 2n_ArT =, AT (4.5)
rf

The ratio of the rf-frequency and the revolution frequency must be
an integer number

q:% with g=intege

With (4.4) and (4.5) we get
AV =quAT = 2nqg = 21Tq0(E
T, E
and after differentation
_AY _ 2nqa AE

T, T, E

AW (4.6)
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Assuming small oscillations, i.e. AY << Y. we can write

si(W, +AW) —sin¥.=siny. coAW+co¥ sinAW-siny.

=AWcost
With this approximation equation (4.3) reduces to
AE = EUOA‘PCOS-PS _dWAE
T, dE T,
A second differentiation provides
AE = GUOMJCOSHJS _dWAE
T, dE T,

Insertion of (4.6) gives

1dwW,. 2ngeaU,co¥

AE+ =" NE- > SAE=0
1, dE T, E
or
AE +2a AE +Q°AE =0 (4.7)
with the damping const
a = 1dw 4.8)
2T, dE

and the synchrotron frequency

aJ,qa cos¥,
P %\/ e

The equation (4.7) can be solved by the ansatz

AE(t) = AEexd - at)exdit)

This damped oscillation with the frequency Q is called the synchro-
tron oscillation.
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4.1.2 Betatron oscillation

The motion of a charged particle can be expressed by the equations

x”(s)+( 1 —k(s)]x(s):lAp
p°(s)

p(s) p
Z'(s)+k(9)z(s) =0
Where p(S) and K(S) give the bending radius and the quadrupole

strength. With K(s) = 1/p%(s) - k(s) we find for on-momentum
particles

X'(s) +K(s)x(s) =0 (4.9)
According to Floguet's theorem we find the solution
X(s) =& /B(s) cogW(s) + ¢ (4.10)

with the constant beam emittance € and the variable but periodic
betafunction [3(S) .

109

The phase can be expressed as
W(s) = Jdo
) B(9)

The solution (4.10)is a transverse spatial particle oscillation with re-
spect to the beam orbit. We have a strong correlation between the

position Sat the orbit and the time t
st)y=s,+ct

This transverse periodic particle motion is called betatron oscillation.
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4.2 Radiation Damping

The damping needs an energy loss due to synchrotron radiation
depending on the oscillation amplitude.

4.2.1 Damping of synchrotron oscillation

The radiated power of the synchrotron radiation is

ec 1 FE

e [ oV 2
e, (mc?)' p

The bending radius is

1 e =
- 78_78 — T:GZCZBZ
P p E P

We can write the radiated power in the form

P =

S

4.3
P=CE’B° with C= e (4.11)

61, (Mic?)’
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In order to evaluate the radiation damping of the synchrotron oscil-
lation we use the equation (4.7)

AE +23 AE + Q°AE =0
with the damping constant (4.8)
1 dw

2TdE

It is necessary to calculate the ration dW/dE We estimate the ener-
gy loss along a dispersion. It is

s :(1+ijds
P

Using d<'/dt =c the energy loss per revolution is

j Pdt= §P 5E (1+Apx)d
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The displacement AX is caused by an energy deviation

AXDE
E

The energy loss becomes

W= 3E (1+ DAEJ
Differentiating gives

dw_1 dFS’+D(dFS’AE+P1j de (4.12)
dE cJ|dE p\dEE °E

Averaging over a long time one finds

i
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Equation (4.12)becomes

dw_1 £+% ds (4.13)
dE cJ|dE pE

We use the radiation formula (4.11)and get

dR =2CEB’ + 2CEZBd—B ZP(l 1dBj (4.14)
dE dE E BdE

In quadrupoles with non vanishing dispersion the field variation with
the particle energy is

dB _dBdx _dBD
dE dxdE dxE

114

S7



It is put into the expression (4.14)and we get from (4.13)

M:} 2&(1 +DdBj+F;D ds
dE c¢ E BEdx pE

:2§F;d5+1 DFS) ECLB_I_!. d<
cE cE Bdx p
H_/

= 2W, /E

With (4.8) the damping constant is then

= 1 dW: VVO 2+i DF;(ZdB+1]dS
2T, dE ZT,E[ cW Bdx p

115

or

m ol 2dB 1
= h @P=—pDR —+= |ds (4.15)
a, 2TOE(2+@) wit cV\éjE S(de ;

