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1 Introduction to Electromagnetic Radiation

1.1 Units and Dimensions

In the following onlyMKSA units will be used. In this system the dimensiohshe important

physical quantities are

physical quantity symbol dimension
length I meter [m]
mass m kilogram [kg]
time t second [s]
current | Ampere [A]
velocity of light c 2.99792510° m/s
charge 1C=1As
charge of an electron 1.6020310"° C
dielectric constant & 8.8541910*? As/Vm
permeability Ho 41107 Vs/Am
voltage Vv 1 volt [V]
electric field E V/m
magnetic field B 1 tesla [T]
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1.2 Rotating electric dipole

Before we start with the quantitative discussiomlettromagnetic radiation, some simple examples
may make something clear of the general physicsdelt first we will look at a static electrical
dipole as shown in fig. 1.1. An observer notice®rager distance apart a field with downward
direction. When the dipole is turned upside dowrhini a very short time and turned back
immediately after, only in the vicinity of the dilgothe field follows the motion nearly without
delay. At that time the observer don’t notice ahgrgge of the electric field. Because of the limited
velocity of the information (i.e. the velocity afiht) it takes a certain time until this happens.

E-field

dipole observer
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T | I ok
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L™ ™ el
Sl
-

Fig. 1.1 Generation of electromagnetic waves by rotatistatic dipole

One can see in fig. 1.1 that the delay fetdrdatiort’) of the field spreading immediately leads to a
wave of the electric field. According tdMaxwell’s equationsthis time dependent electric field
generates also a corresponding magnetic field andng up with an electromagetic wave.
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1.3 Rotating magnetic dipole

In the first picture of fig. 1.2 the simplified faepattern of a magnetic dipole is sketched. Winen t
magnet starts rotating around the axis perpendicolahe dipole axis the field distribution at a
given time changes because of the limited velagitihe field spread. Fig. 1.2 shows three pattern
with different rotation frequencies between 200atz 10 kHz.
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Fig. 1.2 Generation of spherical waves with a rotating nedigrdipole. The field is observed in an area4®0 km.
The rotating frequency varies between 0 Hz andHf k

At higher frequencies, one can directly see theeg®ion of spherical waves traveling from the
center to the outside. The information of the fisteength produced by the dipole takes some time
to reach the observation point far away from thgir During this time the dipole position and the
spatial field distribution in its vicinity has chged. Again theetardation of the time dependent
field leads to electromagnetic radiation.
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1.4 Relativistic charged particle traveling through a bending magnet

The last example is the radiation emitted by a gécmparticle moving with a velocity close to the
velocity of light. Because of the relativistic coattion of length the field around such particles h
not a spherical distribution as in the rest caseidwontracted in the direction of motion. The
electrical field is like a disk and its axis is mdieal with the particle trajectory as shown in. fig3.

In a bending magnet the particle trajectory follawsycle. Consequently, the field pattern is ratate
around the axis perpendicular to the plane of mot@utside the cycle this rotation would require a
field velocity larger than the velocity of light,hich is according to elementary laws of relativity
impossible. Therefore, the field is delayed (oitdrded") and finally it tears off the particle. Bac
particle produces a very short field pulse emitt@d the forward direction. The corresponding
frequency spectrum is very broad and covers thgerbetween the visible light and X-rays.

V> e "retarded”

, / field

L— | - @— - @ —>
synchrotron
light
electron
trajectory

Fig. 1.3 Relativistic particle (electron) traveling througHield of a bending magnet.

It is easy to understand that this type of radratsonot be generated by slow moving nonrelatiwisti
particles. In this case the field is almost splarand the delay is negligible. This radiation ascu
only at extremely relativistic velocities which aaehievable with reasonable effort only with
electrons. At the end of the forties this type adiation has been observed the first time at the 70
MeV electron synchrotron built by General Electricherefore, this radiation is called today
"synchrotron radiation”.

In the following, this lecture will present the Esof electromagnetic radiation and in particular
the physics of synchrotron radiation. There israrg influence on the dynamic of the particle

motion in circular electron machines as radiatiamging, beam emittance and so on. Modern light
sources produce synchrotron radiation by use afxdremely strong focused electron beam. This
requires a very special magnet lattice.
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2 Electromagnetic Waves

2.1 The wave equation
Oscillations are periodic changes of a physicahtjtyawith time

S()= §expwt (2.1)
It is the solution of the differential equation

S()+w?g)=0 (2.2)

A wave describes a periodic change with timmel space

A A W)

x = const. t = const.
W o s ° W o s ‘

Y N

T

Y

Fig. 2.1 Time and spatial dependence of an periodic phlygicantity

The differential equations are

IW(X)
.. k*W(X) =0 2.4
W(t) +*W( ) =0 (2.3) o W @4
21
w=2" (frequency) k= - (wave number)

T
or more general for all 3 dimensions

AW(T) + K2W(T) =0 (2.5)

K= (k. K, k)

At the timet; the wave has at the poixtthe valuew . At the timet, the wave point has moved to
the pointx,

W (x t)= W exp i(ootl— k>g) = Wexp(w t- k>5)
= wt-kx=wt,-Kkx, (2.6)
= oo(tl —tz) = k(xl— x2)
The wave velocity (phase velocity) becomes
_AX XX
At -t

«w
\ —E (2.7)

From (2.3) we get
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. 1 .
W(x D+ W% 9=0 = Wx)=-—7 WXt (2.8)
Inserting this result into (2.4) we get
IPW(xt) 3 W(x t) Kk* . B
S TKW(x 9=0 e o W(x9=0 (2.9)
With the phase velocity (2.7) we find the one disienal wave equation
°W(x t) 1 . _
W =0 (2.10)

The general tree dimensional wave equation hasttieeform

AW(F 1) —Vizv\'/(r*,t) =0 (2.11)

9° N 0° N 9°
x> ay* a7

j = [J?. The operator] :( 90 9 %j is the so

ith the Lapl torA = —.
Wi e Laplace operator. ( ox 0y

callednabla operator

2.2 Maxwell's equations

The electromagnetic radiation is based on the M#sngxjuations. In MKSA units these equations
have the form

OE = 83 (Coulomb's law) (212)
0
OB=0 (213
. 0B
OxE= "3 ) (2149
_. - oE
OxB=Uy] +HE (Ampere's law) (215

° ot
One can easily show that time dependent electrimagnetic fields generates an electromagnetic
wave. In the vacuum there is no current and theeefo= 0. From (2.14) and (2.15) we get

OxE=-B 9
_ ot (2.16)
OxB=pye,E | Ox
and
OxE=-B

- - (2.17)
Ox(0xB)=p,e,0x E

Inserting the first equation into the second onggete
Ox (0% B) = —pe,B (2.18)
Using the vector relatiofl x (0 x &) = 0(0 (&) - 0% B and equation (2.13) we finally find
028 - p,e,B=0 (2.19)

This is a wave equation of the form of (2.11). Phase velocity is

1
c=
VHoEo

- 2.997925116% (2.20)
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2.3 Wave equation of the vector and scalar potentia |

With the Maxwell equation[lé =0 and the vector relatioid(0%&d) =0 we can derive the
magnetic field from a vector potential as
B=0OxA. (2.21)
We insert this definition into the Maxwell equati(#h14) and get
B, B A
DXE:—a—:—DX(g—tj
(2.22)
= 0Ox (E +6—Aj =0
ot

The expressiorﬁﬁ + aﬁ/at) can be written as a gradient of a scalar potegtialt) in the form

E +g—? = -0 (2.23)
The electric field becomes
_ oA
E=- Op+—|. :
o
With Coulomb's law (2.12) we find
_ A p
OE=-00 0p+—|=— :
( [0) aJ ‘. (2.25)
or
0 (~-)—_P
D%+ —(0A)=-—
¢ at( ) ‘. (2.26)

We take now the formula of Ampere's law (2.15) amskert the relations for the magnetic and
electric field (2.21) and (2.24) and get

_ . 0 9%A
Dx(DxA):qu—uoeo[aDw atzj

T ofa oA ] (2.27)

- ap 0°A . -
0%A- pOSO(DE + atzj - 0O 0A) = -, ]

The relation becomes

- 92A _ 0 -
O%A-HE, ot? _DI:QDDB‘-FHOEOO_?):_“OJ (2.28)

Equations (2.26) and (2.27) create a coupled sy&tethe potentialsA and@. We define now the
following gauge transformation

A - A=A+0OA
A (2.29)

¢ - (szp_a
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The free choice of\(r,t) provides a set of potentials satisfying Lioeentz condition

- 190
DA+?a_f: (2.30)

With the gauge transformation we get

o(A+ D/\)+i3(cp—a—/\) =

c? ot ot
- 199 1 0°A _ (2.31)
AT o + 0o Z o 0

=0 (Lorentz condition)

If the function A(F,t) is a solution of the wave equation
— =0 (2.34)

the Lorentz condition is fulfilled. In (2.26) weplace DA by - ('p/(:2 and get

10%_  p
02p-——=-—
¢ 2 a2 ‘., (2.35)
With ¢® =1/, the expression (2.28) becomes
-1 9%A [ﬁ .1 acp) -
2A-— -0000A+——|=- 2.
CZ atZ CZ at HO] ( 36)
=0 (Lorentz condition)
The result is then
e 1 621& -
ZA‘? a2 ="M, (2.37)

The two expressions (2.35) and (2.37) are the gdeduequations for the potential%(?,t) and
¢(r,t). Theseinhomogeneous wave equationsre the basis of all kind of electromagnetic
radiation.

