F. Méot
BNL, C-AD/AP, Upton, NY

An introduction to beam optics’

e We will address in this lecture the theory of the guiding and focusig of charged particles in
accelerator structures. We will start discussing the methods of “Bam Optics” by introducing the
basic tools needed in that domain :

(i) We will investigate how particle motion in electrostatic fields aml magnetostatic fields is gov-
erned by the fundamental laws of dynamics

and how approximations of these into convenient mathematical toslwill make our lives some-
times simpler

(i) We will introduce the basic “optical elements” used in acceleator structures as beam lines,

circular accelerators, spectrometers, etc., which ensure guiidlg, focusing and other beam manipu-

lations.
e Then, we will “visit” : discuss, understand, some typical examfes of such optical assemblies.

1 After (i) G.Leleux, Accelerateurs Circulaires, Lectures, CEA Saclay (1978), (ii) L. Farvacque, A. Tkatchenko,jn
Ensembles de étection magretique du Laboratoire National SATURNE, CEA Saclay (1980), (iii) A. Septie Charged
Particle Optics.
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1 Some principles of beam optics

e Optical systems in the Gauss approximation are assemblies of uglly simple optical elements,
within which rays - “particle trajectories” in the case of charged particles optics -
are governed by generally simple geometrical rules.

e Beam optics very often deal with a limited of optical element specsgas, for instance :

Ex. 1 - Drift space :

This is the simplest optical element one can imagine : a portionfepace where the particle drifts
freely, subject to no external force. The particle follows a straiyt line.

(Note that, in doing that assumption, we neglected the mutual interactio between particles, see
“Space charge” lectures)

X ory

{ZEf:ZlTi—i—LtaH(@):Ii—l—I;L
I
2y = 1]

L = sy — s; and we have notedx’ = dx _ 140 ¢.

ds

e “Transverse coordinates” : we will note/usex, 2/, vy, v/,
e “Longitudinal coordinate” : s,
see “JUAS Nomenclature” leaflet as to the nomenclature.
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The transport of the particle from s; to s; can be treated using a “transfer matrix”

“Matrix transport” allows to move the particle from an initial state (z;, z;) to afinal state(xy, 2;) :
!/ T !/
T ) 0 1 T ),

M(sy + s;) = [1 L]

0 1

is the transfer matrix of the L—long drift.

 Xory
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EX. 2 - Focusing or defocusing lensoften treated in the thin lens approximation :
Defocusing lens

Focusing lens
A
X

A x
V
a »
S) >
g, s :
f
{ S D What is k ?

Considering the focusing lens and a ray launched from the left, paallel to the optical axis ¢} = 0),

one getsr’;, = tan(f) = — (

),  flisthefocal distance k= —1/|f]|.
In a general manner, given a non-zero incidencey’ , the lens causes a “kick”,

Ax' =x} — x| = F%

ik (-) for a focusing lens, (+) for a defocusing lens.
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Particle transport can be expressed in the matrix form,

MR I

1 0 f > 0,focusing lens
—1/f 1 f < 0, defocusing lens

Is the transfer matrix of the thin lens.

M(sy < s;) = [

Defocusing lens

Focusing lens
A X

X Focus

Y

~— ¥ Focus

X’

f L
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EXERCISE

A basic brick in beam transport optical systems :
The “FD DOUBLET”

Consider the following optical series :
First, a focusing lens with focal distancef ; next, a drift of length [ ; next a
defocusing lens with the same focal distancg.
1/ Calculate the transfer matrix, 7', of that assembly.

2/ Verify that the determinant of 7"is 1. Why 1 ?

3/ What is the distanceA from the defocusing lens to the focal point of the
system ?

4/ At what condition linking f and ! is the system globally converging ?
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¢ In a general manner, the design
- of beam transport lines,
- and of circular accelerators as well - including the largest oes !
in first approximation only require elementary functions as parabola, sine, cosine, hyperbola, ex-
ponential.
e The complexity of optical assemblies arises from the variety of thee laws and of their combina-

tion :

a particle will follow arcs of circles, arcs of parabola, sinetrajectories, “pseudo-sine” laws, etc.

e As aconsequence, a very limited mathematical toolbox makes itossible to deal with sometimes
very complex optical assemblies.
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EXERCISE
Going through a first section, (A), of an optical assembly, the transport writes
x _[ab x
x’ ; - \cd x ).

Going through the rest of the assembly, the optical system &versed,(A), is just
the symmetric of (A).

1/ Express the transport matrix through (A).

2/ Calculate the full matrix. What do you observe ?
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EXERCISE

We consider an optical series, FLDL, with the two lenses distantand tuned to the same focusing
distance|f|.

1/ Calculate the transfer matrix of this FODO cell (use earlier exertse, complete with a drift).

Let us introduce a particular notation for 7', namely,
T, =1 cosp, +J sinpu

with [ the identity matrix and J =+/—1 = ( a p )
2/ Make sure J? = —1

3/ What is the condition linking «, 3, v so that the determinant of7), is 1 ?
4/ Considering the trace of7), in the latter notation, and by comparison with the trace of 7’
obtained from 1/, what is the condition linking f and ! such that the notaton7), = I cos p, + J sin p
be valid ?

5/ Show that(7},)" = T,,(N p)

6/ What does 5/ mean in terms of multi-turn particle transport in a circular accelerator ?
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2 Motion of a charged particle in electric or magnetic fields

e Optical rays are deflected, reflected, using dioptric and/or cataidptric systems,
e charged particles are deflected, reflectedand accelerated too

- using magnetic fields

- electric fields

- combinations of both,

- either static or in addition, in some cases, varying in time.

e Prior to looking in a detailed way at the optical elements proper to tiarged particle optics,

we will first review the basis of the motion of charged particles inmagnetic and electric fields.
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Notions of dynamics

e The force that acts on a charged particle,
is the Lorentz force :

q : charge of the particle (Coulomb, C)
v . velocity of the particle (m/s)
E : electric field, in Volt/m (V/m)

B : magnetic field, in Tesla (T)

gl

el

<\

woll
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e The ELECTRIC FORCE, F = ¢E :
(A) An electric force can be of electrostatic origin :

e No varying fields in that hypothesis, i.e.,%—]? = 0 and as a consequence (Maxwell's equations) :

curl E =0
The static field E derives from a potential, E = —gradV (M), the change ofV in space is the
cause of the existence of/

e The electrostatic forceF’ = ¢E works : |
In the hypothesis whereV does not depend on time,

then between points A and B the work byﬁ IS
B oo B B .
7= [ Fds=—q [ oradvds = —qv|i=q(vi- Vi)
A A

The work by F only depends on initial and final positionsA and B,
it does not depend on the path followed fromi to B.

B In particular, on a closed path, 7 = ]{ﬁ.d} — q// curl Edr = 0

7

L Stoke’s theorem
by virtue of curl grad = 0
This has an important consequence :

In a circular accelerator, the beam follows a closed path, thus its not possible to accelerate par-
ticles by means of an electrostatic field, the energy gained from psible electrostatic gaps located
betweenA and B has to be lost (somewhere) in the path fronB to A.
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(B) Induction electrostatic force :

The electrostatic field takes its origin in a time varying vector poteial, E = —%—f?

This stems from Maxwell's equations : A, B, E satisfy B — curl 4, and socurl £ = —curl 24

“Qecurl A 9B
o ot

W:

The existence off; arises from the time variation of a magnetic flux.
The work of an induction force over a closed path is not necessdy zero.

As a consequence it is possible to accelerate on a circular patising an inductive electric field

Applications of induction acceleration can be found in :

Slow extraction from circular accelerators using a “betatron yoke’
Induction linacs, for production of high power beams,
Acceleration of muons in the neutrino factory,

“Long bunch” induction acceleration in a synchrotron at KEK PS.
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e The MAGNETIC FORCE:

e A manifestation of the magnetic force is the Laplace force on an eléical circuit :

—

F=1Idl x B

e Another manifestation is the force experienced by charged parti@d with velocity, v :

—

F:qﬁxg,

Under the effect of F the charged particle undergoes a deviation, its trajectory is curve.

e A magnetic force does not work :

F = (¥ x B) entails that F' is orthogonal to & = ds/dt,
as a consequence,

SH

T =Fds=qUxB).ds=0=q(0x B).tdt =0

An important conseguence . magnetic forces cannot change pacle energy, they can only change

the direction of the velocity vector, i.e.,deviate particles.
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Two rules that allow inferring how a moving charged patrticle is deviated by a magnetic field

Both rules yield the orientation of F:
e /dl, BandF,Iinthat order, form a direct triedra :

“Horizontally focusing dipole” “Horizontally defocusing di pole”
“Vertically defocusing dipole” “Vertically focusing dipole ”

to
‘_

center

fo
‘_

center /

e Rule of the 3 right hand fingers :
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Discussing the fundamental equation of dynamics

Classical mechanics Relativistic mechanics
mCCZZ—Tg — F, m is constant ddﬂtg — F,  mvaries with ¢

These two similar forms of the differential equation that governs clarged particle motion state that
the motion is defined by a second order differential equation.

From a mathematical viewpoint, this has the consequence that the matn is considered as defined
by

- the knowledge of the forces that intervene

- the knowledge of the initial state of the particlem : initial position and initial velocity
In particular, initial acceleration or past motion play no role
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Classical mechanics

A M _ di

S T e
which one can write
F_dmv _ dp

dt dt

with o = mv the impulse, or momentum

m = constant =m

Relativistic mechanics

dmv _
@ = b

m varies with v

with p' = mav the impulse, or momentum

m=mgy/+/1— % with 8 =v/c
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Classical mechanics Relativistic mechanics

Work of the force during the interva] to ¢, Work of the force during the interva] to ¢,

The variation of the kinetic energy is equal to the work of the forcesapplied.

f Z(M, t).dM with dM = ©(t) dt

T =(2F(M,t dM with dM = #(¢) dt t2d{ mgU }*dt
ftl ( B ) dv - () t1 dt \/T/CQ v
et P
. > di My U.dU
ty d _ 2 mov.av 4+ C
ARl R N
—m ol g2y o m 2102 oty omoctTdT moc?
- tld(v)—7><[v]vl (1 — 2/62)3/22_ tld{m}
= WQ — W1 = ft m2 m1>62
W = %mvz Is the kinetic energy. No need to An energy Is associated with the mass
define the nature of the force (magnetostatic, E = mc,
inductive...) hence a “rest energy?, = myc>.
The kinetic energy is defined By = £ — Ej
The work byF' is v <e

T = We — Wi = Sm(v} — v}) S  TheworkbyFisT = E, — B, = W, — W,
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(my —my)? = %mo(vg — v?)

EXERCISE

Show that 7, = W5, — W,



Deviation of a charged particle in a uniform electric field

e The Lorentz force equation : F' = ¢(E + @ x B) is reduced to

F =qE

We simplify the problem by taking p, orthogonal to E.

