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OUTLINE OF LECTURE 

Introduction 
Basics of superconductivity 
Basics of RF cavities 
Interaction of cavity with beam 
Technological issues 
Applications and outlook 
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Basics of superconductivity 
 Recommended Literature 
 Historical remarks 
 Meissner effect 
 Two kinds of superconductors 
 Materials 
 Two fluid model 
 Basics of RF superconductivity 

 The surface resistance 
 Critical fields 
 Field limitations 
 Superheating field 

 Summary 
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Recommended literature 
Literature 
W. Buckel and R. Kleiner, « Superconductivity: 

Fundamentals and applications, Wiley VCH 2004 
V. V. Schmidt « The physics of superconductors », Springer 

1997 
M. Tinkham, « Introduction to superconductivity », 

McGraw-Hill 1996, and many others 
Nobel lectures (http://nobelprize.org/nobel_prizes/physics/laureates/) 
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Historical remarks 1/4 

 Nobel prize for « his 
investigations on the properties of 
matter at low temperatures 
which led, inter alia, to the 
production of liquid helium » 

6 

 H. Kamerling – Onnes in his 
laboratory at Leiden (NL) 
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Historical remarks 2/4 

 1908 Liquefaction of helium (4.2 K) 
 1911 Zero resistance  
 1933 Meissner effect 
 1935 Phenomenological theory of H & 

F. London 
 1950 Ginzburg – Landau theory 
 1951 – 2 TYPE II superconductors 

(Abrikosov) 
 1957 Bardeen – Cooper – Schrieffer 

theory 
 1960 Magnetic flux quantisation 
 1962 Josephson effect 
 1986 High temperature superconductors 

(Bednorz – Müller) 

Bardeen – Cooper – Schrieffer (BCS) 

Abrikosov Ginzburg 

Bednorz Müller 
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Historical remarks 3/4 

 Zero resistivity 
 Meissner effect 
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Historical remarks 4/4 

Development of the superconducting transition 
temperatures after the discovery of the 
phenomenon in 1911. The materials listed are 
metals or inter-metallic compounds and reflect the 
respective highest Tc’s - Adapted from G. Bednorz – 
Nobel lecture 
 

NbC 

NbC 
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Meissner effect 1/3 
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Meissner effect 2/3 
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Meissner effect 3/3 
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1. Magnetic lines of force outside a 
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external magnetic field always 
carries an electric current near 
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Thus, the surface current          
is completely defined by the 
magnetic field at the surface of 
a superconductor. 
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Magnetic properties of a type I 
superconductor 

 Magnetic properties of a superconductor 
can be derived from ρ = 0 and B = 0 

Type I superconductors are all elemental 
superconductors (except niobium) 

Two kinds of superconductors 1/3 

 

B
→

= µ0 ⋅ H
→

0+ M
→ 

 
  

 

 
  

Magnetization curve 



27 - 28 Feb 2012 JUAS lecture 2012: SC RF cavities Caspers/Weingarten 14 

Two kinds of superconductors 2/3 

Type II superconductor  
Magnetic properties of a type II superconductor 
Above the 1st critical field Hc1 magnetic flux penetrates into the bulk 
Above the 2nd critical field Hc2 the material is normal conducting 

(except for a thin surface layer that remains superconducting until 
the 3rd critical field Hc3) 
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Two kinds of superconductors 3/3 
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Surface tension at nc-sc interface 1/2 

Fig. 1: Interface between normal 
to superconducting metal for a 
type II superconductor with λ > ξ. 
b denotes the (microscopic) 
magnetic field and ψ describes 
the wave function of the 
superconducting condensate. 

Inspecting Fig. 1, the energy balance DE between the 
condensation energy Ec and the diamagnetic energy EB for a 
planar interface area A and an applied magnetic field B, is 

( ) ( )λ
µ

ξ
µ

+−+=

=∆−∆=∆

rABrAB

EEE

th

Bc

2

0

2

0 2
1

2
1

  

z   

r   
ξ   

λ   

nc   
sc   

ψ   b   



27 - 28 Feb 2012 JUAS lecture 2012: SC RF cavities Caspers/Weingarten 17 

Surface tension at nc-sc interface 2/2 

For a type II superconductor, as the penetration of magnetic fields starts from small filaments of 
cylindrical shape located parallel to the interface, a more realistic way to describe the energy balance 
is based on a small half-cylinder of radius r instead of a plane, which will become normal: 
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In a type II superconductor, the lowest value of the applied magnetic field B which induces penetration 
as filaments of magnetic field into the bulk is called the lower critical field Bc1, for which the 
microscopic theory gives as exact result: 
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very close to the previous one. In a type I superconductor, the lowest value of the applied magnetic 
field B which induces bulk penetration of magnetic field is called the thermodynamic critical field Bth 
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Materials 1/2 
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Materials 2/2 

Resistivity of a single-phase  

YBa2Cu307  sample as a 

function of temperature. 