2.4 The solution of the inhomogeneous wave equation S

We have now to find the solution of the inhomogerseawave equations (2.35) and (2.37). We start
assuming a point charge in the origin of the cawaté system of the form

dg=p(T,t)&%(F)dV (2.38)

Outside the origin, i.e[f] #0 the charge density vanishes. The wave equations of the potential
becomes

1 0%
20— — 2 ¥ _ 2.
The potential has now a spherical symmetry as
@) =@lrlt)=of 1) (2.40)

10
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We have now to evaluate the expressidip(r) for a point charge. A straight forward calculation
yields

i)a_<p+@_za_<p+02w

chp(r):DD]](p(r):D(Ea—(pj:(Dr >t 3217 taz? (2.41)

r or

On the other hand we find the relation

9’ 6( acp) dp 0%p

— =—\+r—|=2—"+r—=

arz(rcp) ar P 26r "or? (2.42)
Combining these two expressions we get the wavateguin the form

, 10% 1(02 1azj

e ¢’ ot*> r\ar® c?at? (r(p) 0 (2.43)
with the general solution

1 1
Q(r,t)= . f,(r —ct) - f,(r +ct) (2.44)

The second term on the right hand side represemtiegted wave, which doesn't exist in this case.
Therefore, the solution is reduced to

or,t) :% f(r—ct) (2.45)

In order to evaluate the functiofi(r —ct) one has to calculate the potentigt,t) in the origin of
the coordinate system. The problem is that

f(r—ct) -

r-0 = q@r;t)= (2.46)

A better way is to compare the first and secondsdgves of the potential. Far - O we get

o¢ _ f(-ct) _ g _1af(-ct)
a2 T alr a

(2.47)

The ratio of the second spatial derivative to theosd time derivative is even much larger
2 2
o9 100
ar®  c®ot?
and we can simplify the wave equation (2.35) to

for r -0 (2.48)

chp(r,t):—s£ ) (2.49)
0
This is the well knowrPoisson equatioffor a static point charge. Far — O the potentialg(r,t)
approaches the Coulomb potential. Therefore, weacda

_ 1 p(G1)

_1. r 1
or,t) = f(r—ct) Om - rf(ct)—4m AV (2.50)

0

Because of the limited velocity of the electromagnetic fields, at a poinbutside the origin the
time dependent potential is delayed by

r r
AM=— = tot-— (2.51)
C C

11
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At this point we have th&etarded" potential

r
1 p(o’t _cj

de(r,t) = 4 — — (2.52)
A
z
P
7T
7
X y

Fig. 2.2 Position of the charge element and the observer

In general the charge is not in the origin but@ point ' in a VolumedV. For this case the
potential gets the form

(rt-W‘FU

pLr c

de(r,t) = 4; dv. (2.53)

F=r
0

r—r

r-ri .. " :
| | . Since under real conditions one do not has at pbiarge the

It is retarded by the timat =

potential must be integrated over a finite volunoataining the charge distribution. The result is

then
T
pl T 't_T
— dv

(p(F,t) - |H I7,| (254)

4a1E

\

The vector potentiaWF,t) can according to (2.35) and (2.37) easily evallidte replacing the

expressiongﬂ by W, ] . In this way we find
0

(2.55)

<

12
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These solutions of the two wave equations arecaalEnard-Wiechert potentialsAn effect on the
electromagnetic field at the poifitand the timet is caused by and | at the pointi* and the

earlier imet'=t —-|F -F/c .

2.5 Liénard-Wiechert potentials of a moving charge

The calculation of the electromagnetic radiationited by a moving charged particle needs a
careful integration over the charge, even in theeaaf point charges. We now replace the distance
between the charge and the observer by

R=f'-F (2.56)

radiation
at time ¢

P

observer
do

) article
g at time ¢’ g,

ajectory
N

Fig. 2.3 Radiation from a moving charge
Radiation observed at the politcomes from all charges within a spherical shethwie centeP,
the radiusﬁand the thicknesir]. If dois the surface element of the shell the volume eteris

dv = do dr (2.57)
The retarded time for radiation from the outer acefof the shell is
t' =t —B 2.58
- (2.58)
and from the inner surface
o
e 191 059

The electromagnetic field & at the timet is generated by the charge within the volume eféme
dV. The charge in this volume element is with=|dr|

dg, = p do dr (2.60)

For charges moving with the velocity one has to add all charge that penetrate the isimelt
surface during the timet = dr/c, i.e.

dg, =pvndtad (2.61)

with the vectorin normal to the outer surface defined by

‘

13

| o

A = (2.62)

el
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The total effective charge element is then
dg=dq+ dg=p (dr( dr+ Vin o)t: p d( dt ”\THC—) = p(1+ ﬁB) dr do (2.63)

With this relation we can write

pdrdo=pdV = d?# (2.64)
1+np
Insertion into equation (2.54) gives
. 1 dq 1 g 1
@r,t) = J — =\~ 1= 2.65
are, ) RlL+np) ame, R+ iB), (2.69)
The current density an be written as
j=pv (2.66)
and the vector potential (2.55) becomes with (2.64)
renolo [ Wa _ci,q B |
A(r,t)=— ———y = — ) 2.67
r.1) 4nJ RiL+Ap)  4m R{L+mp), (2.67)

It is important to notice that the parameter in élxpression on the right hand side must be taken at
the retarded time'. The equations (2.65) and (2.67) are thénard-Wiechertpotentials for a
moving point charge.

2.6 The electric field of a moving charged particle

Using the formula (2.23) we can derive the eledtald at the poinP by inserting the potentials as

- GAJ g 1 cu,ad B
E=-{0p+|=-— 0 e =
( P ot 4TE, R(1+ ﬁB) 4t ot R(1+ ﬁB) (2.68)

In order to simplify the calculations we define

a= R1+f) (2.69)
and set
CUd _CHod _ KOG _ g 1 (2.70)
Aam 4c 4Tug,c 4ATE, C '
The electrical field is then
3 q 1 19 (B)
E=———|0=+=-—|— 2.71
4T|£0{ a+ codt\ a ( )

Notice that all expressions concerning the movingrge must be evaluated at the retarded time
To indicate the calculation at the retarded timemieadd a ' to the symbol (i.e. £, etc.). With
1 1 0 0 dt

0’—=-—0%a and

2 a oo dt (2.72)

we get

14
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- g |1_, 1dt'o(B
E= —Qa-=——| &
4TE, l:az cdtat'(a (2.73)

This formula needs the knowledge &f'a, dt’/dt and a(ﬁ/a)/dt’. The detailed calculation
provides the following results.

The variation of the distanc@ = Ris

dR__. dR _,
dR= VT dt a vnl (2.74) and o v (2.75)
The retarded time is
t' = _R (2.76)
=t= _
and we find
dt’ 1dRdt’ v ndt ~ dt’ dt’ 1 R
—=]-——=1-—=1-NB— —= —=— .
dt cdt’ dt c dt P t dt 1+AB a 2.77)
The nabla operator for the retarded time is defaed
D._(i Mo 0 o 9 ﬂij
oxX 0x aat dy ody'dt’ dz 0z ot (2.78)
=0+0% —
ot'
With this relations we find with JR=-n
D'R—DR+D’fE D’R——"n+D’fa—R (2.79)
- ot’ - ot
The gradient of the retarded time becomes
at = D'(t 1 Rj = ——1D'R: ——1(— n+ D't’ﬁ)
c C C ot’ = R
1, . . n - Ot = — =—| (2.80)
=——(-A+nvd't)=—-nAp0Ot i ca
c( ) c P ci1+ nBi
~\ 0
Ot'(1+np)=—
= o) =

With this result we can finally writé!'R in the form

OR=-f +§(\7ﬁ) OR= ﬁ(g (Bﬁ)—lj (2.81)

For further calculations we neeﬂ’(f{ﬁ). Since the velocity of the particle does not dejpen

on the position oP we havedp = 0. With R = -1 we can calculate
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(Rg)= o(Rp)+ D’t'@

ot

Rp)=
jm'

gL R(g0R a_f; (2.82)
BB R

For the time derivative & we get
da 0 OR 0 (==
E‘ER@ p) = @*ﬁ(RB)

_ 0R- 0[3 . = 6[3
—- R— - R—
*ar PRy =V VB Re:

With (2.81) and (2.82) we find the first requirecpeession

D'a:D'R+D'(Ii[§):ﬁ§(En) A— B+B(BV)+E(§0E’J

ca
O'a=-fi- B+—( B +p? +—ROBJ

- . _0B
ot B+ B* + R_B (2.83)
=vn

c ot
The time derivative of the ratié/a becomes with (2.83)
1@_1@ Boa_108 B

(2.84)

(2.85)

Now we insert the relations (2.77), (2.84) and %2i8to the equation (2.73). The result is
Gl L R o G o |

- 4mqoa3 {_ ari - a + R(B) + RA2 = ,5{ - gtﬁj Fiag{:% )+ R B[ Bj - RD } (2.86)
- {[_ -t ) il )+ 2 - 2| }

ot’

With the definition ofa we can manipulate the expression in the first I{ara[;--]lin the following
way

|
o0

[]. =-Rl+Ag)A + B)+ RAE) + RE2 + RA(AE)+ RE?
= —Rfi- RB+RE? + RE° (2.87)
= R(p? -1)+ RB(E 1) = -0-F? kR+FR)

16
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The second brackét--], becomes with = ap/at’
[, = R(RB)-R*B - R (7B)6 + RB( RB)
=R+ Rﬁxﬁéj -(r2 + R(RB) (2.88)
- (R ra) R8) - HlR(R+
Using the vector relation
b farx) - erfady = ax(bx ¢ (2.89)
we get
(5

Now we replace the two brackets in equation (2l86the expressions (2.87) and (2.90) and get the
electric field in the final form

[-], = Rx (2.90)

g=_d {—1'?2 (If{+BR)+i3Ii><[(Ii+BR)X[§}} (2.91)

4T a ca

We can write this equation in a slightly different way, namely

= - 1-B°  (emns 1 ) oy s
E_4r?so _R3 . j)s(nR+B +—T(nR)x[(nR+B ng}

(2.92)

_ 1-B* (.5 i A I
_4;0 _R21+Ff3)3(n+ )+—nx[(n+[3)x[3}

The first term drops down Witﬂ/ R? and vanishes at longer distances. The second term, however,

reduces only inversely proportional to the distaRcé determines the radiation far away from the
source charge. For further discussions of the synchrotron radiatioarenenly interested in the
long distance field. Therefore, we can we can neglect the first te2rli®) and get

E=_0 is{ﬁex[(ﬁHBR)xfs}} (2.93)

4TE, Cca

Since R points into the direction opposite to the direction of ddiation, one can directly derive
from (2.93) that the electric field is polarized orthogonal to diraatioradiation.