We simplify the mathematics (without loss of generality) by
taking E//(z).

and, atty: o/ /(s)

Thus: % =qFE =
dps _ .
jli Ps = Ps0
é’tx — ¢E, hence, byintegration | p, = qE.t + p.o = qE,t
d_ﬁy — 0 ﬁy = Pyo
dt

We consider the usual
frame (s, x,y).
We take E oriented
parallel to (z).

A
X

E
Pp=pS T

y
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Integration of these equations of motion is not a simple task :

Let’s first introduce, p'= mv

my _ myo _ my
V1= 1_@_5 1_v§+v§+v§
C 02

The integration is complicated by the entangling of the variabless, =, y : in any equation all three
ds dzx dy
dt’ dt’ dt
appear.

with m =
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Two steps allow removing this difficulty :

al The energy satisfies E? = E? + p*c? = (moc?)? + pc?
with E, = mgc’ the rest energy
and with p the momentum,  p* = p? + p} + p; = p + (¢E,t)?
yielding the time dependence, FE*(t) = E; + p?,c* + (q¢E,t)*c?

and  E%(t) = E? + (¢E,t)*c?,  with E; the total energy att = 0
. - . - 1 -5 02 .
b/ p'=muv can be written v = 7 p = 7D,

given that £ and p’are known (p'results from the first integration, above)

One thus has

ds =y, = psOC2
dt VE? + qE ct)?
dr _ qE, tc?

=V, = 2
jt VE? + (qE,ct)? 2)
d—% =v, =0 (3)

Note an unexpected property : the equation (1) above tells that the lonimdinal velocity v, de-
creases with timet = a transverse acceleration has the effect of decelerating longituatlly !

On the other hand v, increases with time, yet with a limit : which limit ?
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e Slope of the trajectory

At this step, we can calculate the slope of the trajectory.

As a matter of fact, the study of particle motion, and the design of accefrators and beam lines

requires the knowledge of the slope of trajectorlesg—x ny

qE, tc?

dx
de - df - NE+(Ect)?
ds ds psOC2

at VE? + (qE,ct)?

The slope increases proportionally with timet.

— = C%° xt
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£+ (qFE,ct)?

qE, tc?

v

EXERCISE
2
1
Show thatwv, %t

Vy =



e Integration of the velocity equations

We start from the expression derived earlier forv,, v,, v, and proceed further :

ds = vydt = psocdt — DPs0C with o = L

VE2 4 (qE.ct)? P \/W ’ gl

dr = v, dt = ¢ tdt

Va2 + t2

dy = v,dt =0 (3)

In order to simplify further the equations, we assumes =z =y =0 attimet = 0,

On the other hand, one has

— Asinh L, [ _ /i
S e A | = Ve
So that
s0C s0C s0C Exct
po fo a2+t2 po fo [Asmh } pomAsmthi
:I:—cfo t?dj—ﬁ_ [\/mh:c[\/m—a} = {\/E2 (qE.ct)?
a
= (0 (the trajectory stays in the (Osx) plane !)
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e Trajectory

Its equation can be obtained by removing time between the equationsif s and for x :

i _ PsoC : quCt
from our earlier s = qEIAsmh o) one gets

B . qE,s
qF.,.ct = E;sinh ps—g;c

which, given the earlierz = [\/E2 (qE,ct)? Z} thus yields

\/ 1 + sinh? qués 1]

Using in addition cosh” u + sinh® « = 1, one then gets

_ ki
- qk,

\/Ef + E?sinh? % )

_ B qb.s
T = o (cosh DaoC 1)

Catenary equation
0.6 . .

I
cosh -1 (gEx>0)
05 —

0.4 -

03 1

(x/Db)

0.2 - I

0.1 1
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EXERCISE

Show that in the “classical mechanics” cased est v << ¢, the trajectory is a
parabola.

Hint : derive the equation of that parabola from the “relativ istic mechanics” one,

i q%x (COSh qLys 1)
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Deviation of a charged particle in a uniform magnetic field

e The Lorentz force equation : F = ¢(E + ¢ x B) is reduced to| F = ¢ ¢ x B

e Remember that the fundamental relation of dynamics yields,

mo% = qU X B in “classical mechanics” v << c).
dgf — ¢ ¥ x B in “relativistic mechanics” (when v is no longer negligible compared to velocity
of light).

e Remember also thatB does not work, it cannot induce a change in energy, the velocitgnd the
mass are constant :

Lorentz relativistic factor v =1/4/1 — v?/c¢? = constant.
The relativistic massm = ymy is constant.

As a consequence, both classical and relativistic equations cae written under the form
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e Only basic considerations will be introduced in the present chiater, we will have many occasions
to sophisticate things further later during the lecture :
so, for the moment, we simplify the problem by takingu, orthogonal to B.

We consider the usual

e We simplify the notations, without loss in the generality, by frame, a direct triedra
taking B “vertical” : B//(y). (s,2,9).

We take B oriented
As a consequence the initial velocity is contained in the “bending parallel to (y).
plane”, which often happens to be the “horizontal plane”, v, €
(Osx). y

e Projection of mg—? — ¢ ¥ x B onto the axes yields

t S Xy ' 0
m dcé—f =q|lz x|0 =gq| 5B, (Weintroducedcél—gz()) s
dy y B, 0
dt
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we then get :

Let’s now introduce the “precession frequency”

W 1B
m
2 .
gl—;:wx (1)
z?g:—ws (2)
TYy_o (3
=0 ©

w IS also known as
the “cyclotron frequency”

l.e., the angular velocityccll—g

of a particle in a cyclotron
accelerator.

Note that w does not

depend on the radius of the circular
trajectory . same period

T = 27 /w to perform

one turn (@ = 2x), whatever the radius.
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EXERCISE

A magnet is designed for a proton with velocity 0.2c to perform preession at a rate ofl0~% second
per turn.

What magnetic field value is needed ?

What is the radius of the proton orbit in that field ?
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1st integration  Equations (1)-(3) cannot be solved independently, they are coupled: appears

in Eq. (1) whereass appears in Eq. (2).

However a first integration is possible and will allow uncouplng the variables :

s _ i (1) -
" &lg $—8 =  w(r—u1x0)
= @fgz—ws 2) = |i—3) = — w(s— sp)
dy 0 3 y—1Y = 0 y
=0 ©
We now introduce the initial conditions: sy =0, 29 = 0, gy = 0, ®
and thus get the first integrals
O
§= S0+ wr (1) a
T =Ty — ws (2') Yo
y =0 (3,) s
Re-introducing these first integrals into Eqgs. (1)-(3) then gives
2 2
Z—; =  w(ty—ws) i.e., % +w?is =  wiy (17)
Ccli?%: = — w(s$ + wx) i.e., CCZZT%wLwQ:U = — WSy (2")
d
= o )

y
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Solving (3”)

Integration of differential equation (3”) is straightforward :

d’y dy
—=0=—==99, y=1yot +
dt2 dt Yo, Y=1Yo Yo
Given the initial conditions ¢, =0, yo=0, one gets
y=0

the motion stays in the(Osx) plane.
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Solving the equations of motion (1”), (2”)

2
Z—;Jruﬂs = wi (17)
ZT%W% = — ws (2

Integration of (1"), (2”) resorts to the regular techniques for solving a second order differential
equation of the form :

— + Kz=C", withCaconstant z stands for either s or x

The general solution is the superimposition of the general soluth of the homogeneous equation,

right hand side zero :
@ +Kz=0 (4)
dt? N

with a particular solution of
d’z
W + Kz = C (5)
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A mathematical parenthesis :

- d?z A
General solution of +Kz=0:

dt*
fK=0:z2=At+B e A and B are integration constants
if K <0 : z=Acoshv—Kt+ Bsinhv—Kt that depend on initial conditions
if K >0 2= AcosVKt+ Bsin VKt ° C9Sh(x):M
sinh 2
2
Particular solution of % + Kz=C":
2
if K=0: 2=0C%
) _ _C
if K #£0 : z= 17

2
Hence the general solution of % +Kz=C"

2
if K =0 - z:C%JrAtJrB
it K <0 z:Acosh\/—Kt+Bsinh\/—Kt+%
if K >0 : ZIACOS\/Kt—{-BSiH\/Xt—I—%
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EXERCISE

iderd’z _
o We conS|derdt2 + Kz=0

Prove that
| if K =0

Prove that

. 2z=At+ B A and B integration constants

’ if K >0 : 2= AcosVKt+ Bsin VKt
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Back now to our earlier system,

df tuls = ag (1)
+wlr = — ws (2”)
2 0
dt y
Introducing the initial conditions, at t =0: so =0, 29 =0, $ = Sy, T = Ty T B
we get _ _ . O
_ _ Xy S0 o Lo
s——.wcoswtqt.wsmwtfw a
x:%coswt%—%sinwt—% Yo

We get the trajectory by eliminating the time ¢ between these equations, which yields,

coswt =1+ %(sox — 10S)
nwf — JE §+ o) which lends itself to  cos? +sin® = 1, thus yielding
- 0
. 2 &2
X S Sp + X
(s =T+ (x+ 37 ==

y
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: 2 | -2
Sg+ T
(S—U)2+(x+%)2:%

.2 . 2 . .
This is the equation of a circle with radiusp — Y0770 _ Y0 centered ats — N =2

wl
DISCUSSION

gB/m >0 S o

Note : one can write Bp = p/q|, givenp = muv, v =1y = /83 + 22 andw = ¢B/m.

We call |Bp the rigidity of the particle |.
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3 An introduction to guiding and focusing optical elements

Introduction

e Charged particle beams are guided and focused by means of magtostatic or electrostatic de-
vices.

Sometimes both functions of guiding and focusing are combined ia single device.

e The relative efficiency of electric and magnetic fields scales asliiows :

Fp  qF  E[V/m]
Fg  quB  fBclm/s|B[T]

With E in ~MV/m range at most, B in ~Tesla range, thusFy is orders of magnitude smaller than
Fg.

e As a consequence, only magnetic fields can be efficient in focagiand guiding
high energy hadron beams.

Only at low energy, 5 < 107! — 1072, are electrostatic devices of interest.
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3.1 Magnetic quadrupole




Magnetic quadrupole

A quadrupole is a 4-pole magnetic structure with%{-symmetry.
Such geometry of the iron and coils assembly realizes a field
B(B,, B,, Bs) of the form

Gy
Gx
0

B,
B =B,
By

— In the “ideal” case (no “fringe fields”)

That form of the field determines the pole profile, by virtue of
Maxwell's equation :

—

curl B = 107 = 0| since in the gap between the poles = 0.

Hence B = +gradV(xy), V(z,y)the magnetic potential
As a consequence,

B, =Gy=+ (9_V

Vixy) =G
B, — o :+§_Z = [V(xy) = Gxy

e Inthe (Oxy) frame the equation of constanty’ network is

v

= —, (G is usually referred to as the “field gradient”)

y — )
Gx
This determines a family of rectangular hyperbolae.