27 - 28 Feb 2012 JUAS lecture 2012: SC RF cavities Caspers/Weingarten 20 

Two fluid model 

Basic assumptions of two fluid model 
 all free electrons of the superconductor are 

divided into two groups 
 superconducting electrons of density ns 
 normal electrons of density nn  

The total density of the free electrons is 
 n = ns + nn. 
As the temperature increases from 0 to Tc, the 

density ns decreases from n to 0. 

( )41 cs TTnn −=

Basic ingredients for RF 
superconductivity 

Two fluid model (Gorter-Casimir) 
Maxwell electrodynamics 
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RF Superconductivity 

2nd London equation (Meissner effect) 

1st London equation (Newton’s force law without friction) 

In the stationary state djs/dt = 0 and hence E = 0 everywhere in 
the superconductor. 

0=×∇⋅Λ−×∇ sjdt
dE


0=×∇⋅Λ+⇒−=×∇ sjdt
dB

dt
dB

dt
dE



sjB


×∇⋅Λ−=⇒

After integration and taking the integration constant = 0) 
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Penetration depth 1/2 
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On introducing the vector potential  A via 
one obtains a relationship between the supercurrent and 

the vector potential, very similar to Ohm’s law  

London penetration depth:  
Starting from the 2nd London equation 
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Penetration depth 2/2 

 Measurement and analysis  by T. Junginger (CERN Quadrupole Resonator) 
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Comparison nc-sc 
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The surface resistance 1/3 

The RF magnetic field penetrates this sheet to within the penetration depth λL. 

According to the Maxwell equation curl E = – dB/dt, the RF magnetic field is accompanied by an electric field 

Ey = jω λLBz = jω λL µ0Hz = jω λLµ0Hz0 exp(–x/λL). 

The electric field interacts with the nc electrons (still present at non-zero temperatures) and gives rise to a 

power dissipation per square meter 

with σn = σ0(T/Tc)4, σ0 being the conductivity of the nc electrons just above Tc, By definition, Pc  = (1/2) Rs Hz
2 , 

and we obtain for the surface resistance Rs in the two-fluid model approximation,  

which can be approximated for T<Tc/2 
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The surface resistance 2/3 

 Dependence of Rs on T and f 

Rres 
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The surface resistance 3/3 
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Critical field (s) 
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Superheating field 
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Field limitations in RF 1/3 

Source: Lilje&Schmueser 
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Field limitations in RF 2/3 

There is experimental evidence that the super-heating field is 
the ultimate limitation in RF 



 

Courtesy: Tobias.Junginger@quasar-
group.org 

Field limitations in RF 3/3 

 Measurements at CERN with “Quadrupole Resonator” 
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Thin Film Workshop 
http://surfacetreatments.it/thinfilms/ 



  

Influencing 
quantity 

Impact quantity Physical 
explanation 

Cure 

External static 
magnetic field Bext 

Residual surface 
resistance 

Creation of vortices Shielding of ambient 
magnetic field by Mu-
metal / Cryoperm 

Residual resistivity 
ratio RRR 

BCS surface resistance Mean free path 
dependence of Rres 

Annealing steps during 
ingot production/after 
cavity manufacture 

Ratio peak magnetic 
field to accelerating 
gradient Bp/Ea 

Max. accelerating 
gradient 

Critical magnetic field 
as ultimate gradient 
limitation 

Optimization of cavity 
shape 

Nb-H precipitate Q-value / acc. gradient 
(Q-disease) 

Lowering of  Tc/Bc at 
precipitates of Nb-H 

T-control during 
chemical polishing 
Degassing @ 700  °C 
Fast cool-down 

Other deterministic parameters for cavity performance  

27 - 28 Feb 2012 JUAS lecture 2012: SC RF cavities Caspers/Weingarten 33 

Up till now  we discussed the role of the RF frequency, lHe bath temperature, and sc material with 
its characteristic critical field and temperature. There are still other (less important)  parameters that 
determine the performance of the cavity as well: 
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Summary 
Superconducting materials: 

 are characterized by zero resistivity (in DC) and the Meissner 
effect; 