2.7 The magnetic field of a moving charged particle

With the relations (2.21) and (2.67) we can calculate the magnetic dfeh moving charged
particle and we find

—

D — [/ A_Cp'oq ' E _Cuoq(l ' H__l ' aj
B=0 ><A-—4TT a x(aj-—m aD X 812(D a)xp (2.94)

17
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With B: (BX,By,BZ) we use the "retarded" curl operation

9 %X F) gx 2 0 ; Kl
t t t
0 xf=| = A 2.95
B2 ot o ar oy oy ot oz oz ot (2.95)
B, B, B,

The evaluation of this operation provides

(a ot’ a} ( o'
—+——|B

dy oy'ot)"’ 02 7' at’
s | (9 ﬂij ( o’

H XB_ (az-l-az' ot' BX aX aX at
(a ot aj (a at’

B, ~| ot

ox  ox' ot dy oy’ at
o, OB} (ot op, ot 9B,
dy 0z ogy' at' 0z' at'
_| 9B OB, | |0t OB, ot' dB, :Dxﬁ+(Dt'><[§)

0Xx 0z 0z' ot ox' ot
oB, o, | |ot' 9B, ot B,

ox ody ox' at" oy’ ot'

Z

\ /\_/\_/

(2.96)

Since V is independent of the positidhof the observer we havid x f% =0. The gradient of the
retarded time has been derived in equation (2B.result is

D'xB:C—Z(ﬁxB) (2.97)
The second expression needed in (2.94) is
D'a=-A-B+bR  with bzi[ﬁﬁ+[§2+§§j (2.98)
With this relation we get
TaxB=(-n-B+bRxp= -[~nx(3]_M+ { ”p]=-[p|+ PRE (299

Now we insert the relations (2.97) and (2.99) thi® field equation (2.94) and find

g-%q( L]« Lhoes]- %[nxg]J

C4n [X] i A N (2.100)
sl Bl 50 oep B

As for the electric field we are also for the matigméeld only interested in the contributions at f
away places. Therefore, we reduce the formula (.10 a way that it only contains termes
proportional tol/R. The result of this approximation for long distarfields is then

18
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5 - OHod| _ [Exﬁ} +(Eﬁ)[[§><ﬁ]

" an | odeng] o) e

There is an important relationship between theteteand magnetic field emitted by a moving
charged particle. To find this relationship we nigdie formula (2.86) in the following way

qg |17 . = -1 R: RP
- {g[—n—[HbFﬂ—g +?b} (2.102)
0

The vector multiplication oft this equation withetkinit vectori gives

{ [-n-B+bR-- }"”
=4T°|LO a—l{— ﬁ_xﬁ]—an] b{ﬁ’ij}
q {_[B"ﬁ]_ R Gxn|+ (nB+B +—B][Bx”]}

 4tE, a’ ca
Comparison with the equation (2.100) for the maigrfezld leads directly to the following simple
relation between the magnetic and electric field

E=

Exd=,

+—[B x i (2.103)

B= 1[E><ﬁ] (2.104)

ol

One can directly see that the magnetic field ipeerdicular to the electric field and the polarisati
of both fields is perpendicular to the directiorradliation. We can now state tReynting vectoof
the radiation in the form

g=1L Exa: L [EX(EX”)] (2.105)

We apply again the vector relati@nx (B ) = 4(?{() - ”((“aaa)and get
E x (E x ﬁ) = E( ET) -hE=-nE (2.106)

The Poynting vector finally becomes

1 o=,
S=-—E®’n (2.107)
Clo

This is the power density of the radiation paratelii observed at the poir® per unit cross
section. For some calculations it is also helpduétaluate the Poynting vector at the retarded time
t'. With the relation (2.77) we find

Gl 1o dt_ 1
§=8" - = Ept= 25 (2.108)
dt’ CH, dt’ cpo R

or
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& 1= =\
S = ——E2(1+ nB)n (2.109)
TH

3 Synchrotron Radiation

3.1 Radiation power and energy loss

Now we choose a coordinate syst&mwhich moves with the particle of the charge=€. In this
reference frame the particle velocity vanishestaedcharge oscillates about a fixed point. We get

V=0 - B=0 -a=R (3.1)

It is important to notice theﬁ* # 0! The expression (2.93) is then modified to

e-© 1z
4TE, R

— ‘.’-k e 1 (q — ‘.’-k
X R x = —IiNnXNx
RxB I, R B (3.2)

The radiated power per unit solid angle at theadistR from the generating charge is

o A (3.3)
=(4T[)2080(nx P )
With the vector relatiora x (B X ”) = B( ?{() - ”((“aaa) andiin=n =1 we find
(s ]) (o)) <ol afe)ps

Since ﬁﬁ* = Iﬁl‘é*‘cos(a = ‘B ‘cos@ where © is the angle between the direction of the particle

acceleration and the direction of observation #tation (3.4) becomes

. 2 . . . .
(ﬁ X[ﬁXB*D =F*-B’cofO=f 2(1—00:52 @) =B *sin® (3.5)
The power per unit solid angle is then
dP € 2 .,
—=—->—0 sin“®
0~ (anfee, B (3.5)

The spatial power distribution corresponds to toegr distribution of adertz' dipole It is shown
in fig. 3.1. The total power radiated by the chdrgarticle can be achieved by integrating (3.5)
over all solid angle. With

dQ =sin®’' dO’' dy (3.6)

we can write
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2 21T
€

P:mﬁ .([.([sin ©do dp (3.7)

where @ is the azimuth angle with respect to the directdrthe acceleration. The result of the
integrals is simply 4/3 and the total power becomes

RN
P

‘II}}?“
i il )
.. “*‘ﬂﬁ#fflﬂff*}'

0.5 '
Fig. 3.1 Power distribution of an oscillating charged paetiin the reference fram€* (v = 0)

p=_& §? (3.8)

6TE,C

This result was first found bikamor. One can directly see that radiation only occulslevthe
charged particle is accelerated. With the modifocat

=V mvV P
== 3.9
B C cC mc (3.9)
we get
__ & (&Y
~ ere,m°C? (Ej (3.10)
0

This is the radiation of a non-relativistic particle. To get apression for extreme relativistic
particles we have to replace the time t by the Lorentz-invariant dimedt/y and the momentum
p by the 4-momenturR,

dat - dTZldt with y = E = !
y mc  J1-p? (3.11)
p - P (4-momentum)
or
o (-
(dt " \w) Tl el (3.12)
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With this modification we get the radiated powethe relativistic invariant form

P :L (@jz —i(ﬁjz 3.13

s 6T[EO(mOC2)2 dt C2 dt ( ' )
The radiation power depends mainly on the anglevdmt the direction of particle motion and
the direction of the acceleratiatv/ dt . There are two different cases:

. . dav
1. linear acceleration: — ||V
dt
. . dav _
2. circular acceleration: o gv
3.1.1 Linear acceleration
The particle energy is
E>=(m¢)’+ g é. (3.14)
After differentiating we get
dE dp
E—=cp— 1
dt pdT (3.15)
Using E=ym¢ and p=y m,v we have
dE dp
=V 1
dt Y dt (3.16)
Insertion into the radiation formula (3.13) gives
ec dp)® (v\’(dp\*
o me) o) "l L
° (3.17)

oo o )

With 1-B% = 1/y? we can write
2 2 > 2
p = e’c z[dpj _ e’c 2(%) (3.18)
6, (myc?) \YOAU ey (myc?) \ dt

For linear acceleration holds

dp/dt=(cdp/( cdj= dE dx

and we get
ec dE)?
P (%) (3.19)
6rie,(myc)” \ X
Today in most of the modern electron linacs oneadmeve
dE
dE _ 15MeV
dx m

and gets the radiation power
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Ps = 400" Watt (1)

which is completely negligible. In a linac synchiost radiation has not to be taken into account
independent of the particle energy. Therefore,xéitemely high energies linear collider are the
favorite machine type rather than circular accétesa

3.1.2 Circular acceleration

Completely different is the situation when the &eedion is perpendicular to the direction of
particle motion. In this case the particle enengys constant. Erquation (3.13) reduces to

On a circular trajectory with the radiygsa change of the orbit angblx causes a momentum
variation

dp= pdx (3.21)
With v = candE = pcfollows

dp_  _PV_
dt_pw_ R

o |m

(3.22)

We insert this result in (3.20) and get with+ E/m)(,2

e€c E’
67, (myc? ) o*

P= (3.23)

Comparison of the radiation from an electron and a proton withathe gnergy gives
mc =0511MeV
m,¢* = 9381MeV
P )’
=€ = (—m" Czj =11316° (!)
Re M

This radiation is therefore observed in most of ¢thees from electrons. Only at extremely high
energies oE > 1 TeV also for protons the synchrotron radiastarts playing a certain role.

In a circular accelerator the energy loss per iirn

21p

AE=fRdt= Rt,= R=~ (3.24)

The timet, is the duration a particle needs to travel throtigl bending magnets. In straight
sections no radiation is emitted.