It is more convenient to apply the bending radius p and the quadru-
pole strength k
_edB  dB_IE
E dx dx e 1dB_
= - o=k
1_ a:B 1l e« B dx

k

p E B E
We write the radiation power in the form
c E

e

S
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Then the integral (4.15)becomes

4 4
3€DP[2dB 1de CEﬂg (ka 1) CEﬂg [Zk jd
Bdx p e’c’ ec | p P’
The energy radiated by an on-momentum partlcle is
J.Pdt— §Pd ds

ec ) p
The damping constant for synchrotron oscillation is

W 3@(2k +2jds
=% 2+q) with @=<P P (4.16)
a 2T0E( ) s
o
The damping only depends on the magnet structure of the machine.
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4.2.1 Damping of betatron oscillation

Following Floguet's transformation we can write with

A:=b./B(s)

z=h./B(s)cosg z= Acosy
_ b sin = 7= Asmcp )
BE B9

We calculate the amplitude A using Zand z’.
A% = A2cog @+ A’sirt o= 22 +[B(s)Z] (4.18)
A photon is emitted and the particle momentum P is reduced by &p

p=p-5p
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The longitudinal component p; of the particle momentum is restored
by the rf-cavity, the transverse component, however, stays reduced.

The angle Z’ is reduced by the amount

momentum

The energy variation of the photon ﬁ) /
of the electron is then _

oz"

-5
Vv - particle
trajectory
orusingv =2'c
C |
OE =—9p e s
Zr ad s
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With the relation E =c|p| follows
57 = _OE, (4.19)
From (4.18)we get the variation E
3(A2)=a(2)+8(z%B(s)) =B*(9) 8(2?)

And we find with §(z2) = 0

2MOA=2B°(9)Z07 = AOA=[(5)Zd7
After insertion of (4.19)we get

pon= (927

Now one has to average over z'2. Taking the formula (4.17)gives

S
g 50 2B(9)

(4.20)

%)=
ot 97
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In this way we find with the relation (4.20)
A2 2
6E A°OE
ABA = - -
26°( ) E
After a full revolution the energy losses OE have accumulated to
the total loss W,. The average amplitude variation per revolution is

AA= Z<5A> (4.21)
Then we get from (4.21)

MA_ W
A 2E
The amplitude decreases and we have a damping of the betatron
oscillation. The damping constant is

dA
= _adt
AR
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With the revolution time At =T, we finally find

a =-0A - V% (4.22)
AAt  2ET,
A similar calculations including the dispersion gives
W,
- 1-p (4.23)
a, 2Ero( )
with
3@ (2k+ jds
_Jp P’
Z ds
o’
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4.3 The Robinson theorem

With the equations (4.16), (4.22)and (4.23)we have all damping
constants

as=W°(2+@)=W°JS aZZWO =W°Jz
2T E 2T.E 2TE 2TE
3= o (1-2)= %),
2T.E 2T.E
with

J.=2+D J, =1 J =1-9
From these relations we can directly derive the Robinson criteria
J,+J,+J. =4

The total damping is constant. The change of the damping partition
is possible by varying the quantity ‘2. In most of the cases we have
P << 1("natural damping partitioty.
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In strong focusing machines it is possible to shift the particles onto
a dispersion trajectory by variation of the particle energy. With this
measure one can change the value of @ within larger limits. The

trajectory circumference L depends on the rf-frequency f as

L:q)\:qE = dL:—o(.:df2
We get f f
AL __oedf __Af
L L f? f
With the momentum compaction factor we get
AL_ AE | AE_1AL__14F

a = = =

L E E alL a f
The variation of the rf-frequency f shifts the beam onto the disper-
sion trajectory 1 Af

X (S) :_D(S)ET
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no damping of the
synchrotron radiation

no damping of the
betatron oscillation
|

~k
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5. Particle distribution in the transversal phase s pace

5.1 Transversal beam emittance

bending magnet
photon

\ particle
R trajectory

The natural beam
emittance is deter-
mined by the emis-
sion of synchrotron
radiation.