 Show the (thermodynamic) phase transition into the 
superconding state below a critical temperature and below a 
critical field; 

 have a non-zero surface resistance for RF which can be 
understood by the two-fluid model and the London theory 

 are subdivided into type I and type II, depending on the value of 
the Ginzburg-Landau parameter κ; 

 may be alloys or elements, for which they are of type I, except 
Nb, the technically most important one, which is type II and has 
the largest critical temperature and critical field; 

 Seem to be ultimately limited for RF applications (accelerating 
gradient) by the super-heating field. 
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Basics of RF cavities 
 Variety of RF cavities (examples) 

 Cavity characteristics 
  Pillbox resonator 
  Field distribution 
  Pillbox resonator as accelerating cavity 
  Cavity characteristics (peak fields, stored energy, …) 
  Computer codes to determine the cavity parameters 
  Different mode families 

 Transmission line 

 Response of a sc cavity to RF (determination of Q0, Eacc, …) 

 Measuring setup (Q(Eacc) curve, …) 

 Pass-band modes 

 Typical example of storage ring cavity (LEP) 

 Summary 
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Examples of RF cavities 

(from H. Padamsee, CERN-2004-008) 
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Pill box resonator 
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Source: The Feynman 
Lectures on Physics, Vol. II 

Starting point: Capacitor 
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Field distribution 1/2 
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Field distribution 2/2 
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Pill box resonator as accelerating cavity 
How to accelerate a particle beam with a pillbox resonator? 
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Cavity characteristics 1/6 
The peak surface electric and magnetic fields constitute the ultimate limit for  

the accelerating gradient => minimize the ratio Ep/Ea and Bp/Ea. 

     Remember: 
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Cavity characteristics 2/6 

Stored energy U ( )
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Cavity characteristics 3/6 

Power loss 

E 
beam 

B 

h 

R 

( ) ( )

( )

( )

( ) ( )
0

0

2

0.581865

1
2

02

405.2
2
1

2

1
0

2
1

0

2

0

2
022

0

2

0

2

0

2

0
2
0

        ;405.21

405.22405.21
2

2
2

2
1

2

ε
µηπ

η

ϕ
µ

ϕ
µ

π

ϕϕ

π

=⋅+⋅⋅=

=



























 ⋅

⋅+⋅=

=







⋅+⋅=

∫∫∫

∫∫∫



  

JRhRER

R
rJrdrJdzRdE

c
R

rBrdrRBdzdRP

s

JR

Rh
s

Rh
s



27 - 28 Feb 2012 JUAS lecture 2012: SC RF cavities Caspers/Weingarten 44 

Cavity characteristics 4/6 

The Q-factor measures the dissipation of the stored energy to the 
cavity wall consequent to the unavoidable surface currents 
associated with that stored energy. 
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Cavity characteristics 5/6 

The shunt impedance R measures the acceleration action of the beam 
of charged particles in terms of the unavoidable dissipation of 
energy in the cavity wall. 
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Cavity characteristics 6/6 

The quantity R/Q measures the interaction of the cavity with 
the beam. 
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Cavity characteristics - Summary 
Symbol Name Definition 

Pillbox cavity 
[0.35 GHz, 4.2 K, Nb] 

Accelerating cavity 
[0.35 GHz, 4.2 K, Nb] 

Ep/Ea 
Peak normalized 

surface electric field 
n/a 1.6 2 

Bp/Ea 

[mT/(MV/m)] 
Peak normalized 

surface magnetic field 
n/a 3.1 4 

Rs [nΩ] Surface resistance Ex/Hy 40 40 

h [m] Cavity length h=λ/2 0.43 0.43 

Ea [MV/m] Accelerating gradient (1/e) ·Energy gain/length 10 10 

V [MV] Accelerating voltage V=Ea ·h 4.3 4.3 

G [Ω] Geometry factor G=Rs·Q 260 275 

Q [109] Quality factor Q=ωU/P 6.5 6.9 

R/Q [Ω] (R/Q) factor (R/Q)=V2/(2ωU) 450 280 

R [MΩ] Shunt impedance R=V2/(2P) 3·106 2·106 

U [J] Stored energy U=V2/[2ω(R/Q)] 9 15 

P [W] Dissipated power P=ωU/Q 3 5 

h/R 
Ratio cavity length to 

radius 
n/a 1.3 0.5 
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Computer codes for RF cavities 
Computer codes to determine the cavity parameters 
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Different mode families 1/2 