We insert (3.23) into (3.24) and get

2 4
pE=—— o (:%Czy % (3.25)
0

For electrons one can reduce this formula to a senple expression
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4 4
AE[keV] = 88518V ] (3.26)
plm]
100. Ll
==
10. ,E'E/,
r/ "
1 7!
s =
=04 ,'/
0.01 L
0001

01 015 02 03 o5 07 1 15

E [GeV]

Fig. 3.2 Energy loss per revolution in the storage ring DBlat the University of Dortmund as a function bét
particle energy

The synchrotron radiation was investigated thé finse byLiénard at the end of the last century. It
was observed almost 50 years later at the 70 Ga¥hsgtron of General Electric in the USA.

At high electron energies the bending radius ofntlagnets has to increase with higher power of the
energy because of the relation
E4

AE O o (3.27)
Table 3.1 Parameter of a few circular electron accelerators
L [m] E [GeV] p [m] B [T] AE [keV]
BESSY | 62.4 0.80 1.78 1.500 20.3
DELTA 115 1.50 3.34 1.500 134.1
DORIS 288 5.00 12.2 1.370 4.5310°
ESRF 844 6.00 23.4 0.855 4.9010°
PETRA 2304 23.50 195.0 0.400 1.3910°
LEP 2710° 70.00 3000 0.078 7.0810°

3.2 Spatial distribution of the radiation from are  lativistic particle
The power per unit solid angle was given in (3$H) a
dpP ez - R
—=—>—B sin“®
dQ (4m’ce, g
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for the radiation of a charged particle in the refee frameK*. The angular distribution
corresponds to that of the Hertz' dipole as shawfigi 3.1. For relativistic particles the radiatio
pattern is significantly different. The radiatios focused forward into a narrow cone with the
opening angle of approximatelyy .

The radiation power per unit solid angle is acaogdb (3.3)

dP ~
—=-S R 3.28
) (3.28)
With the relation (2.109) for the Poynting vectotlee radiated time we get
dP 1 - =
—= E*|1+AB) R 3.29
0o (1+7Ap) (3.29)
Inserting the electrical field (2.93) and with ttiearge of an electrog =€ we find
ap 1 € 1[444 ;]2 -
— = Rx|| R+ X 1+ 18] R
& = o, (4 O (R+B BBt (1+78)
° (3.30)
_ 1 ¢ R {ﬁx (ﬁ+f3)><f3]2
~Ccl (4T[£0)2 c*a’
A
z
N __ _observer
R
particle \\\ ///
trajectory o %
Fig. 3.3 The coordinate system of the moving charged partic
The vectorR pointing from the observer to the moving partislésee fig. 3.3)
Sin® cosp
R=-R sin@sing (3.31)
CosO
and the correlated unit vector
—-sin® cogp
n=| —sin® sing (3.32)
—C0sO
TheLorentz forceof an electron traveling along a trajectory in agmet is
-VB,
F=-eVxB=-¢ 0 |[=ymV (3.33)
0

with
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0 v, 0
v=|0|, VvV=|0 and B=|B, (3.34)
v 0 0
A straight forward calculation yields
ym v, =evB= e@ B (3.35)
On the other hand the bending radius of a trajgétoa magnet can be evaluated according to
1_ e
g -%8 _ pg-YMmY (3.36)
PP ymyVv ep
The transverse acceleration of the particle can lm@written in the form
CZBZ
/, = (3.37)
Y
With (3.34) and (3.37) we get
~ 0 0
=V
B:E: 0|=|0 (3.38)
v/ic) \B
and
(o) ((eB?)/p
0 0

Using again the vector relaticx (B x (:) = b(ag

c( l)) the double product in (3.30) becomes

18] =) 78] B( ]
o)t )

=(n+8)() -
-sin® cosp oa? (CBZ)/p
=| —sin® sing (—sin@ co&pij— 0 (1—[3 co@) (3.40)
B -cos® 0
op? sin"@cos ¢ 1-BcosO
_CP sin@sing cosp | - 0
P —(B—cos@) Sind coy 0

The square of this expression is
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oop sin® @ cog @ ’
{--}? == sin? @ sing cosp

- 2sin” © cog cp(l— B co@) + (1— B co@))2
- (B - cos@) Sind® co®
C2B4

2

5 {sin4®co§‘(p+ sifO sidg co§p+(B— ccs&)2 $® Ccog-

- 2sin’ @ cog @(1-B co®) +(1-B CO@)Z}
_c’p’

2

(3.41)
{sin4®co§‘(p+ sifO@sin® pcog @+ B sifO codp-2B cd® si® cop+

+c0g O sirf O codp-2 sih® casp+ 2P c@& <6 c2cqs+(1—[3 él)é}
and

=0

sin* © cog (p( coép+ siﬁ(p—l) + (BZ —J) si® cég+ (1— B c@§2
(3.42)
) %{(Bz _1) sin’ © cos @+ (1— B co@)z}

From the definition (2.69) we derive with (3.32)da(3.38)

a= R(1+ ™) = H1-Bcoso) (3.43)
We insert (3.42) and (3.43) into (3.30) and theatadl power per unit solid angle becomes

P 1 & p (BZ - ])Sin2 Ocog @+ (1-BcosO)?
) 2 2 5 (3.44)
dQ cy, (4me,)’ P (1-Bcoso)

A

S
o

\"“{:}‘\}‘

- o
@ 2

0‘&33?\
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ey
SN
——

W
S

7

5

B=0.3
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Fig. 3.4 Radiation pattern for different particle velocgieetweers

With the dimensionless patrticle energy

(3.45)

me  J1+p?

we vary the angl® between the direction of particle motion and tiveadion of photon emission

according to

y:

(3.46)

(u= dimensionless number)

u
Y
and calculate the photon intensity using equatio#4). The result is shown in fig. 3.5.

6=
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2

Fig. 3.5 Photon intensity of the synchrotron radiation dsrection of the angl® in terms of]/y

It is directly to see that the radiation is maislncentrated within a cone of an opening angle of
+1/y . In equation (3.44) we sgt= n/2 and the fraction on the right hand side reduces to

1
Wo)=—— (3.47)
(1— [3>cosG))3
With the conditionsy > 1 and © <1 we find the approximations
1 1 ch
B= 1_F~1_W and CO@~1—7

and we get from (3.47)

1 o\’ @ 1 e (e 1)°
~[1-|1- - “1-1+—+——-—| =|=+ 3.48
we)=|1 (1 2y2j(1 2) [1 PP 4y2} (2 2y2j (3.48)

The peak intensity is @ = 0, i.e.
W(O) = (—j N 3.49

We chose now an angle af=1/y and find the relation
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1 137
7+7
W(J/v)_(sz ZVZJ (1Y 1
w(0) (1j-2 ‘(zj - (3.50)
2y?

8
One can see that most of the radiation is emittétivthe cone ofo, =1/y. Therefore, the
opening angle of the synchrotron radiation is gilgrihis amount.

3.3 Time structure and radiation spectrum

In the following we will only present a phenomermgit@al approach to the calculation of the photon
spectrum of the synchrotron radiation. A detailedleation of the spectral functions can be derived
in "J.D. JacksonClassical Electrodynami¢sSect. 14" or in "H. WiedemanPRarticle Accelerator
Physics 1) chapter 7.4".

As shown above the synchrotron radiation is focusteatply within a cone of an opening angle
© =1/y . Therefore, an observer locking onto the parttcdgectory while the electron passes a

bending magnet (fig. 3.6) can see the radiatiorfitbetime when the electron has reached the point
A.

observer

electron
trajectory R

t

Fig. 3.6 Generation of a short flash of synchrotron lightam electron passing a bending magnet

The photons emitted at poiAtfly along a straight line directly to the observath the velocity of
light. The electron, however, takes the circulajeittory and its velocity is slightly less than the
velocity of light. During this time the radiatiomme strokes across the observer until the @iist
reached. This is the last position from which radracan be observed. The duration of the light
flash is simply the difference of the time usedtbhyg electron and by the photon moving from the
point A to point B

. . _2p0 2psin@
At=t -t = op c (3.51)
or
3
At:Zp(%—@ %— J
(3.52)
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With
1 1 1 1[ 1) 1 1
-z == 1+—|==+— (3.53)
y-v2y yi1-v? yUo2y?) oy 2y®
we get
At = Zp( NEE S 1) 4 (3.54)

y 2y y 6y’ 3oy’

In order to calculate the pulse length we assuimending radius op = 3.3 m and a beam energy of

E=1.5GeV, i.ey=2935. With this parameters the pulse length e
At =5810" sec

This extremely short pulse causes a broad frequemegtrum with théypical frequency

_2n_ 3wy’
Wyp = At 20
More often thecritical frequency
0. = Oyp _ 3y’
¢ m 2p

(3.55)

(3.56)

(3.57)

is used. The exact calculation of the radiationcspen has been carried out the first time by

Schwinger He found
AN _ R (ﬂj
de/e Wi "\ w,
With the radiation power given in (3.23)
ec E*
R=—"—""7T "2
6n£0(moc2) P

the total power radiated by electrons is

2 4
O:ew N:ey

|
6TE p* Ep "

4

with the beam current

Nec
l, =——
21p
The spectral function in (3.58) has the form
9@
o J Kyo(E) &

where K, 5(€) is the modified Bessel function akd= W, .

Because of energy conservation the spectral fumstidisfies the condition

TSS(E) & =

Integrating until the upper limg =1, i.e.w = w, gives
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1

[s(e) &= (3.63)

This result shows that the critical frequerwy divides the spectrum into two parts of ident
radiation power. An example of a strum radiated from a bending magnet is shown in3ig

T T T TTTTT T T
critical frequency
1 !
o
—— S
I H—F= §
01 \‘.
X
0.0
b
0.001 \ =
.
0.0001 / ”
0.001 0.01 0.1 1 0D 10.