We start with an elec-
tron of momentum P,
and emittance € = 0.
The particle emits a
photon with the
momentum Ap and
continues the flight
with the momentum
Po - Ap
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It now belongs to a disper- . .
sion trajectory with the dispersion
displacement and angle trajectory

_~Ap
6X— Dp Sx’ |-~
and oX = D’A—p - .
P X

orbit

The electron has therefore a finite emittance. It can be calculated
using the ellipse relation.

o 2t {33
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To get the beam emittance one had to integrate over all particles in
the beam. For relativistic particles is

Bp _AE
p E

A detailled calculation gives the natural beam emittance in the form

1
= 55 fc y2<F?Q7f(S)>
©32/3me”T < 1 >
X RZ
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The damping is represented by the amount J,.. If all bending
magnets are equal, we get with J, = 1 the simplified expression

21
e =147010 6EII@%(s)ds
0

with Ein [GeV], Rin [m] and g, in [m rad].Because of

#(s) = (yD? + 20DD' +BD"?)

the emittance is small whenever the betafunction and the disper-
sion is small inside a bending magnet.
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5.2 Examples
5.2.1 FODO lattice

Increasing the quadrupo.le strength & T Wy %
decreases the betafunctions and \‘e " T Wy R
the dispersion and the function p =
c#(s). We can demonstrate it with & | o @
a simple so called "FODO-lattice". | B

) (%/TH'JT\V ) .
A 6 o, B
3 % .l
P
B QD B @ B QF‘\B’
QF QF :

one cell of the FODO-lattice OPTICS

130

65



The quadrupole strengths vary
fromk=0.4 m2tok=1.6 m2
It reduces the emittance almost

by two orders of magnitude !

100

€, [mm mrad]

o

0.1
0

With increasing quad strength,
the chromaticity increases
rapidly.

-20

=5 7
/ &

L—|

0 l klm®] 2

(=}
Il

Extremely low beam emittances
need very effective chromaticity

compensation (dynamic aperture).
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The betafunction and
the dispersion have

in the bending
magnet not the
minimum value.
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5.2.2 Triplett = "7
lattice . | B[m] D[m] |n

DX

> \/—\ ~] ‘
\ // - \\u/,/

L1 om

QF QD B QD QF QD B QD QF

This structure has been used for the electron storage ring DELTA. The ¢
tance at an beam energyof 1.5 GeV is, = 710° m rad.
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6. Low emittance lattice
6.1 Basic idea of low emittance lattices

What is the lowest possible beam emittance ?

In dedicated syn- !

chrotron radiation D B
sources long 1

|
straight sections for % |
wiggler and j D(s)
undulator magnets v ] /

: ) D,

are required. This D’ ’ -
straight sections 0 / otbit
have no dispersion, D=0 ‘ s
i.,e. D =0. 5,

[ bending magnet
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Therefore, at the beginning of the bending magnet the dispersion

has the initial value
D,) (0
D) (0

With this initial condition the dispersion in the bending magnet is
well defined. With s/R <« 1 we get

2
D(s):R(l coss)--S D’(s):sinizE
R/ 2R R R

The emittance can only be changed by varying the initial values [3,
and O of the betafunction. These functions can be transformed as

B(s) -—af(s) 1 s\(B, -0,\(1 0
(—G(S) V(S)j ( jtﬁ j[és 1)
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and after straight forward calculations

B(s) =B, - 2G05+V0321 a(s) =a,=Y,S, Y(S) =Y, =cons
We can write the function c#(s) in the form
SH(9) =Y(9)D*(9) +20(5)D(9)D'(s) + () D™ (9)

= ;2(\2’ s'—a,s’ + Boszj

For identical bending magnets and with J, = 1 we get

g, = j@%(s)ds C yz( j @0(')_ ; [:3;)

with
55 &

= =3.83210"m
Y 32/3mc
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The relation |

~ =0
R
is the bending angle of the magnet. We can write
| o, B
e =C v Yo' %o L Po 6.1)
=G (20 4 3

Since the emittance grows with @3 one should use many short

bending magnets rather than a few long ones to get beams with low
emittances.