———————————
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The quadrupole is defined physically by materializing the fourbranches of the hyperbola.

However, generally, a symmetric realization is technologicl simple, and allows passage for the
particle beam at the center of the quadrupole.

109N 4 ‘sondo weag ‘gT0g "uer ¢T ‘sdweydly ‘2102 SYNC

1947



In a practical manner, the hyperbolas are truncated, and on the othehand the pole shape is ad-
justed (departing slightly from an hyperbola) so to ensure constant gadient GG in the beam region,
the central region in the quadrupole.

-

4

I 5 b

\[_F: l B Focalisatio 8 b,

B ,&; i vlalls u; L | Dll}{ﬂ-lt sgj,'h_g?‘l

l!-rs 5 - e r— ﬂi 1

sibel & | & |

.| F
3, | * | £ .—I% : Beam cu.rrent (e.qg., proton
T — velocity) toward us.

Focusing effects :
The horizontal, I, = G z, and vertical, I, = Gy, components of the strength

F = qu X B
that acts on a moving particle have opposite effects, focusing or defusing.
The magnetic quadrupole is said to be “focusing in one plane, decusing in the other”,

Reversing the current in the coils (i.e., changingd — —B in F =
qu X B) or reversmg the direction of propagation of the beam (i.e.,
changing? — —#'in F = ¢ x B), , will reverse these functions.
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Particle motion in a quadrupole

The equations of motion are obtained in a way similar to what we hag seen eatrlier :

The force law

mE =qU X B
IS projected onto the axes, and writes
ax : 0 tB, — B3 d’ q q
g % 5 Loy = Pal d—%:—msBy:—vax
mr g =4 T X B, =q| —sB, = dfy q. "

Here, we have introduced an apprOX|mat|on We have assumed
2
N B T 1/2 drdsy2 . 1 dyds\2yi/2 _ . 2 2\1/2
v=/8+ i+ g S<1+s2+3 )12 = (1 + (GG + H(GEGHY = 51+ + )

%s(1+%x —1—%1/ ) ~

dx

which means, G| << ds

dt

ds

dt

and ‘ <<

EXERCISE : Make your own philosophy of that, how can it be figured out that angles are much
less than 1 ?
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That approximation

v=/8 32+
to first order in = and y allows eliminating the time ¢ in the differential equations of the motion,
which finally write, to first orderin z andy :

2
ZZZ;Jrq]?x—O
dy qG _ 0
ds? D

K — oG G _ quadrupole gradient
P Bp  particle rigidity

IS the quadrupole strength
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We have calculated earlier the solution of a similar system, whityields, here :

If K =qG/p=G/Bp >0

l.e., assumingy > 0, radially focusing quadrupole,
then G > 0, B, = Gz and z have the same sign,

Note : we note() = % and also (s — sy) = L = length of the quadrupole

/

!/
CE‘ZQE()COS\/EL—F\Z/UOESHI\/EL y:yocosh\/?L—k\?/J—%sinh\/EL

r' = —2oV K sin VKL + xcos VKL |y = yovV K sinh VKL + y}cosh VKL

Hence the transfer matrices :

- 1 .
cosvV KL ——=sinv KL

_—\/Esin\/EL cos VKL

] , horizontally focusing lens

cosh VKL L ginh VKL _ _
M, (s < s9) = K , vertically defocusing lens.

| VEsinhvVKL  coshvVKL

109N 4 ‘sondo weag ‘gT0g "uer ¢T ‘sdweydly ‘2102 SYNC

YAY



If K =qG/p=G/Bp <0

l.e., assumingy > 0, radially defocusing quadrupole,
then G < 0, B, = Gz and x have opposite signs,

/
xr = xgcosh /| K|L + \/%sinh |K|L
r’ = xog\/|K|sinh /| K|L + x{ cosh /| K|L

/
y =1yocos/|K|L+ \/%sin |K|L
y' = —yo/| K| sin /| K|L + y cos /| K| L

Hence the transfer matrices :

cosh /KL 1L ginh /KL
VIK]| N VK]

M, (s < s9) =
V| K|sinh/|K|L  cosh+/|K|L

, horizontally defocusing lens,

cos /| K| L L sin /KL

M, (s < sg) = , vertically focusing lens.
Y
—+/|K|sin\/|K|L cos\/|K|L

109N 4 ‘sondo weag ‘gT0g "uer ¢T ‘sdweydly ‘2102 SYNC

8v



EXERCISE
1/ Using complex algebra, prove that the transfer matrix of a quadupole can be written under

the form
cos VKL \/% sin VKL
—\/K sin \/XL coS \/EL

wether that quadrupole is focusing or defocusing, indifferently

M,(s < sg) =

2/ What if the quadrupole is switched off ?

3/ What is the value of the determinant of a diverging lens ?
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A remark concerning the linear model

For the transport through a quadrupole lens, we have obtained to thdirst order in x, 2/, vy, v/ :

COS\/?L \/%Sin\/?[/

M(s < sg) =
—\/Xsin\/KL COS\/FL

This model leans on two approximations :

e One was explicit :

d
(1+£2/S2+y2/52)1/2%d_j

ds

V=82 + 12+ =
i =

_ds

Namely, to first order in dz/ds and dy/ds, |v = ar

velocity v is considered to identify with the longitudinal component of the vebcity vector.
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e the second approximation arises from the technology : the -
magnetic poles are not perfect hyperbola : they have to be trun- oA &
cated, and they are further adjusted so to ensuré” = Gzy in the - S 1 ‘ N §
beam region, a criteria of the so-called §ood-field regiori. — -';’
. > 8
As a conseguencenon-linear components of the magnetic field —; §
have been omitted : N ‘ ‘ S 3
Mo
— Gy This configuration of the poles §
! multipoles having like symme- |5
try : o
one actually has Quadrupole : 41 pole 5
dodecapole : 43 poles |
B, = Gy + higher order terms in x and y 20-pole : 45 pole i
B, = Gz + higher order terms in x and y etc. %
o

e For instance, as in “combined function” main magnets (CERN PS, BNLAGS) :

&

Essentially there, higher order term in the developement is a selweak sextupole component. o



The real quadrupole

e It differs from the ideal quadrupole, V = Gzxy, by two g |
aspects : T

- the field in its central region is perturbed,
due to the limited extent of the hyperbolic poles,

- the gradient is not constant over the all length of the mag-
net, see figure.

e The real quadrupole with gradient GG(s) (curve 2) will yield the same deviation as its “hard edge”
model with constant gradientG, and length L (curve 1),

dx + G r =0
namely, it will yield a deviation of : A%—x ~ (—)dx [* G(s)ds ds® D
5 pr e dy G, _ 0
00 ds? p Y
as long as we note : / G(s)ds = GyL
e L is called the gradient length
e 80 _ G0 _ 1 isthe strength of the quadrupole
p/a  Bp

e K isthe integrated strengthof the quadrupole
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The thin lens model

e The thin-lens model is not trivial,
it is abundantely used for tracking in large machines includirg colliders as super-B factory, LHC,
RHIC

¢ In a thick lens the trajectory is progressively deflected at the travesal of the magnet.
The thin lens model is the limit case where the length

L—0

(from a practical point of view, this means, L << |f]),
while maintaining the integrated gradient G, such to preserve the deviation, which writes

>~ G(s)ds 0
:(_)f_oo (s) GoL

Az ple B,

r=—KLx

Note the relationship to the focal distance, as seen in introduction :

+ :
Ar' ==, ie, KL=—1/f
f
e Passage to the limit uses Taylor series of the sine and cosine faioos :
562 373
=1——+.., nr=x——+...
COS T 5 Sl O X 6
2 3
coshle—i—x——l—..., Sinhx:x—kx——i—...

2 §
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yielding

[ cos VKL \/%Sin\/?[/] _ 1— KIL2+ ... VKL + ...

—VKsinVKL  cos VKL VE(WKL+ ...) 1—\/§L2

|KL_|<§1 1 L
—KL 1
L 1 0 KL > 0,focusing lens
—KL 1 KL < 0,defocusing lens

¢ Using this thin-lens model, a “thick-quadrupole” can be approximated by a upstream-drift/thin-
lens/downstream-drift combination,

Thin lens

A

Up drift Down drift s

Y
z

with transfer matrix
M = Md—drift X Mthm lens X Mu—dm’ft
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A remark, in complement to the focusing properties of the magneticguadrupole

e We know how to realize assemblies of lenses, that focus or defmcin both x and y planes :

i ;
k*fi\vakvrk~Lﬁ

u1~ ' ™ wh'lr i::l.b'ﬂln- L s g L-\J"
Pl deady eyt (Bl S0 e

e An optical system maintains its nature, either focusing or defocuag, when attacked backward.
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The chromatism of quadrupoles

A quadrupole lens manifests itself by the strengthK = GL/Bp it applies on a particle that tra-
verses it, and translate into angle kickAz' = K LAx.

o Given a gradientG = % it is clear that stiffer particles : particles with greater stiffness
Bp =

7 P will be less deflected than particles with smaller stiffness.

This goes as follows. A first integration of our earlier equation

2
j—Jrﬁaz—O
S
yields
dr\ —q > T p/q
Al —+—)=— G(s)ds =— with f=—%
(d5> p X/oo (5) ds f i - G(s)ds

O ]

olf fy _f pg/q Is the focal distance for momentumy,

and f = f p/q |s the focal distance for momentunmp = py + Ap

then the focal distance of the lens undergoes the relative change
fp Ap f |
Jo o Do flp 5+dp]

e There is an analogy with photon optics :blue rays (larger refraction index) are more deflected
than red rays (smaller index).
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Ampere-turns necessary for obtaining a gradient G

e Hypotheses:

a - We consider a quadrupolar structure with infinite extent in s (this means that we neglect
end-fields effects),

b - Magnetic permeability 1, = oo (i.e., no Ampere-turn is spent in the iron, or equivalently,
magnetization H = 0 in the iron).

] _.
\ -
e Ampere’s theorem tells us that \ L0 |
|
- = o # ’ |
Jioy Hdl = NI \ |

B _ 1 /po oG /3.2 _ Gr “
Intheaer_MO_M0 Bx+By—M0\/$ Ty =0 _ l. Ny k_
’ rJ ’{V_f//} I
(uo = 471077 V.s/A.m, magnetic permeability of vacuum) A\ ,
X &F X |
_ 2@ ppole tip _ G » =7/

hence, |, Hdl = 3= |, rdr = 5T e tip _ . JF
\ |
and - SN /

G2 e

NI = %Tpole tip
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EXERCISE

A 1 MeV proton beam transplort line is equiped with a focusing lens 20 cm long, 10 cm aperture,
with 10 meter focal distance, is fabricated.