Lilje&Schmueser 
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Different mode families 2/2 

Lilje&Schmueser 



Cavity characteristics – Summary table 
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From W. Weingarten, CERN-1992-03 

Cavity Lumped-element circuit 
Accelerating voltage V Peak voltage V 
Resonant frequency ω0 ω0 = 1/√(LC) 
Stored energy U U = (1/2)CV2 
Dissipated power Pc Pc = (1/2) V2/R 
Radiated power Prad Prad = (1/2) V2/Ri 
Shunt impedance R = V2/(2·Pc) R 
Unloaded Q - value Q0 = ω0·U/Pc Q0 = ω0·RC 
External Q - value Qext = ω0·U/Prad Qext = ω0·RiC = Ri/(R/Q) 
(R/Q) value R/Q = V2/(2 ω0·U) R/Q = √(L/C) = 1/(ω0·C) 
Coupling factor β = Q0/Qext β = R/Ri 
Loaded Q - value QL = Q0/(1+ β) 
(because QL

-1 = Q0
-1 + Qext

-1) 
QL = ω0·RC/(1+ β) 

Turns ratio n = √[(R/Q) ·Qext/Z0] n = √(Ri/Z0) 
Wave impedance Z0 = 50 Ω 

Table: Equivalence of cavity and lumped-element circuit parameters 



Transmission line 1/2 

Introduction of the notion of reflection and transmission factors. 

E 

H 

Medium 1 Medium 2 

E H E 

H 

γ1  Z1 γ2  Z2 

Z=Ey/Hz 

 

Eyi = ˆ E e−γ1xeiωt

H zi =
ˆ E 

Z1
e−γ1xeiωt

Eyr = ρ ˆ E eγ1xeiωt

H zr = −ρ
ˆ E 

Z1
eγ1xeiωt

Eyt = τ ˆ E e−γ 2xeiωt

H zt = τ
ˆ E 

Z2
e−γ 2xeiωt
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Transmission line 2/2 

E 

H 

Medium 1 Medium 2 

E H E 

H 

γ1  Z1 γ2  Z2 

 

Eyi + Eyr = Eyt
H zi + H zr = H zt

 
 
 

  
x = 0

From continuity at the interface: 

X=0 

 

1+ ρ = τ
1

Z1
− ρ 1

Z1
= τ 1

Z2

( ) τρ =−1
1

2

Z
Z

 

1+ ρ =
Z2
Z1

1− ρ( )

ρ =
Z2 − Z1
Z2 + Z1

τ =
2Z2

Z2 + Z1
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y 

x 

z 



rit III −=
rit VVV +=

ir VV ⋅= ρ

ir IZV ⋅= 1
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Vi Vt 

Ii It Ir 

Vr Z2 
Z1 

tt IZV ⋅= 2

it VV ⋅=τ

12

12

ZZ
ZZ

+
−

=⇒ ρ

( ) 12

21

122 =
+

−−⋅
=−

ZZ
ZZZρτ

12

22
ZZ

Z
+
⋅

=⇒ τ

Reflexion factor ρ Transmission factor τ 

Response of a cavity to RF 1/5 

 Apply transmission line theory (to a one-port impedance): 
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Response of a cavity to RF 2/5 

 Reflexion factor ρ depends on position, the coupling factor β does not: 



Response of a cavity to RF 3/5 
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LVE tacc =

 

( )
βω

ω
βω

ω
βββ

β

0
22
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2

1
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1
1 2

1
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1

0

QQR
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V
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Z
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QR
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1 ) Remember 

1) 

L = nominal cavity length: only cells, cutoff excluded 

 Determination of Q0 and accelerating voltage/gradient 
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Response of a cavity to RF 4/5 

 The response of a two port cavity is equivalent to that of a one-port cavity 
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Vt 
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Response of a cavity to RF 5/5 
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Transient Response  1/2 

1. Apply Kirchhoff’s current law at node (1) 

 

 

2. Differentiate and transform lumped circuit 
elements into cavity parameters by using 
preceding “Table 7” 

 

 

3. Find the general solution of the 
homogeneous differential equation 

 

 

4. Find the solution of the inhomogeneous 
differential equation 

 

 