In order to get the minimum possible emittance we have to vary
the initial conditions 3, and o, in (6.1) until the minimum is found.
This is the case if

Og, _ 0 (1+og | oo Bo)_ (0! _1)_,
oo, Ao, B, 20 4 3 3,10 4

137

and ,
O, _ [ _Tagl 1 -0
B3, [3(2J 20 3
with
oo/ =C 'O’

The unknown initial conditions (3, and a, are

R _
Bomin = z\@ =1549 62

Oy =15=3.873

The betafunction for the minimum possible emittance is determined
only by the magnet length |.
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This principle is used by
the Chasman Green lat-
tice, the optical functions
do not exactly fit the con-
ditions (6.2). The reason
is the extremely high
chromaticity caused by
the ideal initial conditions
(6.2).

The simple magnet struc-
ture shown in the figure
has no flexibility. There-
fore, more quadrupole
magnets are used in
modern light sources

30

B [m]

291

104

3.0
D [m]
F2:5

Q1 Q2

0

BD Q3 BD Q2 Ql
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EuropearSynchrotronRadiationFacility,

Grenoble

An example of a flexible low emittance storage ririghe third generation
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In order to get the required flexibility, a larger number of quadrupo|sikseal.

The lattice of one cell of the ESRF magnet structure. The ringstemsi 32 cells.

30 A

B (m) 4
20

10 4

———o

M B _E |
. il | . el B

Magnet structures of this type are often calléduble bend achromat lattité€DBA)
141

1.0

. D(s)
Another modifica- . By

tion of this optical
principle is the
"triple bend achro-
mat lattice” (TBA)
as applied in the
storage ring 5.0
BESSY Il in Berlin

10.0 4
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7. Appendix A: Undulator radiation

Synchrotron radiation is nowadays mostly generated by use of
undulators (or “insertion devices”).

Z
£ S

Fa

electron beam

undulator periode

magnet poles
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7.1 The field of a wiggler or undulator

Along the orbit one has a periodic field with the period length A . The

potential is

S
d(s,2) = f(z)co{Zn)\] = f(2)cogk,s). (7.1)
u
In X-direction the magnet is assumed to be unlimited. The function
f(2) gives the vertical field pattern. With the Laplace equation

0%¢(s,2) =0
We get ,
12 _ ¢ (pe =0
dz

and find the solution

f (z) = Asint(k,2)
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Inserting into (7.1) the potential becomes

d(s,2) = Asinhk,z)cosk,s)

and the vertical field component fol0)
B(s2)="_" (7.2)
, 0z
pole =k, Acosttk z)cosk s)
d In order to get the integration
| - _L constant A we take the pole tip
B 92 field Byat{s,3 = {0, g/2}. with
e o s (7.2)we get
N g
| =B,| 02 |=k,Acoshk, =
] o-0f0 s )
| = IgAcos?Engj
)\U 145
and Az B,
k, costfrig/A,)

Insertion into (8.2) provides

B,(s2)= Bbcoshl(uz) cosk,9)
cos)ﬁn)?j

u

and
Bs2=P= "B sinhk)sink s
COSGT[)\QJ

At the orbit the periodic field has the maximum value

_ B,
coslfrtg/A )

&

o
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For given period length the A, the field decreases with increasing
gap height g. Short periods require therefore small pole distances.

1.2
1.0

B

By 0.8 \
0.6

0.4

0.2 <

0

0 0.5 1 15 2
g/

At the beam the periodic fieldis B, (S, Z) = Bsin(k,s)
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The most simple design is an electromagnet

Ky —

7 M
NI
N S —
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Shorter period length down to a few cm are possible by use of
permanent magnets. The field variation is made by changing the
gap height.

B |
i Bl

N/

permanent magnets

- [
—AR—
@ y
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151

Undulator U55 an DELTA
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A hybrid magnet consists of permanent magnets and iron poles.

Ay iron
z -— — S
NN NS T TN NS
A 1 1
: I N

\ /

permanent magnets
153

Superconductive wiggler magnet

W/U-magnets have maximum fields at the beam about 1 T. The
minimum wave length is limited because of

_4nR _4re{mc’) 1
3y 3 B

A

Shorter wave lengths are
possible with supercon-
ductive wigglers with
fields of B > 5T.