The power supply provides 1000 A. How many turns is the pole cof? 5 -
1 -
Give the field at pole tip, gradient, field strength, \ 4 f
. . l\ o L I
and the numerical value of the transfer matrix. _ -\ L7 |
‘L .‘
. M1 K e
@ N\ : ILL% Iu--
15
- R i
\\ _ |
Ay I
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3.2 Electrostatic quadrupole

e Electrostatic quadrupoles can be used to focus low-energy parties.

e Typically, electrostatic fields in the few 100s keV range can be obit@ed with typically cm-
distances between electrodes.

e As a consequence, beams of like energy can be handled.

e The force F = ¢E is anngE, therefore, in order to fulfill the function of focusing along both (x)
and (y) axes, the quadrupole should satisfy :
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Electrostatic quadrupole
On the other hand, we know from the laws of electrostatics that

E - gFadV R BT SR R o A
. Lo 5 e ey
No magnetic field B here, no time-varying B, curl E = _5% =0, -\ i B /1 -
L | | o TN e
FE derives from a scalar potential, by virtue ofcurl (grad) = 0. e N
s v\ N A

e Hence the quadrupole should satisfy, withV" the scalar poten- - / N \ T
tial : o - //h\\\

= = =75 /

E,=+Ky oy .-

so, the electrostatic potential has to have the formi/ = %(:UQ —y?)|.

e The equipotentials satisfyy = i\/@

these are rectangular hyperbolas with axes rotated 45n the (Oxy) frame. In effect, writing

(=l 1) 4| 60} 2 )

2 2
In this change of axes) = %(ﬁ —y?) transformsto V' = %uv, equation of the right rectangular

hyperbola.

SSEN
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e To summarize : An electrostatic quadrupole with its electrodes tilted by 4% with respect to the
x, y axes realizes the same focusing function as a magnetic quadrupol

e Careful though :
A charged particle coming from —oo, when reaching the region of an electrostatic element will
penetrate a region with changing electrostatic potential.

This change in potential results in acceleration or deceleratioof the particle, i.e. in a change in
particle velocity, mass, kinetic energy, total energy, rigidity..

This change needs be taken into account in the transport formalim : matrix transport or other.
e However, very often assumptions are made as :

- paraxial motion

- negligible longitudinal effects of electric fields
- identical upstream and downstream potential
- etc.

thus allowing use of transport formalism similar to magnetic elenents.

e Main advice :

One should be cautious about these hypotheses and their validity

regarding the electrostatic optical system to be dealt with.
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3.3 Relative efficiency of magnetic and electrostatic quadrupoles

From F = ¢F + ¢qvB one draws the equivalenceE = B¢B, E in Volt/meter, B in Tesla, ¢ =
299792458 m/s

From a technological viewpoint, it is difficult to realize electric fields larger than
Epnar & 300000 Vicm = 310" V/Im, 30 MV/m

For g =1, E,,,, corresponds toB = % =01T
For g = 0.1, E,,,, corresponds toB = Emgfﬂ =1T

We do know how to realize “warm magnets” providing B ~ 1.8 T, and even 2 to 3 Tesal in some
applications, spectrometers for instance.

Superconductivity allows even more, up to 5 - 10 Tesla.

e J=0.1forproton: kineticenergy E — M = M/\/1— 3> — M ~ smv? =4.7 MeV,
rigidity Bp = /T(T +2M) ~ v2MT = 0.3 T.m

e notethat Bp=0.3T.m usingB =1—0.1 Tesla
means curvature radius(0.3 — 3 meter about
convenient from Lab. viewpoint (large p means large experimental room, more costly)

e Conclusion : the relative weakness of electrostatic lenses limiteeir use to “Low Energy Beam
Lines” in proton and ion installations.
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3.4 Skew guadrupole

A skew quadrupole couples the horizontal (x,x’) and vertical (y,y’)motions :
- the differential equation for x containsy
- the differential equation for y containsz

RIGHT QUADRUPOLE SKEW QUADRUPOLE

2 2

—d%JrK:U:O _dazijNy:O

d d

5 , uncoupled. 5 , coupled.
- v
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3.5 Non-linear magnetic multipoles

Non-linear lenses are used in transport line$o correct aberrations :
- chromatic aberrations

- geometrical aberrations of second order (introduced by secondrder terms in X, y in the equa-
tion of motion)
- of third and higher order

They may also be used to partially compensate space charge effects

In some cases they may be introduced in a beam line to, on contrargause particular distortions
to the beam.

In circular accelerators they may be used for the correction of optical defects or as well for té
control of various parameters of the accelerator as

- the variation of the wave numbers with energy, with amplitude
- dynamic aperture

- excitation of an extraction resonance,

- compensation of collective effects,

- etc.
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2 x 3 poles

Sextupole,



Sextupole

e Functions :

- realize a componentB, proportional to z* (upright sextupole)
cf. upright quadrupole = B, proportional to =

- realize a componentB, proportional to y* (skew sextupole)
cf. skew quadrupole=- B, proportional to y

T
I|

Upright sextupole Skew sextupole
B, =2Hzxy B, = H(z? — 9%
B, = H(2* — y?) B, = —2Huxy
Pole profile and equipotentials Pole profile and equipotentials
satisfy satisfy
H(2? — y?/3)y =Cte H(x?/3 — y*)x =Cte

e Upright sextupolesare used to
- correct chromatic aberrations (introduced by quadrupoles), carect geometrical aberrations
- modify the momentum dependence of the wave numbers, in a ring (thechromaticity”)
- excite resonant extraction (“slow extraction”)

e Skew sextupolesre used to correct optical aberrations.
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Octupole, 2 x 4 poles

Functions :

- realize a componentB, proportional to z* (upright octupole)
- realize a componentB, proportional to y° (skew octupole)

Vi
s )L\
o~

~ ' _ /
i AN '\\ ,7
N " 1 \\ .:/ |" .

N
I\

— A !
/

7

» "//4
/.
/

/7 D)

Upright octupole
B, = O(3z* — y°)y
B, = O(z* — 3y*)z

The pole profile follows the equipotentials

O(2? — y*)zy =Cte

e Octupoles are used to
- correct optical aberrations,

Ny 9
BN

RZ

Skew octupole
B, = O(x® — 3y*)z
B, — O3z — y*)y

The pole profile follows the equipotentials

O(z* — 62%y* + y*) =Cte

- modify the behavior of the wave numbers as a function of the amplitud of particle motion (an
effect in rings known as incoherent dispersion of wave numberr “Landau damping”)
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An example : beam uniformization using an octupole

This is an example of a particular use of octupole lens in a beam @nsport line.

The role of the lens is to distort the beam so to get a uniform particlelensity distribution on some

downstream target.

Particle trajectories

Final “phase space”

ov ] Xf ‘ :
s o)
HORIZONTAL, OH off iy
.04 B . yVAm\F
. 06 W
0 2 4 6 8 10 12 14 W m m m S m
0. 08 pur—wmy oy o T oy T
Z (m = ] %
S A
o Quadrupates | AN 1 Ex
0.0 S m,
VERTICAL, OV on By
WL[ NE (1L 14 .,/.mw ] W
..omw M S\JH_ | | MW%»S
1 cos® @

The octupole “integrated strength” OL satisfiesOL =

12¢,/2 . SIn¢

0.010¢

0.0075 0.008 0.0085 0.009 0.009 0.01

0.0

-.01
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BOTH OCTUPOLES ON:':

2-D uniformisation at target, beam trajectories.

Z (m VS. Y (m

R I SRR ISR

-.05

-1

-1 -.05 0.0 0. 05 0.1

Transverse section of the beam at target.
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3.6 Dipole electromagnet - “bending magnet”

Particle motion in a uniform magnetic field perpendicular to the ve locity

We have seen that a magnetic field does not work, the
particle energy remains unchanged during the motion,
its mass stays constant.

The particle is subject to the following forces :

— 2
1 - centrifugal force, F, = m% outward

2- Laplace magnetic force, Frqpice = —quB, cen-
tripetal, inward (we assumeq > 0)

2
Thus the total force is F; = m% — quB, whereas equi-
librium requires F; = 0, hence :

Bp = with p = mwv

LU

The quantity Bp is the rigidity of the particle , it is measured in Teslaxmeter.

mpc
qB

The trajectory of the particle in uniform B is a circle with radius p= q% =
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a2l : A typical representation of a bending magnet
L j,"/ ;- T ats providing a uniform field B for the beam that follows
e | /_/_;us_;s’_ g ’z’ ._ (JA_Z:%,__%) a circle in the central region of the gap.
LLLL] ) q 3/’ - :
— = 7 _ < -._ Herea"sectordipole”, with /8 deviation : 8 such
s et ————— (ipoles would aIIow closmg a rlng accelerator

The Ampere.turns necessary to the obtention oB are +
realized by means of large number,N, of windings .
around the upper and lower magnet poles.

The current, I, in the winding is of several 1000 Am-

peres.

The role of the iron yoke is

(i) to confine the magnetic flux within the magnet vol-
ume

(i) to guide it into the gap, where the beam passes
(ii) to ensure uniform flux in the “good field region”

The yoke may be realized by stacking~ 1.5 mm metal
sheets.

Doing so limits the eddy currents produced by the
N . o variation of B when the magnet is “ramped”.
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The Ampere xturns to be provided :

Up to B = 1.5 Tesla about, the iron channels the magnetic flux in a quasi-perfect ay.
In effect, 1, =~ 3000 ~ oo, so that practically no ampere-turns are spent in the iron.

Beyond 1.5-1.8 Tesla more or less, the magnetic quality of iron deades, ., decreases, effective
ampere-turns (those in the gap) turn to a fraction of the ampere-turns supped by the magnet
power supply, in addition magnetic saturation in the iron affects the yke in a non-uniform manner
so that the quality of the field in the gap deteriorates...

.@__ o _
} o €) :
i
4-F—F 3% -1 -
- ™ X !
L i
i
Lo
) .
. . . Bgap
In the gap, the magnetic excitation/,, = T
In the iron, Bj.., = B,,, (continuity of the normal component of B), so that H;,,, = ﬁ{ﬁg ~
Bg@p
310° 10

henceH;,,, ~ 0.3107°H .

Applying Ampere’s theorem to the circuit (C) on the figure yields :

T dl Hiron liron ~ ~ a
NI = [y Hdl= [, Hypdl+ [, Hiron.dl & Hoaph (1 + T T) ~ Hy., h,hence NI ~ —=*Lh
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EXERCISE

Protons are accelerated to 3 GeV kinetic-energy in a ring basl on the earlier
magnet (curvature radius p = 6.3381 m, gap heighti = 0.14 m). The magnet
power supply provides 4000 Amperes.
¢ Find the magnetic field value to be achieved in the gap.

e Find the number of ampere-turns and the number of turns in themagnets.
e How many such magnets are needed to make up a ring accelerat@r

Hint : first find the rigidity, Bp.
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Particle motion in a magnetic dipole with field index

The “field index” in a dipole is created by giving the poles a hypebolic
shape :

following the “V = zy” quadrupole profile as seen eatrlier.
Such dipole can be considered as a quadrupole traversed “off-ai.
Th tit = ——ﬁ “field index”
e quantity n = B, g7 @ neldindex’,

is a measure of the focusing (or defocusing) effect of the varyingag.
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EXERCISE

Consider a dipole with “tappered” gap :

Show that the field index—%% SO created takes the value

h

qgw
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A reference trajectory can be defined, characterized byByp, =

Do
q

The equations of small amplitude motion around that reference

curve, (x = p — po,y), derive from
dp

— gU X B
a4

Two particular ingredients need be introduced in the first order ap-

proximation in x and y, namely

ds

X 12 12 1/2
77 |L+5)+2%+y

- the approximation v = 5

(

- the distance to the reference momentum :
a first order effect.

