

Insertions

the most complicated one: the drift space

Question to the audience: what will happen to the beam parameters a, β, γ if we stop focusing for a while ...?

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{S}=\left(\begin{array}{ccc}
C^{2} & -2 S C & S^{2} \\
-C C^{\prime} & S C^{\prime}+S^{\prime} C & -S S^{\prime} \\
C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}
\end{array}\right) *\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{0}
$$

transfer matrix for a drift:

$$
M=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right) \longrightarrow \begin{aligned}
& \beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2} \\
& \alpha(s)=\alpha_{0}-\gamma_{0} s \\
& \gamma(s)=\gamma_{0}
\end{aligned}
$$

location of the waist:

given the initial conditions $\alpha_{0,}, \beta_{0,} \gamma_{0}$: where is the point of smallest beam dimension in the drift ... or at which location occurs the beam waist?
beam waist:

$$
\alpha(s)=0 \quad \rightarrow \quad \alpha_{0}=\gamma_{0} *_{s}
$$

$$
\ell=\frac{\alpha_{0}}{\gamma_{0}}
$$

beam size at that position:

$$
\left.\begin{array}{l}
\gamma(\ell)=\gamma_{0} \\
\alpha(\ell)=0
\end{array}\right\} \rightarrow \gamma(l)=\frac{1+\alpha^{2}(\ell)}{\beta(\ell)}=\frac{1}{\beta(\ell)} \quad \beta(\ell)=1 / \gamma_{0}
$$

$\beta-F u n c t i o n$ in a Drift:
let‘s assume we are at a symmetry point in the center of a drift.

$$
\beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2}
$$

as $\quad \alpha_{0}=0, \quad \rightarrow \quad \gamma_{0}=\frac{1+\alpha_{0}{ }^{2}}{\beta_{0}}=\frac{1}{\beta_{0}}$
and we get for the β function in the neighborhood of the symmetry point

$$
\beta(s)=\beta_{0}+\frac{s^{2}}{\beta_{0}}
$$

! ! !

Nota bene:

1.) this is very bad !!!
2.) this is a direct consequence of the conservation of phase space density (... in our words: $\varepsilon=$ const) ... and there is no way out.
3.) Thank you, Mr. Liouville !!!

β-Function in a Drift:

If we cannot fight against Liouvuille theorem ... at least we can optimise
Optimisation of the beam dimension:

$$
\beta(\ell)=\beta_{0}+\frac{\ell^{2}}{\beta_{0}}
$$

Find the β at the center of the drift that leads to the lowest maximum β at the end:

$$
\begin{array}{ll}
\frac{d \hat{\beta}}{d \beta_{0}}=1-\frac{\ell^{2}}{\beta_{0}^{2}}=0 & \rightarrow \beta_{0}=\ell \\
& \rightarrow \hat{\beta}=2 \beta_{0}
\end{array}
$$

If we choose $\beta_{0}=\ell$ we get the smallest β at the end of the drift and the maximum β is just twice the distance ℓ

Mini- β Insertions: Betafunctions

Mini- β Insertions: Phase advance

$$
\begin{aligned}
\text { By definition the phase advance is given by: } & \Phi(s)=\int \frac{1}{\beta(s)} d s \\
\text { Now in a mini } \beta \text { insertion: } & \beta(s)=\beta_{0}\left(1+\frac{s^{2}}{\beta_{0}^{2}}\right)
\end{aligned}
$$

$$
\rightarrow \Phi(s)=\frac{1}{\beta_{0}} \int_{0}^{L} \frac{1}{1+s^{2} / \beta_{0}^{2}} d s=\arctan \frac{L}{\beta_{0}}
$$

Consider the drift spaces on both
sides of the IP: the phase advance
of a mini β insertion is
approximately π,
in other words: the tune will increase
by half an integer.

LHC Luminosity Parameters		$\boldsymbol{n}_{B} * N_{p} * N_{e} * f_{0}$
	LHC Parameters	Luminosity Scan of the two beams -> effective cross section
Energy	3500 / 7000 GeV	
I	2*300 mA/2*584 mA	
N pro Bunch	$1.4 * 10^{11}$	
n_coll	1380/2808	E ${ }_{4}$ - LHC Stable Beams
$\begin{aligned} & \hline \boldsymbol{\beta}_{x} \\ & \boldsymbol{\beta}_{y} \\ & \varepsilon_{x} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~m} / 0.55 \mathrm{~m} \\ & 1 \mathrm{~m} / 0.55 \mathrm{~m} \\ & 5.6^{*} 10^{-10} \mathrm{~m} / 5^{* 1} 10^{-10} \mathrm{~m} \end{aligned}$	
$\begin{aligned} & \sigma_{x} \\ & \sigma_{y} \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \mu \mathrm{~m} / 16 \mu \mathrm{~m} \\ & 23 \mu \mathrm{~m} / 16 \mu \mathrm{~m} \\ & \hline \end{aligned}$	
L_{0}	$3.6 * 10^{33} / 1 * 10^{34}$	

25.) Particle Tracking Calculations

particle vector: $\quad\binom{x}{x^{\prime}}$

Idea: calculate the particle coordiantes x, x^{\prime} through the linear lattice ... using the matrix formalism.
if you encounter a nonlinear element (e.g. sextupole): stop calculate explicitly the magnetic field at the particles coordinate

calculate kick on the particle

$\Delta x_{1}^{\prime}=\frac{B_{z} l}{p / e}=\frac{1}{2} \frac{g^{\prime}}{p+e} l\left(x_{1}^{2}-z_{1}^{2}\right)=\frac{1}{2} m_{\text {sext }} l\left(x_{1}^{2}-z_{1}^{2}\right)$

$\Delta z_{1}^{\prime}=\frac{B_{x} l}{p / e}=\frac{g^{\prime} x_{1} z_{1}}{p / e} l=m_{\text {sext }} l x_{1} z_{1}$
$\binom{z_{1}}{z_{1}^{\prime}} \rightarrow\binom{z_{1}}{z_{1}^{\prime}+\Delta z_{1}^{\prime}}$

and continue with the linear matrix transformations

Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerator cannot be treated analytically anymore. \rightarrow no equatiuons; instead: Computer simulation "particle tracking

Effect of a strong (!!!) Sextupole .

\rightarrow Catastrophy!

Talking about Reality

My daily problems:
LHC Upgrade Plans: install shorter / stronger dipoles

Talking about Reality

My daily problems:

Scanning magnet multipole coefficients to find the limit for individual magnet errors
... depending on optics, energy and magnet location
and

Talking about Reality

My daily problems: „Dynamic Aperture"

Stability limit in sigma
for a good field quality and a
bad one.
We require at least 12 sigma on average