Superconductive asymmetrie™
wiggler at the storage ringBs
DELTA
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STRAHL
STRAHL o B || ke
EINTRITT

20 m
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The W/U-field has to be matched that The condition is

the total bending angle is zero. fulfilled if
i A 5=0
o4 %

trajectory "‘

—_ }\u
y and sz—n>\u+E

| | withn=12,... .ltis

UNCRERE | B
A

half magnet pieces of
u pole

half pole length. In
We have then addition one has to
shim the single poles
S,
~ to compensate the
I B,(s)ds= BJ-COi{kuS)dS: 0 unavoidable tole-
S

W/U rances.
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7.2 Equation of motion in a W/U-magnet
In a W/U-magnet we have the Lorentz force
F=p=my=evxB

With the approximation

0 V,

B=[B,| and v=| 0

We get B, Vs
_VSBZ
g= o -V, B,
my VB

157

The velocity component in z-direction is very small and can be neg-
lected. With X =V, and ¢ =V, we have the motion in the s-xplane

x=-3 ° B (9 s=x ° B(s) (7.3)
y My

This is a coupled set of equations. The influence of the horizontal
motion on the longitudinal velocity is very small

X=v,<<Cc anc s$=v,=fc=cons

In this case only the first equation of (7.3)is important and we get

~

X = —BCEBcoskus)

mpY
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We replace with

x=xBc and x=Xp*’

the time derivative by a spatial one and get

X' =- & cosk,s) =-— & co{Zn)\Sj

myBey myBey y
With 3 = 1we can write
A B A8
' — u = u " 7.4
X (s) 2T[moycsm(kus) X(S) A thmoyccos(kus) (7.4)

The maximum angle is at Sinfk,s) =1

—~ %\ S o, =x_ =1M

trajectory
159
We get the wiggler- or undulator parameter
K = )\”eB (7.5)
21m,C
The maximum trajectory angle is
K
O, =—
Y

This is the natural opening angle of the synchrotron radiation. With
the parameter K we can now distinguish between wiggler and
undulator:

undulator if K<l e 0,1l
wiggler if K>1 ie. 0,>1¥

160
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Wiggler

)

140

3
K>1
= FMD»‘ ::::nr (u\‘]‘m —
Undulator Toz

—— : new lattice
—— : prasent lattice

Brilliance @ otons/sec/mm®/mrad /0. 1 ab.w.)

o8 1000 1500 2000
Photon Energy (V)
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Now we go back to the system of coupled equations (7.3). We
assume that the horizontal motion is only determined by a constant
average velocity v_ = <s> . From (7.4)and (7. 5)we get

X(9) :*;sin(kus) -0, sink.s)

with x =fcx’, s =fctand w, =k f3c we can write

X(t) =BeO, sin(wt) = Bc*;sin(umt) (7.6)

For the velocity holds

be X & =(Bc)’ - %2

n
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and with
p=1-

y2

s(t) :c\/l—(ylz+§)

Since the expression in the brackets is very small, the root can be
expand in the way

bt

we get

Inserting the horizontal velocity (7.6) and using the relation

1-cos2x

Sit(9 ="

163

we get

1. pK?
)=¢l-—|1+ 1-co t
S { 2\/{ 5 (1-costw, ))}}
This can be written in the form

S(t) =(s) +As(t)

with the average velocity

($) :c{l— 2\1/2 [1+ Bz;(z}} (7.7)

and the oscillation

As(t) = Cﬁyf cod2ay)
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From (8.7)we derive the relative velocity with =1
2
[3* :@ :1_i 1+£ (7.8)
C 2y 2
With (8.6)and (8.7)to (8.8) we get

X(t) = Bc:(/sin(o%t) s(t)=Bc+ c[ii/ljz cos@wt)

Using w, =Kk C and B = 1one can evaluate the velocity simply by
integration. In the laboratory frame we have

2

X(t) = —k}:ycos(qjt) s =Fa+ " sineay)

8Ky’

165

We get an impressive form of

motion in the center of mass 10°m
system K*, which moves with 5
the velocity 3 with respect to the
laboratory sys-tem. With the .

transformation

X =x and s =y(s-Bda)

we get

X (t) = —kljycos(;%t)

s(t)=

K2
sinRuw,t)
8kuy & : 10°m °
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Because of periodic motion in the undulator radiation is emitted in
the laboratory frame with a well defined frequency