Assuming still, ds = vdt to first order in dx and dy.

Thus one gets the differential equations that describe the motion :

which now accounts for the curvaturel/p,

p = po + Ap which will be observed to introduce

dx  1—n 1Ap
352 ™ p(Q) v = Po P
ay ,  n

ds? +p(2)y U
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The resolution of these equations is similar to the quadrupole cas

Namely, by superimposition of the general solution of the homogeous equation and of a particular
solution to the inhomogeneous equationthis yields :

Radial motion, with £ = (s — s() being the path length along the trajectory arc :

if (1—n)>0:
B vV1i—n ) \/1—n V1—mn  Ap
x = o cos L+ ——s [,er(l—cos 7o E)p
Po
x’:—xovl_nsin”1_n£+azocosvl_n£+ sin Vi=np Op
Po Po 1—n Po p
if (1—n)<0:
Vvn —1 Ty o V/n—1 vn—1, A
x:xocoshnp—oﬁ‘i_\/nofsmhn—ﬁ—i—p—_o(l—cosh npo L) =L
x’:azovnp_ sth £+asocoshV Loy p()lsmh”npo_lﬁApp

Remark : Note the additional term compared to the motion in a quadrupde, the dispersive term

2
in Ap/p, brought in by the particular solution of the inhomogeneous equéon z 5 + 1 —Dx =

Po

1Ap

25 (whereas the rhs term was zero for the quadrupole : dg‘f
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Axial motion :

if n>0:

Y=y Ocosf£+ 50—8111\/_[,

’ il ££+yocos\/7

Yy = _yoﬁ sin

ifn<O0:

_ V—n Yo oy V1
Yy = 1o cosh 5 £+\/_—nsmh 70 L

PO
;A mn oA/ n / V—n
= Y0~7; sinh o L + 1y, cosh 5 L

Y
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Summarizing under the form of

5 x 5 transport matrices

For simplication of the notations we introduce

If n<0:

ke =[1—n|/p5 ky=|nl/p;

The dipole is horizontally focusing and vertically defocusim

. / cos k. L \/:lk—x sin vk, L 0 0

x —VkgsinVk, L cosvk,L 0 0

5, - 0 0 cosh \/I?yL ﬁ sinh \/I?yL
op 0 0 \/k:: sinh \/k7y£ cosh \/kTyE

P \ 0 0 0 0

P

1

——sinVk, L
PV ke

0

0

(1 — cos Vk.L) \

1 /
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fOo<n<l1:
The dipole is focusing in both planes.

1 .
( . ( cos ki L N sin \/k, L 0
! —VkysinVk, L cosvk,L 0 0
5, - 0 0 cOs \//?yﬁ \/lk:; sin +/ky L
\ op 0 0 —\/l?ysin \//?yﬁ coS \//?yﬁ
Py 0 0 0 0

If n>1:
The dipole is horizontally defocusing and vertically focusir.

1 .
. \ ( cosh vk, L NG sinh vk, L 0 0
x Vky,sinh vk, L  cosh kL 0 0
Yy = 1 .

0 k, L k,LC

J 0 COS \/Z \/l?y sin \/7y
op / 0 0 —/ky sin \/I?yE COS \/kTyE
/o 0 0 0 0

p—ll%(l — cos Vk L) \

1 .
sin vk, L
vk Vs
0
0

)

Pk
1 .
sinh vk, L
vk Vs
0
0

L (1 — coshv/E, L) \
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Pure dipole

e This means, absence of indexy = _FW
Yy

e Given that the field is constant over the all beam region, then the trgectory is an arc of a cirlce,

with length £ = pa,

p 9By _ 0, “parallel gap” dipole.

with o the deviation in the dipole.

. Byl n
e On the other hand, as to the[T3,] term of the matrix, Sli/g L= pa
e SO that the matrix transport obtained earlier,
i ( cos k. L \/1767 sin vk, L 0 0 pll% (1 — cos Vk.L) \
o —VErsinVE L cosvE L 0 0 le_ sin v/kz L
;J, - 0 0 COS \/EE \/7 sin \/75 0
op/p 0 0 —\/k7y81n \/I?yE COS \/75 0
\ 0 0 0 1 )
simplifies into
x cosaw  psina 0 0 p(1—cosa) T
x’ —% sina cosa 0 0 sin «v ()
Y = 0 0 1 pa 0 Yo
Y 0 0 0 1 0 Yo
dp/p 0 0 0 0 1 dp/p

Vertically, the sector dipole is equivalent to a drift with length L = pa.

Lo

Yo
Yo
op/p
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3.7 Elextrostatic cylindrical lenses Unipotential

Introduction to cylindrical potentials and calculation methods (Einzel) lens

Maxwell's equations of concern with electric fields :

e (1)curlE = gtB is zero+ static fields
HenceE derives from a gradient curl (grad) = 0), E = —gr?adv
e (2)divE =0

A consequence of (1) and (2) is,
divgradV = AV = V2V = 0, the Laplace equation.

We focus on cylindrically symmetric type of electrostatic lens, isice
cylindrical lenses have focusing properties of interest in bem transport.

In cylindrical coordinates (r, 6, s), the Laplacian writes
10 ( 8V) 182V 0*V

2 P — _
vV ror T(?fr T 2892 0s?

Since we are assuming cylindrical symmetry, i.e.V does not change withd, then a—‘e/ = 0,
and as a consequence the Laplace equation reduces to :
10 ( 8V) 0*V

ror\ar ) T = 0
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e An approach to finding approximate solutions to this differential equation, is to develop the
potential in Taylor series from the axis.

This approach is of particular interest when using numerical nethods to calculate particle mo-
tion, it is an easy way to get the potential at non-zero radius, and hee the field and force that
apply on the particle, starting from the mere description of the potental on the lense axis.

Doing so means that

+S 2 =0 (1)

1 Q oV 0’V
0s?

should satisfy the following Taylor developement, with even depglence on the coordinate-, since
V(—r) = V(r) due to thef-invariance of

vzzpﬁw%(m

From (1) and (2) such is the case if

aon($) = ———

In other words,

V(s,1) = Viso(s) — 5 VI_o(s)r% + i VI (s)r? + .

in which expressionV,_y(s) is the potential along the lens axis.
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EXERCISE

Given the expression of V(s,r) under the form of a Taylor devadpement,

V = CLQn(S)TQn (2)
1=0
show that
10 [ 0V 0*V
ror (a—) -0 W
entails
1 !/
agn(s) (2n)2 (g, (8)

109N 4 ‘sondo weag ‘gT0g "uer ¢T ‘sdweydly ‘2102 SYNC

v8



Electrostatic field

e Particle motion can be computed if the electric fieldE(s, r) is known, since it determines the
strength applied on the charge,F = qE

As a matter of fact, numerical methods like stepwise ray-tracing (stepvge resolution of Lorentz
equation, using for instance Runge-Kutta method) are often used, du the complexity of the
motion in electrostatic elements.

By virtue of Maxwell’s equation : E = —gr_&dV
the longitudinal and radial field components : E(s,r), FE.(s,7)
can be obtained by differentiation of the potential,
oV (s,r) oV (s,r)
ES ) - T T A ET‘ 9 -~ A
(5,7) 0s (5,7) or

In cylindrical lenses for instance, V(s,r) can then be drawn froma Taylor

expansion inr with respect to the optical axis as seen earlier, gy OV
graa,V = —|-~—
1
Vi(s,r) = Vizo(s) — ZVTHZO( s)re 4+ — cl V( )( )24 gradgV = }n%—‘e/
gradgsV = %‘S/

Careful though with manipulation of Taylor-series based apptmations of fields, potentials :

it (may) work, yet within limits, which depend on the form of @0V /0s : the series convergences, i.e.,

the series developement of the potential can only bring ausioi,
within some radius of convergence. (r < r.).
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e A different approach consists in finding a solution to the differentialequation, when the symme-
tries allow it.

We assume again cylindrical symmetry, and thus consider the siptified form of the Laplace equa-
tion (the same as earlier, we just developped the first term in that egation)
82V+18V+82V _ 0
or:  ror  0s*

A classical method of separation of variables can be applied to ih type of differential equation,
namely, we stipulate that V(r,z) =R(r)S(s)

This transforms the equation above into

R \ Or? or ) S 08?

This equality has to be satisfied whatever and s, so that one can write - this is the principle of the
method,

1 *R 1 OR _ 12
Ra2 YR ar = k on the one hand,

1 828 — —|—]€2

557 on the other hand,

with k£ a constant to be determined.
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The solution to this system is

S = C cosk(s— sg)

in which I, and K, are modified Bessel functions of the second kind4, B and C' are arbitrary
constants to be determined from the particular geometry of the problem

{ R = A[O(kT)+BKO(kT)

Example : the bi-potential cylindrical lens
V1 V2

‘N R ()
— o

In the possible solution inr the K(r) term is removed because non-physicaf{,(r) — 0.

Beam

We will not go into the details of the resolution of this system. The geeral lines are the following :

- the origin is taken at the slot between the two tubes
- a potential of the form V(s,r) =V — % is seeked,
with the virtue of satisfying

Vis,r) 2= Ve N

V(s,r) =5 2
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Looking for a solution of the form

Vi+V, .
V(s,r) =V - ———= 2}; A(k) Io(kr) sin ks

it can be shown that

dk

V2_V1 Vi+Ve Vo—V; [ sinks
A(k) kly(kr) and thus =
z: olkr) = — Vis,r)=——+ 2,AkMM)

One way to end up with that is to compute this integral numerically.

However a practically identical, simpler, good approximationto the function above, generally
used in beam transport to simulate the bi-potential lens because isieasier to manipulate, is :
Vi+Ve Vo—V1

V(s,r) = 5 + 5 tanh% with w = 1.318, R the inner radius of the tube

When the distance between the two cylinders, say, is not negligible, the solution of the differen-
tial equation is

V(s,r) = dk

V1+V2+V2—V1/°° sin ks sin kd
2 T o Kklg(kr) kd

and a good approximation writes

Vi4+ Vs VQ—Vll coshw(s+d)/R

Vis,r) = SRR dwd/R o8 coshw(s — d)/R
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Einzel lens

0 volts +V volts 0 volts
Plates ———————— .'_
\ ) A N

“Electric field lines

e il '\-\.._r-'.
. - L .:'.'_-
» e — —— Focus
lon path 0 i

0 volts +4 valts 0 yolts

It consists of three or more sets of cylindrical or rectangular tukes
in series along an axis.