Fig. 3.7 Spectrum of the synchrotron radiation emitted Bcebns with a kinetic energy E = 1.5 GeV and a bending
radius ofp = 3.3 m

The radiation from a bending magnet is emitted widthorizontal fan as shown in fig. 3

radiation fan

\

electron beam

\=E\

/

bending magnet

Fig. 3.8 Synchrotron radiation
from a bending magr

electron beam

The broad spectrum emits in the visible reg
almost white light as to be seen in fig. 3.9. Abtive
critical frequency the spectral intensity drops dc £
rapidly.

Fig. 3.9 The visible light emitted by relativistic electrc
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4 Electron Dynamics with Radiation

4.1 The patrticles as harmonic oscillators

Because of the longitudinal and transverse focysihg particles oscillate with respect to the
reference phase of the rf-cavity or the beam adefined by the magnet structure. In a good
approximation we can investigate the oscillatiokes & harmonic oscillator.

4.1.1 Synchrotron oscillation

In a circular accelerator as a synchrotron or eag®ring it is necessary to compensate the energy
loss during the revolutions by a rf-cavity. Averdgever many revolutions the compensation must

be perfect. Therefore, the so called "phase fogldmkes care of a stable phase of the particled

with respect to the rf-voltage.

< |

Ap
p =0

/
\ / _

HF-Resonator ) /

g
é

Vﬁa

Fig. 4.1 Principal of the phase focusing in a cyclic maehin

For an on-momentum particl&f/ p=0) the energy change per revolution is
E, = eUysin¥, - W, (4.1)

with the reference phasés, the peak voltagéJ, and the energy los®, due to synchrotron
radiation. For any particle with a phase deviatddwe find

E = eU,sin(W, +A¥) - W (4.2)
The energy loss can be expanded as
dw
wW=W +EAE (4.3)
The difference between (4.1) and (4.2) is
. _ dw
AE = E- E, = eU[sin(W, + AW) - sin¥] -2 hE (4.4)

Since the frequency of the phase oscillations 1y W@w compared to the revolution frequency
f, =1/T, the time derivative of (4.4) can therefore be \wntas

_LE _ey,
- TO - TO

[sin(w, +AW) - sinw _dWZE (4.5)

AE
dE T,

The phase differencAY is caused by the different revolution time of herticles with energy
deviation. The time difference for relativistic pales is

AL AE
AT=T,—=T,a— (4.6)
0 LO 0 E

Here we have used tmeomentum-compaction-factardefined as

33



SYNCHROTRON RADIATION JUAS 30. January — 3. February 2012 Klaugawil

AL A
T =P 4.7)
Ly P
With the period of the rf-voltag&: the phase shift becomes
AT
AW = 2n_|_— =w,; AT (4.8)
rf
The ratio of the rf-frequency and the revolutioaguency must be an integer number
q= w—” with q=integer (4.9)
g is often called the harmonic number. Combining)4nd (4.8) we get
AT AE
AY = qw AT =2ng— = 2nqa — (4.10)
T, E
and after differentation
. AW 2nqa AE
Ap = 2F - <190 AE (4.11)

T, T, E
First we discuss only the case with small phasélaisons, i.e. AW <« W.. Then we can write
sin(lJJS + A‘P) - sinWy,
=sinW¥, coAW + co¥, sinW — siW, (4.12)
= AW cosW¥,

With this appriximation equation (4.5) reduces to
ey, dW AE

AE = AWcosW. ———— 4.13
T, * dE T, (4.13)
A second differentiation provides
. eu, . dw AE
AE =—°AWcosW. ——— 4.14
T, * dE T, (4.14)

Insertion of (4.11) gives
1dw . 2ngea U,cosW¥

AE +?0 iE AE TZE AE=0 (4.15)
or

AE +2a AE + Q*AE =0 (4.16)

with
a, = 1 aw (4.17)

2T, dE
and
_ eU, ga cosY,

Q= wu\/— oE (4.18)

The equation (4.16) can be solved by the ansatz
AE(t) = AE,expw t (4.19)

Then we get

34



SYNCHROTRON RADIATION JUAS 30. January — 3. February 2012 Klaugawil

w=-a & -Q° (4.20)

Since the damping is very wea# (< Q) the energy oscillation can be written in the form

AE(t) = AE,exd - a {) expiQ ) (4.21)
We have a damped harmonic oscillation with the deggy Q. This oscillation is called the
synchrotron oscillation
4.1.2 Betatron oscillation
The motion of a charged particle through the matatgte of a cyclic accelerator can be expressed
in linear approximation by the fundamental equation
1 1 Ap
- k(S)j X9=—3—
p*(9) p(s) p (4.22)
zZ'(9+ K9 ¢3=0
where p(s) and k(s) give the bending radius and the quadrupole sthreafithe magnet lattice.

Here only on-momentum particles are interesting aitt K(s) =1/p?(9- K 3 we find for the
horizontal plane

x"(s)+(

X"(s)+ K(9 X$=0 (4.23)
In the vertical plane a similar equation holds. éxing toFloquet's theoremwe find the solution
X(9) :\/EN/B(scos%LP (s)+qﬂ (4.24)

with the constant beam emittarcand the variable but periodic betafuncti®fs) . The phase also
varies with the place along the orbit and can h@essed as

Sdcr

Y(s) = Om

(4.25)

The solution (4.24) is a transverse spatial partadcillation with respect to the beam orbit. For
ultra relativistic particles witlv = c there is a strong correlation between the posgiahthe orbit
and the time

s(t) =g + ct (4.26)

With this relation one can also understand the iapaiscillation (4.24) as a time dependent
oscillation within the magnet structure. This tnagrse periodic particle motion is callbétatron
oscillation The formalism in (4.22) contains no damping,sitonly valid for particles without
radiation. This is true for all particles of velgw energies or for particles with high mass (see eq
(3.23)). In the case of high energy electrons weeha damping of the betatron oscillation. This
damping will be introduced below.

4.2 Radiation damping

The damping needs under all circumstances an emesgydepending on the oscillation amplitude.
The mechanism of the damping of particle oscillaidos based on the emission of synchrotron
radiation. This will be discussed in the following.
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4.2.1 Damping of synchrotron radiation

The radiated power of the synchrotron radiatiof8i23)
ec 1 E*

P=———"-7 (4.27)
6rte, (rT}JCZ)4 p2
The bending radius is
2
1.eg-%p o E -em (4.28)
PP E
With this expression we can write the radiated pawé¢he form
e'c®
P =CE’B* with C=——F"—+ (4.29)
67, (m,c’

In order to evaluate the radiation damping of the synchrotroraismil we use the equation (4.16)
AE +2aAE+Q°AE=0
with the damping constant (4.17)
_ 1 aw
2T, dE
It is necessary to calculate the ratiow/ dE. For this purpose we estimate the energy loss along a
dispersion trajectory with the element

ds = [14'&) ds (4.30)
Y
Using ds' / dt = c we get the energy loss per revolution
T
¢ ds 1 AX
w=[Rdt=§ R %P{l —j ds (4.31)
0 e P
The displacemenfix is caused by an energy deviation according to
AE
AX = DE (4.32)
With this relation the energy loss becomes
W= jg 1+EE ds (4.33)
Differentiating gives
dw _11|dR D(dP AE 1)
St —| = — — 4.34
dE cﬂdEer dEE+PSE}dS (4.34)

The energy deviatioAE performs periodic vibrations about the reference energy. After averaging
over a long time the influence of the energy deviation vanishes

AE\
<?> =0 (4.35)

aw_1 dPS+%ds 4.36
dE ~cf| dE T pE (4.36)
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For further calculations we need an expressiord®f dE. We use the radiation formula (4.29) and
get

di _ 2CER’ +ZCEZB@ = ZP( 1 1 dB) (4.37)
E dE E BdE
In quadrupoles with non vanishing dispersion teé&lfivariation with the particle energy is
dB_dBdx _dBD 438
dE  dxdE dx E (4.38)
It is put into the expression (4.37) and we getnfi@.36)
aw _ 1 2P(1+ D dBj PR ds
dE ¢ E BE dx °*pE
4.39
—36Pds —3€DP —2@ —1ds (4.39)
With (4.17) the damping constant is then
- L AW _ W 2+ L DP, E@+i ds (4.40)
2T, dE  2T,E|  cW, Bdx p
or
WO
2+D
&= 5rg2*0) (4.41)
with
D =t ¢op[29B 1 (4.42)
cW, de p

For practical use it is more convenient to apply the bendingsadimd the quadrupole strendth
rather than the magnetic field and its gradient. From the defirofidlne magnet parameter we can
derive

_ecdB dB _kE
TEdx  dx ec 1dB _
1_ec 1_ec = E&—kp (4.43)
o E- ~ B EP
In addition we write the radiation power in the form
c E*
) = o F (4.44)
Then the integral (4.42) becomes
4
pp[ 298 2dB 1 ds= CZE2 22 ka+_
B dx p ec p
(4.45)

4
= %3@9(% +i2jds
ec ) p p

The energy radiated by an on-momentum particle is
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.
R | _CE* (ds
W, = ! Pdt _E§ Eds_@ﬁ{;ﬁ (4.46)
and we modify the damping constant for the syncbrobscillation as
8= (2+D)
0
jﬁ';(zmlzjds (4.47)
with D = P
ds
0’

It is important to mention that the damping onlypeéeds on the magnet structure of the machine. It
is possible to change the damping by varying tmetionD. In particular forD < -2 the synchrotron
damping is disappeared and the beam is unstabige widuld happen using an alternating gradient
synchrotron ¢ombined function magnetas a storage ring with constant fields. In ewgti
synchrotrons with combined function magnets antpiag is compensated by the adiabatic
damping during the acceleration.