V
Ri

+
1
L

V t( )∫ + C dV
dt

+
V
R

= Ig0 ⋅ cosωt

 

d 2V
dt2 +

ω0
QL

dV
dt

+ ω0
2V = −Ig0 ⋅

R
Q

 

 
 

 

 
 ⋅ω ⋅ω0 ⋅ sinωt

 

V t( )= e
-

ω0t
2QL ⋅ c1 ⋅ ei 1-1/ 2QL( )2 ⋅ω0t

+ c2 ⋅ e-i 1-1/ 2QL( )2 ⋅ω0t
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Transient response 2/2 
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Remember: 

12

1
2

1

1
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1
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 Determination of Q0 and accelerating voltage/gradient (2) 

 Oscilloscope signal for voltage measurement 



Measuring setup 
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f 

φ 

p 

vco 

i 

ant 1 ant 2 

r 

φ 

VHF/UHF 

Controls 

signals 

p: power meter 
f: frequency counter 

φ: phase shifter 
i: incident 
r: reflected 
t: transmitted 
ant1: pickup antenna no. 1 
ant2: pickup antenna no. 2 
VCO: voltage controlled oscillator 



Q(Eacc) curve 
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Passband modes 
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Typical storage ring cavity (LEP) 
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Summary 
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 The pillbox resonator (TM010 mode) allows – as a paradigm - the analytical 

description of typical accelerator parameters, such as peak surface fields (E and H), 

power loss and Q-value, shunt impedance, geometrical shunt impedance, geometry 

factor, etc. 

 « Real » accelerator cavities are designed by making use of computer codes such as 

Microwave Studio, MAFIA, SUPERFISH, etc. 

 The response of a cavity to an RF pulse is well described by lumped circuit networks, 

in particular by the transmission and reflection of an electromagnetic wave at a 

discontinuity in the line. 

 An algorithm is presented to determine the coupling factor β (or the reflection 

factor ρ), and finally the unloaded Q-value Q0, the accelerating voltage V 

(accelerating gradient Ea)  and the surface resistance Rs. 



Interaction of cavity with beam 
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 Descriptive introduction 
 Analytical introduction 
 Transfer of RF power from the cavity to the beam 

 The fundamental mode power coupler 

 Transfer of RF power from the beam to the cavity 
 Higher order modes and their damping 

 The frequency tuner 
 Summary 
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Descriptive Introduction 



Particle passing through cavity 
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Analytical Introduction 
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Transfer of RF power from the cavity to the beam  1/3 

 

Ir − Ig + Ik =
V
Z

Ik = 2Ig

 

 
 

  
⇒ Ir + Ig =

V
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A circulator guarantees that under no 
circumstances there is no reflected wave 
impinging to the RF generator 
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Re-write preceding equation 

in cavity parameters 

Transfer of RF power from the cavity to the beam 2/3 



Transfer of RF power from the cavity to the beam 3/3 
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cavities scfor 11

0 extQQ


Actions: 1) compensate « reactive  beam loading » to zero  by detuning ∆ω 

( )
Φ

⋅
−=∆ sin

V
IQR DCωω

2) define optimum Qext for nominal beam current for Ir = 0 
( ) Φ⋅

=
cos2,

DC
optext IQR

VQ

RF power ( ) 2

,

2

,, 2
1

2
1

rgextrgrg IQQRIZP ⋅⋅==

Check: Φ⋅⋅=−= cos,,, DCrrrgrbeam IVPPP

 Minimize reflected power 



The fundamental mode power coupler 
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LEP solution of the power coupler 
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Transfer of RF power from the beam to the cavity 
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Imagine worst case 
1. the cavity resonant frequency is « tuned » to a spectral line of the 

beam 
2. Generator switched off, Ig=0.    

This means that the beam is 
decelerated. 
Remedy: keep Qext as low as possible. 
 
Output power (reflected): 

1st example (LEP); RF Generator trip. 
We obtain for the accelerating mode kW 33;mA 6 ;102 ; 232/ 6 ==⋅=Ω= rDCext PIQQR

2nd example;  
We obtain for the higher order mode with (R/Q) = 10 Ω, Qext = 20000 

 W4.14kV 4.2 =⇒−= rPV

 Need for Higher Order Mode (HOM) coupler 



Higher order modes 
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A typical HOM spectrum 
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How to deconfine HOMs1 1/2 

Open beam tube 
OK for single cell cavity, but high cryo-load by 

thermal radiation 
1http://www.lns.cornell.edu/Events/HOM10/Agenda.html 
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How to deconfine HOMs 2/2 