It is used for beam focusing, sometimes including beam purifa:-
tion : one ion specie focussed while polluting other species ade-
viated away from the lens axis.

Potentials on the first and on the last electrode are identical, hemx
the Einzel lens focuses without changing the energy of the beam

For this reason it is often calledthe “unipotential lens”.
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Let the length of the first, second, third electrodes be

respectively L., L,, L3, and the distance between

the electrodesd. The total length of the lensisL; + Ly + L3 + 2d. (.(.
Let the two potentials applied on the electrodes b& 1 and V2.

The inner radius is Ry.

Thus, a model for the electrostatic potential along the axis is

B L2 L2 n . .
+=£+d —2—d )
Vo V1 cosh W<S Rz ) cosh W(S Rz ) Three glectroc!e cylindrical
V(s) = 5o In [ OLQ) + In ( 0L2> unipotential lens.
W + —=
cosh MR—Q cosh SR &
L 0 0 -

where s is the distance from the center of the central electrode, and = 1,318.

The field in the lens derives from the Taylor series derived from thgotential,

oV r2 Y
Ey(s,r) = és 1) = Ey(5,0) — 5 b; (s,0) +W% (s,0)
_OV(s,r . B PE, S PE,
Er(57r> - 8(7“ ) - _2_28E83 ( O) (24)2 aaf; (57 O) o (2.4.6)2655 (37 O)

Note that E; only is non-zero on axis, the radial componeng, (s, = 0) is zero on axis.
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3.8 Electrostatic prism

Prisms are bending elements. They are used in energy analyzein mass spectrometers in combi-
nation with sector dipole magnets.

e Simple prisms are
- parallel plate condenser, particles move on parabolas, lined to small deflections
- toroidal deflectors, the main path is a circle following the midde equipotential.

e A charge ¢ with energy U in a toroidal deflector follows a radius r, such that

2Uy
To N

with vy = (2U,/m)"/? being the velocity of the particle,m is the relativistic mass.

The field strength £ on the middle equipotential has to be adjusted so to fulfill this rule.
Similarly with what we have seen with magnetic dipoles, we are terested in fields of the form

r—7T r—T 2
14+n +n2< ) + ...
ro ro

E.(r,y =0) = Ei—oy0
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3.9 Combined E + B optical elements

Wien filter



3.10 Combined F + B optical elements

“Zero-chromaticity” quadrupole
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4 Treatment of charged particle motion in optical ensembles

Now we have gone through general considerations concerning thieeatment of optical elements, we
have the means to assemble these into optical structures : series ath elements, thus constituting
so-called “beam lines” and other “accelerator lattice cells”.

We will develop the methods assuming magnetic elements, for sirigty : constant ||, constant
mass.

4.1 General developement of mid-plane symmetry fields

Optical structures as “beam lines”, “accelerator cells” are conprised of successions of optical ele-
ments as bending magnets, quadrupoles, higher order multipoleenses like sextupoles, octupoles,
etc.

For practical reasons all these elements are generally dispasan an “horizontal plane”, meaning
actually :
the mid-plane of all these optical elements coincide with a commosp-called “horizontal plane”.

This “horizontal plane” may sometimes not be horizontal, conferLHC, microtron injectors...
What matters most is the fact that this reference plane is common to albptical elements that

constitute the ensemble.

For that reason, it is often referred to, instead, as the “bend plane; or “median plane”.
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In order to describe particle motion in optical structures, it is useful to define a single type of

reference frame, proper to be used in any of the individual opticaklements.

(Os) lies in the reference
trajectory plane, tangent to
the trajectory at point M,
projection of M ,onC,
(Ox) lies in the reference
trajectory plane, normal to C
at M(),

(Oy) is normal to the
reference trajectory plane

The reference frame is built on a “reference trajectory” (C)
taken in the “horizontal plane” and associated with a “ref-
erence momentum®p :

- in a field-free section, ) is straight line,

- in multipole lenses, () is a straight line : the multipole
axis,

-ina bending magnet, () is an arc of a circle with curvature
radius p = qu = Bp/B, center of curvature at C,
(s,z,y) can be considered as a cylindrical systens,r,0)
with

r=p+z, 0=s/p
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Antisymmetry plane

e In upright magnetic elements the median planéy = 0) is an antisymmetry plane

- ’:_I -
. et
= -
/// // '," :-;-’:'_‘_ L:E%'&ES-M
-~ ciu
T .
Dol | . _ _rsu,f ' ( w% u)
= -
(1T G- |
Eu.&m_< ‘ﬁf_ _ o
e A T oo
S P .P=§‘u%\m —
R £ N . HE

not in “skew” elements

y = 0 being antisymmetry plane, one has :

BS(S,I, _y):_BS(Sax7y) (_> BS:Oaty:O)

Bx(‘svx? _y) — —Bx(S,CU,y) (_> Bx:Oaty:O) (S)
By(S, Z, —y) — By(57 €z, y)

NI
meaning that

b
By(s,z,y) is an odd fucntion ofy, / B
B.(s,z,y) isan odd fucntion ofy, ‘
B,(s,x,y) is an even fucntion ofy.

Yon
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Developement of the field
e We need to have a convenient way of expressing components, namely
By(s,x,y), Bu(s,z,y), By(s,x,y),
so to be able to inject them into the equation of motion,
F = dp)dt

e Taylor expansions inxz and z with respect to the reference trajectory are an appropriate way,

assuming that particle motion stays confined in the vicinity of that eference (accelerators have a

finite aperture beam pipe !).
Taylor expansions of the field compents write :
By(s,z,y) = Y h_ox'y"'Csix(s)  (odd dependence iny)
Bu(s,z,y) = > 0o 'y Crix(s)  (odd dependence iny)
By(s,z,y) = > 00y Cyir(s)  (even dependence iny)

where the Cs; i(s), Cr; x(s), Cyix(s) have been introduced to simplify notations, and can be built
up explicitly from the derivatives, respectively,

aHkBS 8i+ka 8i+kBy

9

8l‘zayk .%’:O,yzo axzayk sz,y:07 8xlayk x:O,y:O
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The coefficientsCs, Cx, Cy in these Taylor series can be explicited using Maxwell equatian
They are linked by Maxwell equations :

culB=0={ _p 9By 0B, _,

1% _
| Ox pTz T pTT Os =

o= p OB B, 0B, , 9B,
divB =0 = +8x+8y =0

e Bringing into these equations the previousB,(s, x,y), B.(s,z,y), B,(s,z,y), one gets recursive
relations between the Taylor series coefficientS’s, Cx, Cy,

o dQy;;/ds = 2k + 1)(Csix + Csi—11/p),
° (Z + 1)0%4.17]{; = (2]-6 -+ 1)0332'7]{;,
o dCr;/ds = (i + 1)(Csit1k + Csi—11/p),

o 2(k+1)(Cyiks1 + CQyic1i11/p) + (1 + 1)(Clei g1 + Cxix/p) + dCs; . /ds
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Particular notations introduced at that point, proper to beam optics, are the following :

_ _ 1 _ —q ___bBp
o h=nh(s)= o(s) — Po By(s.)|9.c=f),y=? ~ T B,(s) |
(remember that Bp = p,/q, rigidity, is a property of the particle)

e The first order radial derivative of the field, %
IS replaced, notingn = n(s) = —1 OB, the field index, a “quadrupole term”
hl%ﬁszy:O é%E =040
2
e The second order radial derivative of the field,a&g@
1 0’B,

is replaced, notingn’ = n/(s) =

= “sex I rm”.
577 Byl o 5. a “sextupole te

x=0,y=0

A few pages of algebra, accounting for these notations and for the deer recurrent relations,
then yield the following general developement of mid-plane symmetry fields

h™'B,|h'y — (n'h* 4+ 2nhh' + W1 )y + ..]
B.(s) = h ™' By,[—nh*y + 2n'hzy + ..]
B W Byolh — nh*x 4+ n'h¥x? — L(h" — nh® + 2n'h%)y* + ..
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The equations of motion

Now that we have nice expressions for the field compnents, we cap@y the methods we have seen
earlier in deriving particle motion in lenses.
We will not detail these lengthy calculations here, we will just ssmmarize it - in a mere two pages !

Back to the reference frame introduced earlier :

e O is a (arbitrary) reference origin in the laboratory

e (' is the projection of O on (C), origin of curvilinear distance
S

e particle position M at time ¢ and distances is given by
OM = OM, + = + yy, with M, projection of M on (C)

7 — 4O MO lies in the reference trajectory plane, tangent to
the trajectory at point M,
e 7 lies in the reference trajectory plane, normal to(C) at M,,
e ¢ is normal to the reference trajectory plane
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§ = gl? is the velocity of the projection M, of M on (C)
ds ¥ _ ;= ds _ _$~ :
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EXERCISE
Show that
U] = $(1 + hx)S+ 22 + 22



Given these ingredients, and

- accounting for the field developments derived in the previous stion,
- introducing further, 0] = s [(1 + haz)? + 2/ + y”] 1

-and p = po(1 + 6)

it can be shown that the equation of motion m‘fl—g —qUx B yields :
2"+ (1 =n)h*x =hé + (2n — 1 — n)RP2? + Waa' + Sha? + (2 — n)h*xé
i %(h” — nh3 + Qn/hS)yQ + h’yy’ _ %hy'z — hs?
y' +nh*y = (2n' —n)h3zy + Way' + W2y + ha'y' + nh*yd

The equations of motion simplify when considering “perfect optial elements”, namely optical de-
vices for which it is assumed thatB,, n, h do not depend o

for instance : Gy -
- a bending magnet with constantB whatever s, z, y PN o
. . . . . —_—
- a quadrupole magnet without fringe field ST TN
> L =

However we will only focus, in the following, on thelinear motion, namely,
the sole terms of order O or 1 inz, y and ¢ are retained in the equations above.