4.2.2 Damping of betatron oscillations

We will now discuss the damping of the transversetigle oscillations. Following-loquet's
transformatiorwe can write

z= bJB(;) cosp| ,_ 58S z= Acosp

A
Z=-——sing (4.48)

_-—\/@sincp = B(9)

Then we can calculate the amplituleising the trajectory parameteandz’.

I —

A* = Acos’ @+ A’ sifp= 22+[B (s) 2]2 (4.49)
A

momentum

of the photon 7, j
p /

particle
trajectory

\j

/ S

Fig. 4.2 The damping of the transversal particle oscillaio

A photon is emitted in the direction of particle toa and the particle momentum is reduced by
dp. The electron momentum is then

"

p =p-dp (4.50)

The longitudinal componem, of the particle momentum is restored by the rfiyavhe transverse
component, however, stays reduced. Accordinglyatigez’ is reduced by the amount
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5z =P (4.51
I
The energy variation of the ultra-relativistic dlen is then
CZ
OE = TépD (4.52)
or usingv = z'c
c
OE = ?épD : (4.53)
With the relationE = c‘ﬁ follows
OE
oz =——7 :
Z £ z (4.54)
From (4.49) we get the variatiomdoes not change (!))
3(A2) =8(Z) + 8 2787 3) =B $3( 2) (4.55)
B
and we find
2AOA=2p%(9 202 = A APR(B'D'z (4.56)
After insertion of (4.54) we get
oE
AdA=—B*(9 zZE (4.57)
Now one has to average ow?. Taking the formula (4.48) gives
2 2n 2
'2) = sin’ pde= .
)= gm0 g (4-59)
In this way we find with the relation (4.57)
A 5E A’ BE
A{OA = - (g)—=-——— 4.59

After a full revolution the energy loss&& have accumulated to the total 1086. The average
amplitude variation per revolution is then

AA= 2(5,0) (4.60)
From equation (4.59) we get
M __ W%
A op (4.61)

Obviously the amplitude decreases, i.e. we havengthg of the betatron oscillation. The damping
constant can be evaluated according to

dA

A =-a, dt (4.62)

With the revolution timeat = T, we finally find
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=AW 4.63
% AAt 2EI' (4.63)

A similar calculations which includes the dispensifunction provides the expression for the
horizontal damping constant

°_(1-D ) (4.64)

0

a)(:

4.3 The Robinson theorem

With the equations (4.47), (4.63) and (4.64) weehakerived the damping constants for the
longitudinal synchrotron oscillation and the batimsverse betatron oscillations:

a= (24D )= oy,
2T,E 2T,E
a, = W _ W J, (4.65)
2T,E 2T E *
W, W,
a =—-(1-D )=,
0 0
with
J,=2+D
J, =1 (4.66)
J, =1-D
From these relations we can directly deriveRiodinson criteria
J,+J,+J.=4 (4.67)
The total damping is constant. The change of thapidag partition is possible by varying the
guantity
ﬁi(ZK + F\%Zjds
D = ds (4.68)
R

In most of the cases and in particular we hawe< 1. This condition is called the "natural damping
partition”. In strong focusing machines it is pb#sito shift the particles onto a dispersion
trajectory by variation of the particle energy. Wihis measure one can change the valu® of
within larger limits. The trajectory circumferencalepends on the rf-frequentgs

df
L:q)\:q% = dL=-qc 3 (4.69)
We get

AL gc Af Af
ToTLe T (4.70)

With the momentum compaction factor we get
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AL_ BE | AE_1AL_ 1M @)
L E E alL aof '

The variation of the rf-frequendyshifts the beam onto the dispersion trajectory
1a0
a f

Xo(9) =~ DX (4.72)

|
|
no damping of the
synchrotron radiation
|
no damping of the
betatron oscillation
|
|

g -

0 A
S

Fig. 4.3 Variation of the damping partition by changing th&éequency

Particles traveling along a dispersion trajectaagpthrough a quadrupole off-axis. Then the quads
act like a combined function magnet and the amofiit increases or decreases depending on the
frequency shift. The result is a change of the dagpartition as shown in Fig. 4.3.
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5 Particle distribution in the transversal phase space

5.1 Transversal beam emittance

The natural beam emittance is determined by thessam of synchrotron radiation. This happens
only in the bending magnets and therefore onlyceffen the bending magnet have to be taken into
account.

bending magnet

dispersion
trajectory

Ox' 1= -5

trajectory ) /

R
orbit Ox *
Y

Fig. 5.1 Generation of betatron oscillations by emissioa ghoton

\j

We start with an electron traveling along the ideddit with the reference momentup. The
emittance is therg; = 0. In the dipole the particle emits a photonhwiihe momentun\p and
continues the flight with the momentypg - Ap. It now belongs to a dispersion trajectory witk th
displacement and angle
A A
Bx = D?IO and X = D’?p (5.1)

with respect to the orbit. As a consequence itstascillating after the emission of a photon and
has therefore a finite emittance. It can be catedlaising the ellipse relation.

g = yOX* + 200xdX’ + BOX*

= {d—;’j (yD? +20DD' +pD"?) (5.2)

2
:(%J H (S)
p
This relation is correct only for one certain ssglectron. To get the beam emittance one had to

integrate over all particles in the beam, or, wather words, over the energy distribution of the
electrons. For relativistic particles is

4p _AE

TE (5.3)

A similar calculation as for the bunch length gitles natural beam emittance in the form
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1
_ 55 fc y2<R3H (S)>
323me’ " | < 1 >
X R2

The damping is represented by the amdyrtl-D . The averaging...) has to be done only in
the bending magnets. If all bending magnets aralege. they have the same bending raélushd
the same length we get withl, = 1 the simplified expression

(5.4)

X

oE®

g, = 14700
RI

[H (9ds (5.5)

In this formula we have& in [GeV], Rin [m] andg, in [m rad]. One can directly see that because of

H (s) = (yD? + 2aDD’ +pD™) (5.6)

the emittance is small whenever the betafunctioth #tx@ dispersion is small inside a bending
magnet. Circular electron machines for low emiteath@ams need therefore a magnet focusing
providing small waists for the optical functions.

5.2 Examples

Increasing the quadrupole strength decreases wahimsual range the betafunctions and the
dispersion. This consequently reduces the fundtis) and produces a lower beam emittance. We
can demonstrate such behavior taking a cyclic nmachiith a simple so called "FODO-lattice". In
this case we have a succession of a focussing gp@lér (F), a drift space with a bending magnet
(0), a defocusing quadrupole (D) and again a dpéice with a bending magnet (0). This explains
the name FODO-lattice. An example for a machiné sitch magnet structure is shown in fig. 5.2.

The chosen parameters of the cell allow the vamatif both quadrupole strengths within a range
from k = 0.4 m? to k = 1.6 n. Values between this limits give stable opticsfign 6.3 the beam
emittance is shown as a function of the quadruptiengths. Here for simplicity the gradients for
both quadrupole families have been set always ¢osttme value. Variation &f from 0.4 n¥ to
=1.5 m? reduces the emittance almost by two orders of fitzdm!

Fig. 5.2 A simple ring with FODO-structure. On the rightaside one cell of the lattice is drawn
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Fig. 5.3 Beam emittance as a function of the quadrupbig. 5.4 Chromaticity as a function of the quadrupole
strengths. strengths
12 6

I N [ S

QF B Qb B QF

Fig. 5.5 Optical functions of the FODO lattice
The strong focusing with the low beam emittance hasvever, a significant disadvantage. With
increasing quadrupole strength, the chromaticitydases rapidly as shown in fig. 5.4. Machines
with extremely low beam emittances, i.e. dedicatgtchrotron light sources, need a very effective
sextupole structure for chromaticity compensatidhe main problem is the reduction of the
dynamic aperture by the strong nonlinear magnétidd.

The betafunction and the dispersion have in thelingrmagnet not the minimum value. Therefore,
the FODO lattice provides for given bending magmetsnecessarily extremely low emittances.

Much lower beam emittances are available with thplétt-structure”, as shown in fig. 5.6. In this

case between the bending magnets three quadrupcdesrranged, namely QD-QF-QD. The

resulting optical functions have inside the bendinggnet a waist. The smallest values of the
horizontal optical functions are now in the bendinggnet, which gives low amounts #is).
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© > O
Qglc S0
B QD QF QD B

335 m

Fig. 5.6 Triplet structure and its optical functions

This structure has been used for the electrongoriag DELTA at the University of Dortmund.

The emittance at an beam energyEof 1.5 GeV ise, = 710° m rad. This is state of the art in
modern synchrotron radiation sources.
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6 Low emittance lattices

6.1 Basic idea of low emittance lattices
What is the lowest possible beam emittance ?

In electron storage rings optimized as dedicatedtaytron radiation sources long straight sections
for wiggler and undulator magnets are requireds®tiaight sections have usually no dispersion,
i.e. D = 0. Therefore, at the beginning of the bending reagext to the insertion the dispersion has

D(') O '

A
§
D
D(s)
DO /
D '0\}_ / orbit _
D=0 S
Y %o \
- / ~ bending magnet

Fig. 6.1 Optical functions at in a bending magnet for miaimpossible emittance

With this initial condition the dispersion in therding magnet is well defined. Wit R<1 we

get
D(s) = R(l— cos?SJ = S—Z
- 2R
s

S
D'(s)=sin—=—
() R=R

Under these conditions the emittance can only laa@bd by varying the initial valu@s andag of
the betafunction. These functions can be transfdriméhe bending magnet as

B(s) -a(9) (1 s B, -—a,) (1 O
(-a(s) v(s)j_(o J - a, voj[ﬁs 1j (©:3)

and after straight forward calculations
B(s) =B, —2G05+y0§
a(s)=a,-Y,S (6.4)
y(s) =y, =const.