Open beam tube: 
Use ridge-shaped beam tubes 

(Cornell)  
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Damping HOMs 1/2: Beam tube loads 
Ferrites 
 low power handling 

capacity  if cold 
 higher power handling 

capacity if warm 
 mechanical and 

vacuum design not 
easy 
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Damping HOMs 2/2: Resonant coaxial transmission line 
dampers 

 Compensate internal impedances: The HOM coupler becomes a 
resonator coupled to the cavity resonator. It may have two 
eigenfrequencies. 
Obtainable Qext: 50 

 Pros: 
 Couplers with several resonances possible (HERA, LEP, LHC, ILC are of 

this type) 
 Demountability 
 Fundamental mode rejection: 

 LEP: Fundamental mode E-field rejected by stop-filter in front of HOM coupler 
 Fundamental mode H-field rejected by loop plane perpendicular to cavity axis 
 Risk of detuning of notch filter 

 BUT: High currents request for superconducting material 
prepared under ultra-clean conditions (like the cavity) and lHe 
cooling 

 Prone to electron emission from inside cavity 
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Resonant coaxial transmission line dampers: 
Technical solution 1/3 

LHC HOM coupler 
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Resonant coaxial transmission line dampers: 
Technical solution 2/3 

SNS HOM coupler 
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Resonant coaxial transmission line dampers : 
Technical solution 3/3 

TESLA HOM coupler 
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The frequency tuner 

The frequency of the cavity must be tuned to the harmonic spectral line of the 
bunched beam => need to develop a frequency tuner. Slater’s theorem states 
that 

 

∆f
f

=
1

4U
ε0E 2 − µ0H 2( )

∆V
∫ dV

U =
1
4

ε0E 2 + µ0H 2( )
V
∫ dV
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Mechanical oscillations 



27 - 28 Feb 2012 JUAS lecture 2012: SC RF cavities Caspers/Weingarten 87 

The LEP solution 
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Integration into LEP cryostat 1/2 



Integration into LEP cryostat 2/2 
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Comments: 
 
The LEP cryostat could reliably be 

operated under CW conditions 
with beam and in pulsed 
conditions without beam in the 
present LHC tunnel environment 
(1.4 % slope). 

 
It is worth noting that the lHe tank, 

the gas openings, and gHe 
collector were relatively small. 

 
Pulsed operation: The thermal 

diffusivity κ=λ/(c∙ρ) is such that 
it takes ~1 ms before the 
temperature pulse arrives at the 
niobium helium interface => 
advantage compared to CW 
operation. 

 
This cryostat was tested under 

pulsed conditions with beam 
in the CERN SPS.  

 



Summary 
 A lumped network circuit diagram allows an analytical description of 

the interaction of the RF cavity with the beam 
 The cavity is designed to minimize the reflected RF power (which 

would be wasted anyhow in a load) by eliminating the « reactive beam 
loading » through tuning the frequency of the cavity and by matching 
the external Q to the nominal beam current. 

 The beam consists of bunches passing the cavity in fractions of 
milliseconds1 that may excite higher order modes (HOMs) of the cavity 
to high voltages, if not sufficiently damped by HOM couplers. 

 Frequency tuners are in addition needed to damp frequency shifts from 
mechanical resonances excited by external noise sources (microphonics) 
or the interaction of the electromagnetic pressure with the cavity wall 
(Lorentz force detuning).  

 
1 for large storage rings such as LEP 
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Technological issues 
 What are the technological issues at stake for the design of an accelerating system 

with emphasis on the superconducting option? 
 Circular vs. linear 
 Superconducting vs. normal conducting 
 Operating frequency and temperature, if sc 

 Anomalous losses 
 Diagnostics (Temperature mapping) 

 Electron field emission 
 Electron Multipacting (dust free assembly) 

 Heat removal (Quench - the role of large thermal conductivity, Coating a copper 
cavity with a thin niobium film) 

 Quality assurance and stochastic parameters 
 Cryostat 
 Cryomodules 
 Magnetic shielding 
 Summary 
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Circular vs. linear 
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Circular vs linear: With P as beam power to be replaced by the 
acceleration system, E the beam energy, ρ the radius, LRF the 
length of the RF system, g the accelerating gradient, for a circular 
accelerator (if limited by synchrotron radiation) 

g
E 2

∝⇒ ρ

whereas for a linear 
accelerator 

g
ELgLE RFRF =⇒⋅∝

With assumption that the costs are proportional to the linear 
dimensions (LRF or ρ), for very high energies the linear accelerator is 
less costly than a circular accelerator. 