In these hypotheses : first order approximation, linear fields, tle equations of motion above become

" + K, x = hd (K, = (1 —n)h?
y'+ Kyy=0 (Ky = nh?)
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Transport matrix

As we have seen when studying optical elements : quadrupole, bding magnet, the solutions of

" + K, x = ho (K, = (1 —n)h?)
y'+ Kyy=0 (Ky = nh?)

can be written under matrix form. We will generalize the 2x2 matrix notation introduced there to
5x5 matrices so to account for both

- horizontal motion, described by its components: and z’
- vertical motion, described by its componentg; and 3/

- and for the momentum deviation of the particle considered, with respect to the reference mo-
mentum, ¢ = (p — po)/po

(33 \ (TH T12 0 O T16\ (ﬂ?o\
x T, T, 0 0 T x|,
y | =1 0 0 T3 T34 0 Yo
y T§3 :§4 0 y6

. \80001)\5}
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A property of the determinant of the transport matrix
Differentiating the equation for 2’ as drawn from the previous transport matrix yields
" =T wo+ Ty + 1150 (a)

Introducing
2+ K,x=ho

and replacing z and ¢ by their expressions drawn from the transport matrix, one gets
— — K, T2y — KlegaTG + (h — KIT16)5 (b)

Comparing (a) and (b), and by analogy for the vertical coordinatesywe deduce :

T = —K, T
T = =K, T
Tll/6 = —K, T+ h
Ty, = — K, T3

From these relations it results that the derivatives of the determinats of the following three
sub-matrices are zero :
Tll T12 T16

T 1 T12 T33 T34
( Tll T/ ) ’ T1,1 T1l2 T1/6 ) ( T/ !
11 12 0 0 1 33 34
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(

11 119
17, 17,

)

EXERCISE

Using the relations

T = —K, T
"~ —K,Ty
Tll% = —K, 116+ h
Tég = —K,I3
Téi} =  —K,I3

show that the matrices

Ty Tio Ty

0

Tss 1T
nL Ty ) ()

0 1

0 0 T3z 134
0 T33 T34
\ o

all have zero-derivative determinant.

/Tu T2 0 0 T16\
T 17, 0 0 Tig

0

! )
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As a conseqguence, the determinant of the transport matrix is constd. Its value can be deter-
mined from the limit case :

If s — 0, then[T'| — I, hence

det[T] = 1.

This property stems from “Liouville’s theorem” ,
this is a particular form that Liouville’s theorem takes, in linear transport.

We will introduce Liouville’s theorem in the next section and cone back to this property.
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So, to conclude this section, we observe that :

A beam line, i.e. a succession of optical elements : drifts, lersdoending elements, is represented
to first order in the components,z, 2/, ... by a transport matrix which satisfies

T
( x/\
with X =1y
y/
\ 7/
Given that the horizontal plane and the vertical plane are decoum@d (no mixed terms in the

differential equations) it is possible to independently considemwork on, each of the sub-spaces and
related sub-matrices :

X =Tx X
det(T) =1

T T The Tie T
| = Ta T T 2
0 0O 0 1 0

and

(?J)Z <T33 T34) <?Jo)
Yy’ Ty3 Ty Y0

with each sub-matrix having determinant 1.
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5 Notions of phase space, emittance

5.1 Phase space

A linear source of rays is considered :

- it extends over|AA’] at some locations along the
longitudinal coordinate axis,
atall z € [A, A'| rays are emitted,

- the angular aperture of the emission at each
individual source is fixed,

say Max (%) =z

The beam can then be represented in a 2-D space with

x in abscissa and:’ in ordinate,

a so-calledphase-space representatiorof the beam.

()
C
>
% (£
A =
x’max N
/X'max g particuler >
4//’W" S
— " D
N
v
H
A N)
(&
Q
>
! N
X =)
H
_f\)
W
5
X'max 3
o O
=4
_ é
Al 0 A X |
M
<
—x’max g
dx
ds”

The phase space (x, 2) is a Cartesian space with axis:, ©’ =

In the “local phase space at abscissal’, or equivalently, at time ¢, a particle is represented by a

point.
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As a consequencea curve in the local phase space (some curve like the one that circumsceb the
rectangular domain, for instance,actually a dense set of discrete poinjsepresents

- either a family of particles all “photographed” at the same location (s, or t)
(this can be a family of particles characterized by, e.g., identidanomentum, or identical initial z,
etc.),

- or, for instance in a circular accelerator,
the successive states of a single particle “photographed”
upon successive passages at locatien
(at periodic intervals of time ¢, ¢t + T, t + 2T',...).

The latter is also known as thé‘particle trajectory in phase space”.
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The area in phase-space occupied by the beam (say, the area of thexdon D below) is known as
the “phase space extent” or‘emittance” of the beam.

It is measured in meterxradian.

A

Xl

‘ = (t)

(t)

O X

With time, or equivalently as the beam proceeds in distance ,
the shape of the domairD changes,
whereas fulfilling the equations of the motion.
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What is the interest of space space ? (1/2)

1/ The equation of motion of the mechanics are of second order :

dmu
dt

= F

that is to say, future motion depends
() on the strengths introduced
(i) on 2 initial conditions which are the initial position and the initial velocity .

As a consequence there can not be coincidence at the same timgor at the same locations)
between 2 trajectories with different initial conditions.

A

X’

"
(t)
(t)

(t)
o) X
This configuration is not possible
as it would mean,at point P (at time t),
2 different further behavior
given 2 identical initial conditions.

»
L
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What is the interest of space space ? (2/2)

2/ Liouville’'s theorem

A conservative system,

l.e., a system subject to strengths that do not & -
work,
: (t)

IS such that : (t)
O X
Area of domain D, at time ¢ = Area of domain D, at time ¢

This can be expressed mathematically in the following way.

Let A,(so) = [ [ dzodz(, be an element of surface in domairD, at location sp.
The transform of that surface element into domainD at location s writes

// drdr’ = //D (20, 2 d:z:()d:co

whereas the Jacobian of the transform satisfies

D(x, ) _| Ox/0xy Ox/0x|

D(xo,al)) | 02' /0y 02’ )0, 1, by virtue of Liouville’s theorem

Hence, A (s) = Ax(so) |
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Transformation of the emittance by a conservative optical system

Beam physicists are not so fond of distorted phase space domaijrthey are preferred elliptical
domains, an area with elliptical limit that circumscribes the domain D :

A X

O

This choice has two major interests :

- an ellipse happens to be a realistic representation of beam exteim phase-space, generally en-
countered with actual particle beams,

- In a linear transport system, as beam transport optics deals withan ellipse mapsinto another
ellipse with identical area

This has the two virtues of leaving the generic shape unchanged neaellipse, and of preserving
Liouville’s invariance : the area of the ellipse.
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Emittance, generalization

At all location along the beam propagation axis;s, each particle in a beam is represented by 6 phase
space coordinates,

x, 2, y, v, ds, ,0p/p

with
o 1,7 = g—ﬁ horizontal (sometimes called “radial”) position and angle,
o y, 1y = d—g vertical (sometimes “axial”) position and angle,
e s difference in path with respect to that of some reference particle,
o Op/p= ]% momentum difference relative to some reference momentunp,.

The emittance of the beam is the 6-D volume encompassed by a
6-D hyper-ellipsoid at given isodensity

A different choice for the emittance can be,when the beam has a finite extentthe volume
encompassed by the hyper-ellipsoid that circumscribes that fite beam.
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Liouville’s theorem establishes that, when transporting a 6-dimesionnal beam along a conser-
vative optical system, the local density within the 6-D phase space lume stays constant.

D(x,2',y,y',0s,0p/p)
dx da’ dy dy’ dos db ://////dx dxp dyo dyh ddsg do , LA = 1
////// v p/p 0 0 440 %o : p/p‘o D(xo,aﬁ{),yo,y6,5$0,5p/p\0)

On the other hand, as we have seen, the three sub-spaces, transverse’), (v, v') and longitudi-
nal, (ds,dp/p) are often un-coupled.

Un-coupling has the consequence that Liouville’s theorem apps to the projected sub-spaces,
namely the emittances in these sub-spaces are preserved :

- the 3-dimensionnal space:, x/, op/p,

- the 2-dimensionnal projection {, x’) of an ensemble of particles with identicabp/p (horizontal
phase space),

- and as well the 2-dimensionnal projection, «') of an ensemble of particles at a locatios where
x does not depend ondp/p (i.e., if T1g = 0, or if Vs, % = 0),

- the 2-dimensionnal projection {, v') (vertical phase space),

- the 2-dimensionnal projection ¢s, ép/p) (longitudinal phase space).
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Some transformations of a propagating phase space ellipse

Drift space

AX=LX

] , E'F remains unchanged, area remains unchanged.

(s1)
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Thin lens

(s+, diverging)

_\AX, (s+, converging)
S-{ s+ i

M = [ ! O], E'F remains unchanged, area remains unchanged.

~1/f 1
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Thin bending magnet (“kicker”)

X’ A (S+)
O (s-)
@) X ]

The deviation does not depend om, the ellipse is unchanged, it is’-translated.
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5.2 The beam matrix, beam transport

Now we are convinced that the ellipse representation of the beam iphase space is relevant, let’s
proceed with this representation, and with its transport along beamlines.

The general equation of an ellipse can take the form
vx? 4 20xx’ + Bx? = <
T

with ¢, the surface of the ellipse.

The coefficientsy, «, § depend ons and are linked by the
relation

By—a=1

This equation of the ellipse can be written under the form

1=Xo'X

with X = ( x, ) , X = (z,2) the transposed vector, and o' =L [7 a]

X

This allows introducing the “beam matrix”,

_6[5 —@]_[011 012]
O'—% =
—Q 7 021 022
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The beam matrix has the following properties :
At all s,

o detlo] = (%)2

Vo2 Centroid
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EXERCISE

Prove the relations :

o deto = (£)°
® O11 — Tmax
® /02 =Ty,
o« L I/[wmax]
V011
o)
i \/%22 — $[x;71ax]

Hint : First show that the equation of the ellipse can take thetwo forms,

€

. x4 (ax + Bx)?] = %[(WX + ax')? + x?]

|-
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EXERCISE

Consider a storage ring withe, /7 = 1.5 mm.mrad at injection.
The ellipse parameter at injection point into the ring is 3, = 100 meter.

