Pill box resonator: Field distribution 1/2

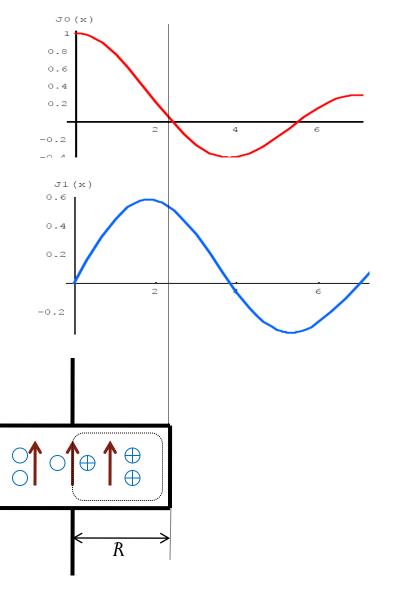
$$\Rightarrow E = \left(1 - \frac{1}{2^2} \left(\frac{\omega r}{c}\right)^2 + \frac{1}{2^2 \cdot 4^2} \left(\frac{\omega r}{c}\right)^4 - \frac{1}{2^2 \cdot 4^2 \cdot 6^2} \left(\frac{\omega r}{c}\right)^6\right) \cdot E_0 e^{i\omega t} =$$

$$= \left(1 - \frac{1}{(1!)^2} \left(\frac{\omega r}{2c}\right)^2 + \frac{1}{(2!)^2} \left(\frac{\omega r}{2c}\right)^4 - \frac{1}{(3!)^2} \left(\frac{\omega r}{2c}\right)^6 + \right) \cdot E_0 e^{i\omega t} =$$

$$= J_0 \left(\frac{\omega r}{c}\right) \cdot E_0 e^{i\omega t}$$

$$= J_0 \left(\frac{\omega r}{c}\right) \cdot E_0 e^{i\omega t}$$
Resonance-condition
$$0 \cdot R = 2.405$$

Pill box resonator: Field distribution 2/2



$$E = J_0 \left(\frac{2.405 \cdot r}{R} \right) \cdot E_0 e^{i\omega_0 t}$$

$$c^{2} \oint_{\Gamma} \vec{B} \cdot d\vec{s} = \frac{\partial}{\partial t} \int_{\text{inside } \Gamma} \vec{E} \cdot \vec{n} da$$

$$c^{2}B_{\varphi}(r)\cdot 2\pi r = i\omega \int_{0}^{\infty} d\varphi \int_{\text{incide } \Gamma} E(r)\cdot rdr$$

$$c^{2}B_{\varphi}(r) \cdot 2\pi r = i\omega \int_{0}^{2\pi} d\varphi \int_{\text{inside }\Gamma} E(r) \cdot r dr$$

$$\Rightarrow B_{\varphi}(r) = \frac{i}{c} J_{1} \left(\frac{2.405 \cdot r}{R} \right) \cdot E_{0} e^{i\omega_{0}t}$$

Pill box resonator as accelerating cavity

How to accelerate a particle beam with a pillbox resonator?

The unavoidable beam tube opening is considered to be small compared to 1

$$E(r,t) = J_0 \left(\frac{2.405 \cdot r}{R}\right) \cdot E_0 \sin(\omega_0 \cdot t)$$

$$t(z) = z/(\beta \cdot c)$$

$$W|_{r=0} = e \int_0^h E(r = 0, t(z)) dz = e E_0 \cdot \int_0^h \sin(\omega_0 z/(\beta c)) dz =$$

$$= -e E_0 \cdot \frac{\beta c}{\omega_0} \cdot \cos(\omega_0 z/(\beta c))|_{z=0}^{z=h} = e E_0 \cdot \frac{\beta c}{\omega_0} \cdot (1 - \cos(\omega_0 h/(\beta c))) =$$

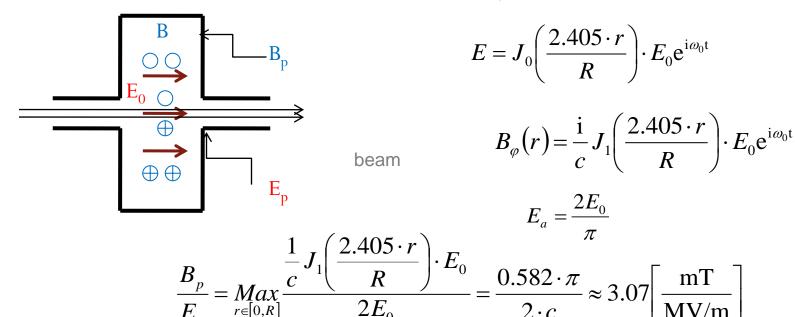
$$= e E_0 \cdot h \cdot \frac{\sin^2(\omega_0 h/(2\beta c))}{\frac{\omega_0 h}{2\beta c}}$$

$$\frac{\frac{\omega_{0}h}{2\beta c} \xrightarrow{h=\frac{\beta\lambda}{2}} \frac{\omega_{0}\beta\lambda}{2\cdot 2\cdot \beta c} = \frac{2\pi f\lambda}{2\cdot 2\cdot f\lambda} = \frac{\pi}{2}}{V_{a}} = \frac{W}{e} = E_{a} \cdot h = E_{0} \cdot h \cdot \frac{\sin^{2}(\omega_{0}h/(2\beta c))}{\frac{\omega_{0}h}{2\alpha}} \xrightarrow{h=\frac{\beta\lambda}{2}} \frac{2E_{0}h}{\pi} \Rightarrow E_{a} = \frac{2E_{0}}{\pi}$$