(6.2)

With this results we can write the functiblfs) in the form
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H (s) = y(s)D*(s) + 2a(s)D(s)D'(s) +B(s)D'*(s)

6.5
:%[%54 _aos3 +[3032j ( )
For identical bending magnets and with= 1 we get from (5.4) or (5.5)
V|
e =C,—|H (9ds
=Cy j (3
. (6.6)
=C yz(l_j y_()l—%+&
“{RJL20 4 3
with
55 #
C,=—~—=——=383210"m (6.7)
Y 32/3mc
The relation
I
—=0 6.8
= (6.8)
is the bending angle of the magnet. With this esgig;n we can write
l a, B
e =c v Yo % L Po
=CY (20 2 3} (6.9)

Since the emittance grows wi@° one should use many short bending magnets radihara few
long ones to get beams with low emittances.

In order to get the minimum possible emittance waeehto vary the initial condition$ andag in
(6.9) until the minimum is found. This is the céfse

Oe, _ 5 0 (1+a§|__&+&j
oa, oa,\ B, 20 4 3
(6.10)
A(&'__ij_o
B, 10 4)
and
o, _ _1+orf,|_+1j_o 611
B, N 20737 61

with A=C, y>©@°. With the two equations (6.10) and (6.11) we calcudate the unknown initial

conditionsBy anda,. We get
Bo,min :Z\/§I = 1549
S (6.12)

Ol g =+/15= 3873

The minimum possible emittance is therefore deteechionly by the magnet lendth

This principle is used by théhasman Green latticeas shown in fig. 6.2. Looking into the details
one will find that the optical functions do not elg fit the conditions (6.12). In particular wevsa
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in realistic beam opticsx, <+/15. The reason is the extremely high chromaticityseauby the
ideal initial conditions (6.12). The reduction betdynamic aperture would be too large.

30 3.0
B [m] D [m]
254 2.5
20+ 2.0
154 1.5
101 -1.0
51 -0.5
0 S — . 0
0 5 10 S [m] 15

N1 NN o m2 e MY M

Fig. 6.2 An example of &hassman Green lattid¢liSOR project, Japan)

The simple magnet structure in fig. 7.2 has noilfidiky. Therefore, more quadrupole magnets are
used in modern light sources as the ESRF in Gren@ibl 6.3 and 6.4)

Fig. 6.3 Site of the European Synchrotron Radiation FgdiiERF in Grenoble
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Fig. 6.4 The optical functions of one cell of the ESRFitatt

Magnet structures of this type are often calldduble bend achromat lattic6'DBA). Another
modification of this optical principle is thériple bend achromat lattice(TBA), as applied in the
storage ring BESSY Il in Berlin (fig. 6.5).

—1.0

B(s)
1 D(s)

By

15.0 4 ~0.8

10.0 = _0.5

~0.3

0.0 T T T T T T T T T T T T T S[(m)l 0.0
0 2 4 6 8 10 14
m g [ -ﬁ\ﬁ/—_—
L L U L

Fig. 6.5 The optical functions of one cell of BESSY Il irEin
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7 Appendix A: Undulator radiation
Synchrotron radiation is nowadays mostly generhtedse of undulators (or ,insertion device

undulator periode

/
Z }\'u

S

electron beam

I/

magnet poles

Fig. 7.1 Principal of an wiggler or undulator manet

This is a magnet with a larger number of short ldipavith alternating polarity. The differenc
between ,wiggler* and ,undulators® is mainly givday the magnet strength and will be defir
later. First we will call it W/Umagnet

7.1 Thefield of awiggler or undulator
Along the orbit one has a periodic field witte period lengtiA,. The potential |

0(s,2) = f(z)co:{Zn}\iJ = f @)cobk, d . (7.1)

In x-direction the magnet is assumed to be unlirr
The functionf(z) gives the vertical field pattern. With tLaplace equation

0%¢(s,2 =0 (7.2)
we get
dzdfzﬁ@ —f()K=0 (7.3)
and find the solution
f(2) = AsinH k, 3 (7.4)
Inserting into (71) the potential becom
$(s, 2 = Asinh(k 2cos(k 9 (7.5)

and the vertical field component
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B,(s 2 :% =k, Acosl{lgjﬁ cosk, s) (7.6)
i Az
'\/ pole
il Bo/i 9/2
! 0
W ! .

Fig. 7.2 Definition of the poletip field
In order to get the integration constA we take the pole tip fielB, at{s, z} :{O, g/2} . With (7.6)

we get
B, = BZ(O,%j =k, AcosV{ KJ%j =k,A COSE\T[%} (7.7)
and
A= B, (7.8)
9
K, cos?{n A uj
Insertion into (7.6) provides
B,(s 2 =Lgcosh(<uz)cos(g s) (7.9)
cosr{n)\uj
and
B, : .
B,(s,2 =———~sinh(,z) sin(k, s) (7.10)
cosv(n)\gj

At the orbit the periodic field has the maximumus
BO

g
cosV{n X uj

For given period length th&, the field decreases with increasing gap heg. Short periods
require therore small pole distance

B= (7.11)
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0
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g/ry,

Fig. 7.3 Peak field at the orbit as a function of the relatbetween gap height and period lel
At the beam the periodic field is
B,(s 3= Bsin(k 3. (7.12)
The most simple design is an electroma

z & ‘\ \Coﬁls \js
R

Fig. 7.4 Design as an electromagnet

Shorter period length down to a few cm are possilyleuse of permanent magnets. The f
variation is made by changing the gap he

Ay
INE =S
R R I S
e =R
e B

permanent magnets

Fig. 7.5 Undulator using permanent magnets
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A hybrid magnet consists of permanent magnets ramdpoles

Ay iron

Z | ()
Z | w—— ()

L | RO

«
) | tm— Z

—_— NN\ — PO ——

\

permanent magnets

Fig. 7.6 Principal of a hybrid magnet

W/U-magnets have maximum fields at the beam about Th&.minimum wave length is limite
because of

_4nR _ 4m(m)€)3i

A = - AN97])
c 3y 3eE* B

(7.13)

Shorter wave lengths are possible with superconguatigglers with fields o B>5T

porlod F
symmetric peried F— 1900 —|

Fig. 7.7 Example of a superconductive wiggler
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The W/U{ield has to be matched that the total king angle is zero.
L Au
4

RanE trajectory RanE

+\\/\/\4/\/\//_—>

NSNSNE

s
- half

pole

Fig. 7.8 Matched undulator trajectory
We have then

S
[ B.(9ds=Hcod k} dso (7.14)
w/uU S
This condition is fulfilled if
A
§=0 and s= mu+7“ (7.15)
with n=1,2,... . It is possible to utilize at both ends short negmeces of half pole length.

addition one has to shim the single poles to corsgterthe unavoidable toleranc

7.2 Equation of motion in an W/U-magnet
In a W/U-magnet we have the Lorentz fo

F=p=myVv= ew B (7.16)
With the approximation
0 vV,
B=|B, und V=] 0 (7.17)
BS VS
we get
_VSBZ
4" e
Vv=—--Vv,B (7.18)
my
v, B

The velocity component ir-direction is very small and can be neglected. Vx=v, and $= v,
we have the motion in theexplane

= -5 B,(9)
my

. (7.19)
§=%—B,(9)
my
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This is a coupled set of equations. The influentehe horizontal motion on the longitudinal
velocity is very small

X=V,<<cC and 5= ¢\ =B ¢ const. (7.20)

In this case only the first equation of (7.19)ngpbortant and we get

BceyB cosk,s) (7.21)

%= -

We replace with
x=xBc and %= Xp°¢
the time derivative by a spatial one and get

X" == eB cosk,s)=— eB co{ZniJ (7.22)
mBoy T mBoy A, '

With 3 = 1 we can write

(7.23)

The maximum angle is afin(k,s)=1

e, 0, =x,, =~ e (7.24)
y 2mtm,c

S
A %\ > The dimensionless parameter
\_,( SN s
K=—"4 (7.25)

trajectory 2Tmye
is called wiggler or undulator parameter. The

maximum trajectory angle is then
0,=— (7.26)

This is the natural opening angle of the synchronadiation. With the paramet& we can now
distinguish between wiggler and undulator:

undulator if K<1 Le. 0O, <ly
wiggler if K>1 e. 0O, >y (7.27)

Now we go back to the system of coupled equati@rifj. We assume that the horizontal motion is
only determined by a constant average velogjty (8. From (7.23) and (7.25) we get

X'(9 = %sin(kus): o, sin(k, 9) (7.28)

With x=Bcx, s=Bct andw, = k B c one can write

55



SYNCHROTRON RADIATION JUAS 30. January — 3. February 2012 Klaugawil

x(t)=Bco, sin(oout) =f c% sir(wut) (7.29)
For the velocity holds
Bc ,
X =g - %
: o 1
S and with? = 1—F we get
1 X
§(t) = 1—(F +?j (7.30)

Since the expression in the brackets is very siti@lroot can be expand in the way

s<>(y__ﬂ

- (7.31)
=C 1—i(1+y—2>‘<2J
T 2P &
Inserting the horizontal velocity (7.29) and usthg relation
sin’ (x) = (1- co2x)/ 2
we get
1 B*K?
1) = %1—2—\/2{“7(1— cos(w,t ))}} (7.32)
This can be written in the form
) =(3+4%¢)
with the average velocity
. 1 BZKZ
(9= (,{1—2—yz{1+ > }} (7.33)
and the oscillation
. CBZ KZ
A1) = 4—yzcos(2wut) (7.34)
From (7.33) we derive the relative velocity wigh-
L9 1 K?
B = . =1 2y 1+ > (7.35)
With (7.29) and (7.33) to (7.35) we get
. K .
x(t) =B cvsm(wut)
- (7.36)
. . . CB
8(t) =P c+ ay? cos@uw,t )