Estimate the boundaries of beam excursion, in position and in arlg, at that location.
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Transport of the emittance ellipses

or “Transport of the ellipse parameters”

or “Transport of the beam”
At s = 0 the equation of the ellipse writes :

XQ 0'0_1 X() =1
At s = s; it becomes i

X1 0'1_1 X1 =1
with X, X; being related to X;, X, by

XlzTX()Il, XlzT}(():X()T
This yields
XO TO‘()_lT X() =1

and by identification with X, o, ' X, =1

oyt =To'T thus og=T"'o (T)™"

and eventually

01 :TO'()T
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From

we infer that

01 = TO'()T

det|o1] = det|og| = (5)2

v

sincedet|[T)| =1,

which is in agreement with the result established earlier :

the beam emittance,(%), IS preserved in a conservative system.
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Complements

An other way of writing

o1 = T 0 T
is (this can be proved by developing it)
5 T —2111172 T%
o — _T11T21 T11T22 + T12T21 _T12T22
Y T221 —2T21T22 T222

S1

In particular, this yields the transport of the optical function 3(s) :

B(s) =T Bo — 211 Tha oo + Ty Yo -
bearing in mind that

S0

By —a =1
In addition, by differenciation we obtain
d
d—f = 21T}, By — 2(T{{T12 + T11T}5) g + 21191 570 = —2a(s)

whereas, results we got earlier 17, = Ty, 1], = Ty, S0 that, by comparison with the expression for

a(s) from the matrix above, we get

a(s) = —F'(s)/2
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Transport of the beam envelope

In order to define the envelop of a beam along a transport line, thais to say, determine the

region the beam will occupy transversally in optical elements, e calculates at alls along the line
the quantity

xma:v(s) = 6(8); — 011(8)

starting from initial values of the optical functions at some abscisa s, : a(sg), 8(so), ¥(s0)

namely,
Tman(8) = | /T2 By — 211 Tha g + T2
maz\S) = 11 0 11412 QY 1270
T
BETA- LNS v5. 10 /01/ 10/ 99/ 24-Cct-01 13: 25: 08 1st O. OOOE+00
= ————————BFAM ENVEL s =
NUX = 1f 764 : : : § : IDNUX = 0..000EH0O
NUD. o2 1829 B R TR S e 4 L DNUZ =01 -00 0 EH0O0
SR . : TN FEXx/ Pi o= 2/\100E—305
/5</ Pi = 'y2.100E705
0. 015 PR s N bt oo Nt
. : A ’ : \ DP;\:L;/ 2 oboE jos
E : \ : e Yo : \ INrns =
O. 01 L 7/ H N N N H N Tttty .””, ..................................
0. 005
0.0
-. 005 ;
-.o01
-. o015
-.02
1 1 1 i 1 1 1
o 10 20 30 a0 50 60 70
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EXERCISE
If a new variable is defined,

X' =az+ B2

show that the beam in the so-defined phase-space, X’) is represented by a circle

with radius /S e/m.
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6 A tour of optical systems

6.1 Energy loss spectrometer

“Energy loss” spectrometers are optical assemblies allow deterining the energy lost by interaction

between a beam and a fixed target,

by measuring the position of the reaction products in the focal plae of the spectrometer :
The position of the reaction products on the focal plane is a measarof their energy and of the

energy loss of the reaction.

The Kaon KAOS spectrometer
at GS, Darmstadt, Germany

B8 .7Be + p Coulomb dissocigtion at Kaos

Separation of three different momenta
at % =0, =£30%, by the

spectrometer dipole :
S9°RRI L 67°P Y (m vs. X (m

"%7.0 0.5 1. 1.5 2.

The three momentum families
converge to three different,separated
images, in the focal plane of the
spectrometer.
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Energy resolution of an optical system

Two particles with identical initial conditions at the target of the optical assembly, but for initial

momenta that differ by Ap
will be separated in the image plane of the optical system

Oppi 1 ghop vs.
- in posisition by Ax = Ty Ap/p Meer Y o X @
2. |
- in angle by Ax' = Ty Ap/p 5 5
. 1.
given |
x Ty Tio Tie X0 0'5;
5[7/ = T21 T22 T26 $6 0.0;
) 0 0 1 ) _ %:
0.0

the transport matrix in the dispersive plane of the
optical assembly,

- from the object at target
- to the image at the “focal surface” of the system.

particles issued from the target with impulses ranging
in [po — Ap, po + Ap, ] will form a continuum of mono-

chomatic images spread along a line which is the trace
in the dispersive plane, of the so-calledocal surface of

the system.

If the optical system constitutes afocusing systemthen \ / P,

* Separation of beam ellipses at the foca
surface
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Energy resolution of an optical system (cont'd)
The resolution in momentum, R, is defined by

61'
o 5p‘ 0z nBer

Plr T T

l.e., the relative momentum such that the dis-
tance

Xy

Az =Ty Ap/po

between the images ap, and p, + Ap respec-
tively is equal to the image size2z.

Beam surface in the dipole

S9KRHLGROP Y (M vs. X (m
An important ingredient in maximizing the resolution R : e
of a spectrometer is, maximizing the surface of the beam
in the dispersive plane inside the spectrometer dipole(s). ™ 5;

1.

This property stems from general theorems regarding o.s
beam transport, however a qualitative understanding :
can be provided by considering phase space properties |
of the transport though the spectrometer dipole. ¥ 0 1 1.5 2.

109N 4 ‘sondo weag ‘gT0g "uer ¢T ‘sdweydly ‘2102 SYNC

0. OF

TET



Maximize beam surface in the dipole

For the purpose of simplifying the demonstration a thin-lens approxmation of a magnet dipole
Is considered below, with curvature radiusp causing a deviationa of the beam for the reference

momentum py.

Remember, pure dipole :

Toen o ‘sondo weag ‘zT0Z "uer ZT ‘sdweyaly ‘2T0Z SYNC

The separation of thep, and p, + Ap ellipses, v e pcii;f 8 8 pU;ﬂCgSa) g
IS given by v =] "o 0 1 pa 0 0
Y 0 0 0 1 0 Yo
) dp/p 0 0 0 0 1 dp/p
Ax' =Ths Ap/p ~ a Ap/p
X’ A + X’ A
o S
My ;
: = S
P \J R ‘
minimum maximum
envelope envelope

At entrance
to the thin-lens

exit of thin-lens,
case of
minimum envelope

exit of thin-lens,
case of
maximum envelope

CET



Xa A X’ A
5"
)"
| | Po
- | S -
\/ X i ~_ X
Po |
mTr;aJm maximum
envelope envelope
At entrance exit of thin-lens, exit of thin-lens,
to the thin-lens case of case of
minimum envelope maximum envelope

The resolution so acquired will not be changed (i.e., neither kt), whatever the downstream fo-
cusing, as long aso other dipole is encountered

At the image in the focal plane, the separation between thé&p image and thep, + Ap image is

A
Axr = T16—p
p

and will dependend on the focusing down to that locationhowever, the ratio

2 i']mage
Tie

R = IS invariant.

Images at the focal plane will be the more separated, the larger theeam is in the dipole.
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The transfer from the target to the focal plane of the spectrometer is gign by :

T St S12 Sie T
0 = | S21 S22 Sop 0
focal 0 0 1 0 target

with S;» = 0 by definition at the focal plane.

The transfer from the object O analyzed, and the focal plane of the spectrometer is given by :

xR St 0 Sis An A A X X
Or | = | S21 So2 So A9 Ay Agg by | =1T]( 6o
Op 0O 0 1 0 0 1 do do

Achromatism in position imposes
Tie =0, hence S11A15+ Si6=0

S16 being given, the analyzer is tuned so to ensure

This relation expresses that the dispersion of the analyzer systemust be equal to the inverse
dispersion of the spectrometer.
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In terms of the resolutions of the spectrometer and of the analyzer,aspectively, by definition ;

R(S) _ Qi:‘focal and R(A) _ 2§3target
S16 A
and taking into account the following relations :
i 7 S16
[’CfOC(ll — Sllxtarget and A16 — —S_
11

it comes

R(S) _ 2Slit§rget _ _R(A)

In other words, the resolution of the analyzer must equal that of thespectrometer for the system
Analyzer+Spectrometer to be achromatic in position.

The actual value of R®) is specified by the users, it is a design specification that depesidn the
sharpness of the measurements to be realized.

109N 4 ‘sondo weag ‘gT0g "uer ¢T ‘sdweydly ‘2102 SYNC

9€T



6.2 A high resolution mass separator (HRS)

Mass separators are part of the typical equipments used to handleadioactive beams.

Mass separation leans on the property that trajectorires of non-reléivistc particles with equal
ratio kinetic-energy/charge (i.e., particles that have “seen” thesame voltage) are independent of
particle mass.

By contrast, particles of identical energy and different masses ftow different trajectories in a
magnetic field.
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LINAG

Lewvel

Level -8

Production
building

DESIR

GANIL/
SPIRAL

Schematic layout of the DESIR facility
in the GANIL, Caen, France.

An RFQ will provide the beam quality
needed for the high-resolution separa-
tor HRS to achieve its design goal of a
resolution of

M/AM = 20000

Both RFQ and HRS will purify beams
from the SPIRAL2 production build-
ing. Beams will also arrive from the
S3 Super Separator Spectrometer and
from SPIRALL.
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Implementation diagram of the
HRS-alpha into the SPIRAL2
production building.

35'13".
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[
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=
[=1
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BT F

W96

WwWear

.- PR s

2 m 15 8
Charge number Z

20

7997 F

79.96

7995

Mass (u)

75.99

7992

799

R mnn:

" 0Z svNnr

M 32 3 3 I 40 42
Charge number £

Masses of different nuclei : A=36 (left) and A=80
(right). The arrows indicate the separation power of a
separator with a resolution of 2000 and 15000.

For light masses a resolution of the order of 1000-2000 is enoudt separate exotic nuclei. How-
ever, for the medium-mass nuclei produced by SPIRAL2, a resolion well in excess of 10000 is

needed.
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Mass spectrometer

Non-relativistic particles that have undergone the same acceletiag voltage (they have the same
W /q) follow the same trajectory in electrostatic fields, independent otheir mass. By contrast with
magnetic fields : trajectories of particles with samél’/q depend on their mass.

For that reason electric lenses are preferred for focussing heg particles.

Lattice configuration for HRS-C135

Element Length Element Length
(mm) (mm}
Drift length 300 Drift length 360
Matching quadrupole MQ1 Dipole D2 p = 50cm,
200 B= 67.5° p1=p2=27.5" 589
Pole gap=0.04m; width= 0.62m
Drift length 100 Drift length D2 1282
Matching quadrupole M()2 200 Focus guadrupole F()2 240
Drift length 267 Drift length 60
Focus sextupole FS1 120 Focus sextupole FS2 120
Drift length 60 Drift length 267
. Focus quadrupole FQ1 240 Matching quadrupole MQ3 200
I—aVOUt of the HRS-C135. Focusmg Drift length DI 1282 Drift length 100
and corrective elements are all Dipole D1 p = 50cm, Matching quadrupole MQ4
. b= 67.5" f1=p2=27.5° 589 200
electrostatic and thus Pole gap=0.04m; width = 0.62m
settings are independent of mass. | Driftlength 360 | Drift length 300
Multipole M 240 Slits

The ion optical design of the HRS-C135 separator consists of two &/degree magnetic dipoles
(D) with 27.5 degrees entrance and exit angles, four matching qdaupoles (MQ), two focusing
guadrupoles (FQ), two focusing sextupoles (FS) and one multipole (Mwith the configuration
QQSQDMDQSQQ. Mirror symmetry with respect to the mid-plane minimizes optical aberrations.
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0. 00 RBULEEP 2 ;f(j)“ vs. Y (m
| T Lﬁ“
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Separation of three momenta
Ap/p =0, +0.0005, at final-focus.
- Effect of strong second order
aberration (Y/6?) is visible.

Zgoubi1Zpop 72 o (rad) vs. Zo (L
‘ 0. 006 kllnim T ﬂJhHJf
el 0.004 “Ei”w~: e » f
0. 00 B R y b e ;fjff
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" o0p - | -. 002 ..‘;1:1m1
QOM e L R 1 ook Y
-+ 008 i 3 -. 006 |

770015 -.001 -.0005 0.0 0.0005 0.001 0.0015 T 001% © . 00T - 0005 0.0 0.000% 0.001 0.0015

YY’ and ZZ’ distributions at
beginning of HRS-C135.
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