Pill box resonator: Cavity characteristics 1/6

The **peak surface electric and magnetic fields** constitute the ultimate limit for the accelerating gradient => minimize the ratio E_p/E_a and B_p/E_a .

Remember:



$$\frac{E_{p}}{E_{a}} = \underset{r \in [0,R]}{Max} \frac{J_{0}\left(\frac{2.405 \cdot r}{R}\right) \cdot E_{0}}{\underline{2E_{0}}} = \frac{\pi}{2} \approx 1.57$$

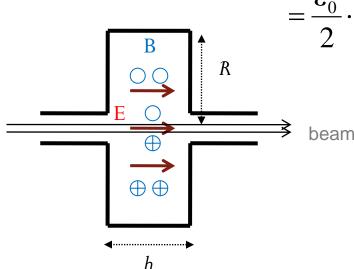
Pill box resonator: Cavity characteristics 2/6

Stored energy U

$$U = \frac{\varepsilon_0}{2} \int_0^{2\pi} d\varphi \int_0^h dz \int_0^R r dr \cdot |E(r)|^2 =$$

$$=\frac{\varepsilon_0}{2}\int_0^{2\pi}d\varphi\int_0^hdz\int_0^Rrdr\bigg|J_0\bigg(\frac{2.405\cdot r}{R}\bigg)\bigg|^2\cdot \big|E_0\big|^2=$$

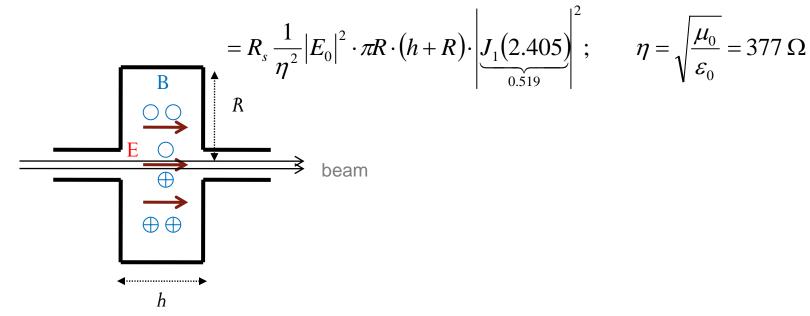
$$= \frac{\varepsilon_0}{2} \cdot \underline{\pi} R^2 h \cdot \left| \underline{J_1(2.405)} \right|^2 \left| E_0 \right|^2$$



Pill box resonator: Cavity characteristics 3/6

Power loss
$$P = \frac{R_s}{2\mu_0^2} \int_0^{2\pi} d\varphi \cdot \left(\int_0^h dz |B_{\varphi}(R)|^2 + 2 \cdot \int_0^R r dr |B_{\varphi}(r)|^2 \right) =$$

$$=\frac{R_{s}}{2\mu_{0}^{2}}\frac{1}{c^{2}}|E_{0}|^{2}\int_{0}^{2\pi}d\varphi\cdot\left(R\int_{0}^{h}dz|J_{1}(2.405)|^{2}+2\cdot\int_{0}^{R}rdr\left|J_{1}\left(\frac{2.405\cdot r}{R}\right)|^{2}\right)=\frac{1}{2}R^{2}|J_{1}(2.405)|^{2}$$



Pill box resonator: Cavity characteristics 4/6

The Q-factor measures the dissipation of the stored energy to the cavity wall consequent to the unavoidable surface currents associated with that stored energy.

$$Q = \frac{\text{Stored energy } U}{\text{Energy lost during 1 RF period}} = \frac{\text{Stored energy } U}{\Delta U/(2\pi)} = 2\pi \cdot \frac{\text{Stored energy } U}{\text{Dissipated power } P \cdot \underbrace{T}_{f^{-1}} = 2\pi f} \cdot \frac{\text{Stored energy } U}{P} = \omega \cdot \frac{U}{P}$$

$$Q = \omega \cdot \frac{\varepsilon_0 \cdot \eta^2}{2R_s \cdot \left(\frac{1}{R} + \frac{1}{h}\right)} = \eta = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 377 \,\Omega$$