SC vs. NC 1/4 under CW operation 
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Superconducting vs normal conducting: 
A figure of merit is the mains to beam power conversion eficiency 
With Pb as beam power and Pc dissipated power in the RF system, the 
efficiency is defined as 

With the accelerating voltage V the shunt impedance R is defined as 

The beam power Pb is simply the product of beam current Ib and 
accelerating voltage V: 

which leads to 

bIR
V

⋅⋅
+

=

2
1

1η



SC vs. NC 2/4 
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However: 
The dissipated power must be removed at a very low temperature (4.2 – 4.5 K). 
Hence we have to take into account the cryogenic efficiency ηcr 

 Carnot efficiency 



SC vs. NC 3/4 
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SC vs. NC 4/4 
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Comparison Table 



Operating Frequency and temperature 
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The figure of merit is the 
shunt impedance R, or the 
shunt impedance r per 
length, which should be 
maximized: 



Anomalous losses 
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So-called « anomalous losses » account for all 
contributions to the RF losses that are not 
described by the intrinsic parameters of the 
superconducting material (critical temperature, 
critical field, BCS (or two fluid ) surface 
resistance Rs, etc.). 
These anomalous losses show up as heat and 
are visible in the Rs (T) and Q0(Ea) plots, as 
well as in the « temperature maps ». 
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Diagnostics 1/7 



Diagnostics 2/7 
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 Temperature mapping equipment (~ 1980) 



Diagnostics 3/7 
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From H. Padamsee: CERN -2004 - 008 

 Temperature mapping results (today) 
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Diagnostics 4/7 

 T-mapping for the diagnosis of anomalous losses 
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Diagnostics 5/7 

 T-mapping for electron field emission diagnosis 
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104 

Diagnostics 6/7 

 Second sound in superfluid helium 
First used by K. Shepard at Argonne NL for detecting the quench location in split ring resonator 

Courtesy K. Liao - CERN 

 

 OST 1 

OST 2 

OST 3 
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Diagnostics 7/7 

 Second sound in superfluid helium: Speed of 2nd sound 

9 ms 

OST 1: 70pF , f=12kHz (R.T.) 
OST 2: 63.5pF, f=6.5kHz (R.T.) 
Suppress common mode hum (50Hz) 
 
OST 1 (20 cm) - OST2 (20cm) 
 
 
V= D/ Δt 
   =20cm/9ms 
   =22.2 m/s 



Electron field emission 1/5 
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Electron field emission 2/5 

The basic physics is described by the model calculation due to 
Fowler & Nordheim. The current emitted for a surface area A 
depends exponentially on the local surface electric field E: 

 

IFN = A ⋅
C

Φt2 y( )
E 2 exp −

BΦ3 2v y( )
E

 

 
 
 

 

 
 
 

B and C are constants, Φ is the work function, and t and v are 
slowly varying functions of E close to 1 

In reality, the current observed is much larger than described by the 
FN model. The discrepancy is  subsumed in a field enhancement 
factor β: Elocal= β Eapplied. 



Eon(2nA) =140 MV/m 
β= 31, S = 6.8·10-6 µm2  

   Al Mg Nb 

Eon(2nA) = 132 MV/m 
β = 27, S = 7·10-5 µm2  

Eon(2nA) > 120 MV/m 
β = 46, S = 6·10-7 µm2  

Al 

Si Nb 

500 nm 2 
µm 

2 
µm 

Electron field emission 3/5 
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 Typical particulate emitters containing impurities 
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Electron field emission 4/5 

 Fowler Nordheim theory 
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Electron field emission 5/5 

 Clean room preparation mandatory 
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Electron multipacting 
Localized heating by multiple impact from electron current due to secondary 

emission in resonance with RF field. 
Historically this phenomenon was a severe limitation for the performance of sc 

cavities. 
The invention of the “circular” shape opened up the avenue for higher gradients.  
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Heat removal 1/2 

Cause for “quench”: 

 Thermal Improvement of thermal conductivity for Niobium sheets 
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Heat removal 2/2 

2 4 6 8 10
EaMVm1

2

3

4

5

6
Yield

2 4 6 8 10 12 14
EaMVm2

4

6

8
Yield

Ea= 4.9 ± 1.8 MV/m 

Ea= 5.5 ± 2.1 MV/m 

 Role of thermal conductivity on max. RF field for cavities 



Thin film Nb coating 1/2 
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 Coating a copper cavity with a thin Nb film 
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Thin film Nb coating 2/2 