_2n_2mc _
W= =T =k
T A
In the moving frame with the average velocity 3" the frequency is
transformed according to
W = y*QW (7.9)
The system emits monochromatic radiation. To transform a photon

into the laboratory system we take a photon emitted under the
angle ©,

167

Energy and momentum of the photon are

E=hw p= h:;
and the 4-vector becomes E /C E/C
o o| Pz psin@,
U
P, 0
o pcosd,

Transformation into the System K" is then

E/c y 00 -BY E/c
B, |[_| 0 10 O psin®,
|| o o1 o 0

D, -By 00 vy pcoL,
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The energy of the photon becomes

E .E
7_y7_
C C

i x % 3 h(l: *
BY peosd, =y *(1-F cosd,)
With E- = hw we get

e _ R, (o
T—V C(l [300590)

and

o= ¢
y (1_[3* COS@O)

Using (8.9) we can write
W, = — T
1-B co,

169

d find
andatin ﬁ_)\i_ 1
Q, A, 1-Bcowd,

w

(7.10)
with
A, =A,[1-B cox,)
Now we replace 3" by (7.8)and expand
D 1
COK), ~1—7 since Q, ~y<<1

After this manipulations we find

A, (1B cosd,)= Au{l_(l_yrzl?z](l_efﬂ
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Using equation (7.10)we get the important "coherence condition for

undulator radiation"

2y

A, = A, (1++y2@2]

(7.11)

z
£ N

e

electron beam

)/

magnet poles

undulator periode

/
A,
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The undulator radiation

4%&”/
///

Periode length: A, =0.25m

Simply we
expect a
radiation
with a
wavelength

A,=0.25m.

But: actually the radiation from the magnet is blue light !
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In the laboratory frame the magnet has the periode length A, = 0.25 m.

electron
- /
The electron has the energy In the electron system the
E =450 MeVi,i.e.. undulator appeares shorter:
_ 1 _ X
Y= ; =880 A =" = 284M00%m
1- (V/C) y

173

Undulator seen by the fast moving electron

In the frame of the electron a
wave with the wavelength A‘is
generated.

~

L
electron

But we can only observe the radiation in the laboratory frame. It is
therefore again shortened by a factor 1/y. The resulting wavelength

is finally
N A, _
Undulator — ., — 2
Yy
The wavelength is shortened by the factor y? = 774400!

A 323nm

174

87



The exact calculation gives the important coherence condition:

2
A=l (1K
2y 2

With K = 2we get the exact wavelength A = 480 nm

This is blue light!

175

The wavelength of the radiation is mainly determined by , y, and K.
With increasing angle @, also the wavelength increases.

undulator N, A
\ ) u fvrad
- \ Nuku —_— ’+M-H
. .
: LLL]
N
wave
[ I ' 1
Sp-Ly/2 S, So+Ly/2

The total length of the undulatoris L, = Nu)\u

If Sy marks the center of the undulator, the emitted wave has the time
dependent function

: T T
u(w,t) = aexpw,t if _EStSE (7.12)
0 otherwise
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The wave has the duration
T=NA,/c = «,T=21N, (7.13)

Such limited wave generates a continuous spectrum of partial
waves. Their amplitudes are given by the Fourier integral

_ 1 +0o .
Alw = N _J;u(oqN JLDexpEiat)dt
Insertion into (8.12)gives
a o 2a sinfw-w,)T
= - - dt=
A f\/2T[T_+[/2e Xd I(w %)t] N 2mr 2(00—%)

With Aw =« —w,, and (7.13)we get

_a . Aw Aw
o= gelme) ™

177

The intensity is proportional to the square of amplitude

o]
| (Aw) O
N Aw

2
I(Aw)

spontaneous
- undulator
radiation

u
I I N .
Dra A®
We get the half width of maximum from
sinx)® _ 1 AW
(j == with x=miN,— =139
X 2 W,

and find 200 _ 2x _088€_ 1

w, ™, N, N

u u

i.e. an undulator with N, = 100periods gives a line width of = 1%.
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The spectrum of an undulator is

------ center of mass frame

laboratory frame

dP
do
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