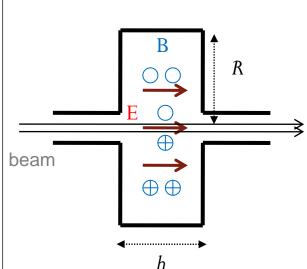
$$= \frac{1}{R_s} \cdot \eta \cdot \frac{2.405}{2\left(1 + \frac{R}{h}\right)} = \frac{G}{R_s} \xrightarrow{h = \frac{\lambda}{2}} \frac{257 \Omega}{R_s} \qquad \frac{\omega_0 \cdot R}{c} = 2.405$$

$$= \frac{1}{R_s} \cdot \eta \cdot \frac{2.405}{2\left(1 + \frac{R}{h}\right)} = \frac{G}{R_s} \xrightarrow{R_s} \frac{257 \Omega}{R_s} \qquad G \approx 257 \Omega$$

$$\frac{R}{h} \xrightarrow{h=\frac{\lambda}{2}} \frac{2R}{\lambda} = \frac{2R}{\lambda} = \frac{2 \cdot 2.405c}{\lambda \omega_0} = \frac{2 \cdot 2.405 \cdot \lambda f}{\lambda \cdot 2\pi f} = \frac{2.405}{\pi}$$
21 - 22 Feb 2011

Pill box resonator: Cavity characteristics 5/6

The shunt impedance R_{shunt} measures the acceleration action of the beam of charged particles in terms of the unavoidable dissipation of energy in the cavity wall.

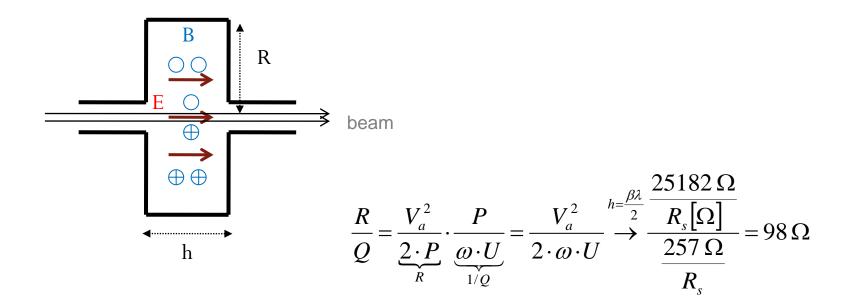


$$R_{\text{shunt}} = \frac{V_a^2}{2 \cdot P} = \frac{\left(E_0 \cdot h \cdot \frac{\sin^2(\omega_0 h / (2\beta c))}{\frac{\omega_0 h}{2\beta c}}\right)^2}{2 \cdot R_s \frac{1}{\eta^2} |E_0|^2 \cdot \pi R \cdot (h + R) \cdot \left|\underbrace{J_1(2.405)}_{0.519}\right|^2} \xrightarrow{h = \frac{\beta_2}{2}}$$

$$\frac{2\eta^{2}}{R_{s} \cdot \pi^{2} \cdot 2.405 \cdot \left(1 + \frac{2.405}{\pi}\right) \cdot \left| \underbrace{J_{1}(2.405)}_{0.519} \right|^{2}} = \frac{25182.9}{R_{s}[\Omega]}$$

Pill box resonator: Cavity characteristics 6/6

The quantity R/Q measures the interaction of the cavity with the beam.



Cavity characteristics - Summary

Symbol	Name	Definition	Pillbox cavity [0.35 GHz, 4.2 K, Nb]	1-cell Accelerating cavity [0.35 GHz, 4.2 K, Nb]*)
E_p/E_a	Peak normalized surface electric field	n/a	1.6	2
$B_p/E_a[mT/(MV/m)]$	Peak normalized surface magnetic field	n/a	3.1	4.1
R_s [n Ω]	Surface resistance	E_x/H_y	40	40
h [m]	Cavity length	$h=\lambda/2$	0.43	0.43
$E_a [MV/m]$	Accelerating gradient	(1/e) ·Energy gain/length	10	10
V [MV]	Accelerating voltage	$V=E_a \cdot h$	4.3	4.3
$G\left[\Omega ight]$	Geometry factor	$G=R_s\cdot Q$	257	295
$Q[10^9]$	Quality factor	Q=ωU/P	6.4	7.4
$R/Q[\Omega]$	(R/Q) factor	$(R/Q)=V^2/(2\omega U)$	98	57
R [M Ω]	Shunt impedance	$R=V^2/(2P)$	$0.63 \cdot 10^6$	$0.42 \cdot 10^6$
u [J]	Stored energy	$U=V^2/[2\omega(R/Q)]$	43	74
P [W]	Dissipated power	P=ωU/Q	15	22
h/R	Ratio cavity length to radius	n/a	1.3	0.5

^{*)} mainly based on O. Brunner et al., Assessment of the basic parameters of the CERN Superconducting Proton Linac, PHYS. REV. ST - AB 12, 070402 (2009), Table VII