 Important role of high thermal conductivity subtrate (Nb/Cu cavity) 



Improvement of QA efforts: ORNL/JLAB results 
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Source: I. E. Campisi and S.–H. Kim, SNS Superconducting Linac 
operating experience and issues, 

Accelerator Physics and Technology Workshop for Project X, November 
12-13, 2007 

http://projectx.fnal.gov/Workshop/Breakouts/HighEnergyLinac/agenda.
html 

high β 
Ea= 18.2 ± 2.6 MV/m 
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low β 
Ea= 17.1 ± 1.9 MV/m 

high β 
Ea= 18.2 ± 2.6 MV/m 

Nevertheless, in spite of all technological efforts, performance of sc 
cavities is often stochastic 



Stochastic parameters 
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Influencing quantity Impact quantity Physical 
explanation 

Cure 

Field emission sites 
(foreign particles sticking 
to the surface, size, 
density) 

Q – value / acc. gradient 
γ  radiation 
HOM coupler quench  

Modified Fowler-
Nordheim-theory 

Electro-polishing 
Assembling in dust-free air 
Rinsing with ultrapure water (control of resistivity 
and particulate content  of outlet water) and alcohol 
High pressure ultrapure water rinsing (ditto) 
“He- processing” 
Heat treatment @ 800 – 1400 °C 

Secondary emission 
coefficient  δ 

Electron-multipacting Theory of secondary 
electron emission 

Rounded shape of cavity 
Rinsing with ultrapure water 
Bake-out 
RF - Processing 

Unknown Q – slope / Q-drop 

(Q – value / acc. gradient) 
Unknown Annealing 150 °C 

Electro-polishing 

Metallic  normal-
conducting inclusions in 
Nb 

Acc. gradient Local heating up till 
critical temperature of 
Nb 

Inspection of Nb sheets (eddy current or SQUID 
scanning) 
Removal of defects ( ≈ 1 µm) 
Sufficiently large thermal conductivity  (30 - 40 
[W/(mK)]) 

Residual surface 
resistance 

Q – value / acc. gradient 
 

Unknown to large 
extent 

Quality assurance control of a multitude of 
parameters 
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Improvement of cavity performance 
Lilje & Schmueser 



Cryomodules 1/2 
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Cryomodules  2/2 
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 installed in LEP tunnel 



Magnetic shielding 1/2 
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 Why do we need a magnetic shielding? 



Magnetic shielding 2/2 
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Summary 
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 The choice of the technology (normal conducting vs.. superconducting) depends on 
a variety of parameters: mass of accelerated particle, beam energy, beam current, 
mains power consumption, etc. 

 If superconducting, the typical interval of RF frequencies is between 300 MHz and 3 
GHz. 

 The technically most suitable superconducting material being niobium, choosing 
lower frequencies allows operation at 4.2 – 4.5 K, the boiling temperature of lHe, 
higher frequencies request operation at 1.8 – 2 K. However, the cryogenic 
installation is much more demanding. 

 The production of sc cavities requests careful application of quality control measures 
during the whole cycle of assembly in order to avoid the degradation of performance 
by « anomalous losses ». 

 The « anomalous losses  » contribute to an extra heat load, which is expensive to 
cool and which may limit the performance. 

 The cryostats (and cryomodules) comprise the RF cavity, the power and HOM 
couplers, the frequency tuners, the RF probe connectors, the UHV pumps, and the 
reservoir for lHe, housed in a thermally isolated vacuum vessel.  



Applications and outlook 
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LHC - CERN 



XFEL – DESY 1/3 
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XFEL - DESY 2/3 
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XFEL - DESY 3/3 
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CEBAF - JLAB 
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SPL - CERN/ SNS - ORNL 
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Heavy Ion accelerators ATLAS - ANL 

27 - 28 Feb 2012 JUAS lecture 2012: SC RF cavities Caspers/Weingarten 131 



Shapes of heavy ion accelerator cavities 
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Recent progress of SRF 

Next SRF “Conference” scheduled for 
2011at Chicago, Ill., USA: 
http://conferences.fnal.gov/srf2011/index.html 

http://accelconf.web.cern.ch/AccelConf/srf2009/index.htm 

SRF2009 Contributions to the Proceedings:  
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