Using w, = k 8¢ andf3 = 1 one can evaluate the velocity simply by iné¢ign. In the laboratory
frame we have
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x(t) = —k—Kycos(oout )
) (7.37)

. K
s(t) =B ct+ Wsm(Zwut)

u

We get an impressive form of motion in the centtmass system K which moves with the
velocity B~ with respect to the laboratory system. With tla@sformation

X =x und S =y( sB c) (7.38)
we get

x(t) = —%cos@ut)

* K2 (7.39)
s(t)y=Bct+ 5 sin(2w,t)
8k,y
10°m
—K=15
5 _]
[ K=1
X
e K=05
O _ |
-5
S
-5 0 5 5
10 m

Fig. 7.9 Particle motion in the center of mass frame tiagethrough an undulator magnet

7.3 Undulatorradiation

Because of the periodic motion in the undulatoratéoh is emitted in the laboratory frame with a
well defined frequency

_2n_2mBe _

Q
YT A

k,Bc (7.40)

u

In the moving frame with the average velo@tythe frequency is transformed according to

w=yQ, (7.41)

57



SYNCHROTRON RADIATION JUAS 30. January — 3. February 2012 Klaugawil

The system emits monochromatic radiation. In ordetransform a photon into the laboratory
system we take a photon emitted under the aBgle

A

X
!
0, -
Ps S
Energy and momentum of the photon are
E=7hw
_hw (7.42)
P=¢
and the 4-vector becomes
E/c E/c
P, |_| psin®,
P = = .
f 0 0 (7.43)
P pcose,
Transformation into the Systeif is then
E'/c y 0 0 -By E/c
) 0O 10 O sin®
P | _ PSINZo (7.44)
p, 0 01 0 0
/) =By 0 0 y pcose,
The energy of the photon becomes
E_ .E .. . hw,
<Y E—By pcose, =y - (1—B cos@o) (7.45)
With E" = hw we get
2=y H (1B coso) (7.46)
and
yp—) (7.47)
v y*(l—B* cos@o) '
Using (7.41) we can write
W S T
" 1-B cos9,
and find
G N1 (7.48)
Q, A, 1-PBcoso, '
with
A, =A,[1-B cosd,) (7.49)
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Now we replacg’ by (7.35) and expand
o2 1
cos®,=1-—2> da ©O,==-<1
0 2 0 y

After this manipulations we find

* L[, 1+K¥2)(, el
A (1-B cose,) =2 |1 (1 2 j(l ZH

I oz 1+K2/2j
=\ [1-|1-—2- .

o, 1+ Kz/zj
u 2 2y2

This approximation is usually fulfiled with highrgrision. Using equation (7.49) we get the
important "coherence condition for undulator raduait

:)\u
w Zyz

The wavelength of the radiation is mainly deterrdifg A ,, y, andK. With increasing angl®q
also the wavelength increases.

A

(1+K7 +v29§j (7.51)

The total length of the undulator is

L, =N, (7.52)
If sp marks the center of the undulator, the emitteden@as the time dependent function
iw,t if T <t< T
U(w,, t) =4 3PP ! 25155 (7.53)
0 otherwise

59



SYNCHROTRON RADIATION JUAS 30. January — 3. February 2012 Klaus Wille

undulator
Nu ?\«rad

-\ .
N "

\

Y
Y

[ I

|
So-Ly/2 S, So+ Ly /2

The wave has the duration
T=NA,/c = w,T=21N, (7.54)

Such limited wave generates a continuous spectfymartial waves. Their amplitudes are given
the Fourier integral

+o0

Aw) = ﬁ [ uw,, tyexpticot )t (7.55)

—00

Insertion into (7.53) gives
+T/2

%_lﬁexp{—i(w—ww)t]dt

_ 2a sin(oo—cow)T
~onT Z(w—ww)

With Aw = w-w, and (754) we ge

A(w) =
(7.56)

_ a
Aw)= 7o A (7.57)

The intensity is proportional to the square of atoge

2
A
sin(nNu coj
('OW

N, A9
w

w

| (Aw) O (7.58)
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A

I(Aw)

spontaneous
undulator

< radiation

0-r— -
Orad A ©
We get the half width of maximum from
. 2
(%) :% with  x=TIN, i—w =1392 (7.59)
and find
20 2x 0886 1
w, TN, N, N, (7.60)
The spectrum of an undulator is
A
dP 1. center of mass frame
do laboratory frame
doppler
effect | 2
/J »
@
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8 Appendix B: Longitudinal Phase Space

8.1 Particle distribution in longitudinal phase spa ce

In chapter 4 we have discussed the radiation dagnpimis effect alone would reduce the amplitude
of the synchrotron and betatron oscillations tazdihe photons, however, are emitted randomly
and we have sudden emission of many single photBaery emission of a photon excites
synchrotron and betatron oscillations. We will nevaluate the energy distribution in a bunch due
to quantum effects caused by synchrotron radiation.

The power of the photons with the enelgmitted from an energy intervéls £ +ds} can be
derived from the equation (3.58)

dR =¢en(e) & (8.1)
with

n(e) —BESS(E j (8.2)

Po is the total power of all photons as given in €3.&nde_ = 7w, the critical energy derived from

equation (3.57). The functioi®,(§) is the spectral function (3.61). The total rateqofantum
emission is then

15V3P,
tot - j n(s) 63 __J d’: - 3 ‘S_C (8.3)
With this relations the mean quantum energy is
P 1%
(g) ==2 en(e) de = (8.4)
Ntot Ntot '([ 5\/_3

More important is the mean of the square energy

x
<£2>:N—Jszh(s)ds = Nyt js ie) & (8.5)

The synchrotron oscillation is an energy oscillatwith the frequency, as shown in chapter
4.1.1. Without damping we have

AE(t) = AE, expiQ(t - t,) (8.6)
After emission of a photon at the tihevith the energyg the amplitude is reduced according to
AE(t) = AE, expiQ(t - to) -€ expiQ(t - ti)

= AE, expiQ(t - tl) 8.7)

with
AE? = AEZ +€2 - 2AE, ecosQ t - 1) (8.8)

The phase is completely random and the expectatiue of cosQ(ti —to) vanishes. The probable
amplitude change is then

(3AE?) = (AE? - AE?) = €2 (8.9)
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One can see that the square of the amplitude chargeportional to the square of the energy of
the emitted photons.

We take now all photons emitted from an inter{/a,le +A€} of the radiation spectrum. Since the
number of photons per secondni&) As the contribution to the rate of amplitude chargye i

d{AE?
A{%} = £21\(g) Ae (8.10)
Integration over all energies of the spectrum givéh (8.5)
d(AE*) ¢ :
% = jszn(s) ke = Ntot<£2> (8.11)
0

On the other hand we have the radiation dampirtgeoénergy oscillations

AE()=AEexd-af = AB()=AEexp-2a} (8.12)

with the time derivative

2
% = -2a, AEZ exy{ - 2a,{) = -2a,A B (1) (8.13)
or after averaging
d(AE?
< & ). -2a,(AE?) (8.14)

The two effects the quantum excitation (8.11) dmel damping (8.14) compensate each other and
we get

N (€2) - 2a,(AE?) = 0 (8.15)

The energy oscillations are sinusoidal and the gdvteb amplitude square is just %2 of the peak
amplitude. Therefore, we get from (8.15)

AE%) 1
2 _ < _ 2
Oc —T —ENtot<€ > (816)
At first we use (8.11) and evaluate
) 7 P € 55
N (e2) = [e2f -0 (_j =——¢ P 8.17
'[ot<8 > _!;S n(E) 03 ec JES Ec ¢k 24\/73’8(: 0 ( )
0
Using the formula (3.57) we get the critical energy
3ncy?®
=hw, =— 8.18
8C (‘OC 2 p ( )
The emitted photon power is given in (3.59) in fibven
ec y!
= R 8.19
i 6TE, P° 8.19)

The average is
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_eoyt /1 _R)1
(P)= re. <p2> = P0—<]/p2> ~ (8.20)

Insertion of (8.18) and (8.20) into (8.17) gives

: 55 55 1 1
N (e*)=—F=e PR =—=ncy¥R — 8.21
tot< > 24\/§ c'o 16\/§ y< O> <]/p2> pS ( )
With W, = B, T, the damping constant in (4.65) becomes
w3 _ (R ) _ (R)J,
a, = = = (8.22)
2T,E  2E  2ym/C
Replacing this expression in (8.16) the probableldande square is then
1
No(e?) 55 ncm@y* \p®
ol=—"—"t= 8.23
® 4a, 32/3 I, 1 (8:23)
o
Usually the relative energy spread is more intergsind withE =y m ¢ we get
<1
o: _ 55 ey’ \p’
E* 32/3J.mgc? < 1 > (8.24)
p2

8.2 Bunch length

The synchrotron oscillation causes a periodic pleagean energy shift. In equation (4.11) it was
shown that these two physical quantities haveedleion

. 2nqa AE AE
AW = — = i 8.25
and we find
AE AW
=== 8.26
E w,qa ( )
The phase is a real number and the phase osaillagie the form
AW(t) = Psin(Qt + ¢
( ) (8.27)

AW(t) = QWcodQt +0)
We are in the following only interested in the aityale of the phase. Then we get from (8.26)

AE _ o
E  w,qo

(8.28)

The phase amplitude can then be expressed in time fo
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P = %A—EE (8.29)

The bunch lengtlos is strongly correlated with the phase amplitudeely
05=2—;@=Q—;A =%A—EE (8.30)

We replace the synchrotron frequency by the exegg.18) and set the energy deviation to the

natural energy fluctuation as calculated in (8\2d)get the bunch length in the form

c

2ImE o

* W, _ancos‘Ps E

(8.31)

It is important to mention that the bunch length decreasesdsitheasing momentum compaction

factora and increasing rf-voltagd as

a
D -
% U
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