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Bernhard Holzer 
general solution: 

Normalise with respect to Δp/p: 

Dispersion function D(s)  

        * is that special orbit, an ideal particle would have  for Δp/p = 1  

        * the orbit of any particle is the sum of the well known xβ  and the dispersion 

        * as D(s) is just another orbit it will be subject to the focusing properties of the lattice  
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. ρ 

xβ 

Closed orbit for Δp/p > 0 

Matrix formalism: 

Dispersion 
 Example: homogeneous dipole field 

xβ 

Example  

Amplitude of Orbit oscillation  
                           contribution due to Dispersion ≈ beam size 

           Dispersion must vanish at the collision point  

Calculate D, D´:  ... takes a couple of sunny Sunday evenings ! 

or expressed as 3x3 matrix 

! 
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Example: Drift 

Example: Dispersion in a Sector Dipole Magnet 

Remember: Matrix of a  
                    magnetic element 

in general: 

…  but in a dipole, as  k = 0  … 

calculate the  „D“  elements for the marix a Sector Dipole Magnet  

Dispersion elements in a sector dipole magnet 

Nota bene: even an ideal particle with x = x´= 0 will start to oscillate if it passes a dipole  
                   magnet and has a momentum error Δp/p  
                   A dispersion trajectory will obey the same focusing forces (i.e. will be transferred by the  
                  same matrices) as a normal betatron oscillation 

, 
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Example: Dispersion, calculated by an optics code for a real machine 

 *  D(s) is created by the dipole magnets  
                           … and afterwards focused by the quadrupole fields 

D(s) ≈ 1 … 2 m 
s 

Mini Beta Section,  
          no dipoles !!! 

Dispersion is visible  

HERA Standard Orbit 

dedicated energy change of the stored beam 
      closed orbit is moved to a   
         dispersions trajectory 

HERA Dispersion Orbit 

Attention: at the Interaction Points  
                 we require D=D´= 0  
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Periodic Dispersion:  
                     „Sawtooth Effect“ at LEP (CERN)  

BPM Number 

Electron course  

In the arc the electron beam loses so much energy in each  
octant that the particle are running  
more and more on a dispersion trajectory. 

In the straight sections they are accelerated by the rf 
cavities so much that they „overshoot“ and  
reach nearly the outer side of the vacuum chamber.  

The dispersion function relates the momentum error of a particle to the horizontal  
orbit coordinate. 

xβ 

inhomogeneous differential equation 

 general solution 

But it does much more: 
     it changes the length of the  off - energy - orbit !! 

ρ 
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ρ 

ds x 
dl 

design orbit 

particle trajectory 

particle with a displacement x to the design orbit 
 path length dl ...  

circumference of an off-energy closed orbit 

remember: 

* The lengthening of the orbit for off-momentum  
    particles is given by the dispersion function  
   and the bending radius. 

o o 

For first estimates assume:  

Assume:   

Definition: 

αp  combines via the dispersion function  
the momentum spread with the longitudinal 
motion of the particle. 
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burned quadrupole coil in  
a mini beta magnet  

Reminder: Linear Beam Dynamics 

The derivation of the equation of motion is based on the presumption that  

 … in our accerlator there are only linear magnetic fields …. 

dipole     quadrupole 

magnet structure of LEAR (CERN) 

Multipole expansion of magnetic field: 

€ 
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! ----------------------------------------------------------------------- 

! ********Magnet type : MQXC/MQXD (new Inner Triplet Quad)*************** 

! ----------------------------------------------------------------------- 

                             bn in collision 

b1M_MQXCD_col  :=  0.0000 ;    b1U_MQXCD_col  :=  0.0000 ; b1R_MQXCD_col  :=  0.0000 ; 

b2M_MQXCD_col  :=  0.0000 ;    b2U_MQXCD_col  :=  0.0000 ; b2R_MQXCD_col  :=  0.0000 ; 

b3M_MQXCD_col  :=  0.0000 ;    b3U_MQXCD_col  :=  0.4600 ; b3R_MQXCD_col  :=  0.8900 ; 

b4M_MQXCD_col  :=  0.0000 ;    b4U_MQXCD_col  :=  0.6400 ; b4R_MQXCD_col  :=  0.6400 ; 

b5M_MQXCD_col  :=  0.0000 ;    b5U_MQXCD_col  :=  0.4600 ; b5R_MQXCD_col  :=  0.4600 ; 

b6M_MQXCD_col  :=  0.0000 ;    b6U_MQXCD_col  :=  1.7700 ; b6R_MQXCD_col  :=  1.2800 ; 

b7M_MQXCD_col  :=  0.0000 ;    b7U_MQXCD_col  :=  0.2100 ; b7R_MQXCD_col  :=  0.2100 ; 

b8M_MQXCD_col  :=  0.0000 ;    b8U_MQXCD_col  :=  0.1600 ; b8R_MQXCD_col  :=  0.1600 ; 

b9M_MQXCD_col  :=  0.0000 ;    b9U_MQXCD_col  :=  0.0800 ; b9R_MQXCD_col  :=  0.0800 ; 

b10M_MQXCD_col :=  0.0000 ;   b10U_MQXCD_col :=  0.2000 ; b10R_MQXCD_col :=  0.0600 ; 

b11M_MQXCD_col :=  0.0000 ;   b11U_MQXCD_col :=  0.0300 ; b11R_MQXCD_col :=  0.0300 ; 

b12M_MQXCD_col :=  0.0000 ;   b12U_MQXCD_col :=  0.0200 ; b12R_MQXCD_col :=  0.0200 ; 

b13M_MQXCD_col :=  0.0000 ;   b13U_MQXCD_col :=  0.0200 ; b13R_MQXCD_col :=  0.0100 ; 

b14M_MQXCD_col :=  0.0000 ;   b14U_MQXCD_col :=  0.0400 ; b14R_MQXCD_col :=  0.0100 ; 

b15M_MQXCD_col :=  0.0000 ;   b15U_MQXCD_col :=  0.0000 ; b15R_MQXCD_col :=  0.0000 ; 

!                               an in collision 

a1M_MQXCD_col  :=  0.0000 ; a1U_MQXCD_col  :=  0.0000 ; a1R_MQXCD_col  :=  0.0000 ; 

a2M_MQXCD_col  :=  0.0000 ; a2U_MQXCD_col  :=  0.0000 ; a2R_MQXCD_col  :=  0.0000 ; 

a3M_MQXCD_col  :=  0.0000 ; a3U_MQXCD_col  :=  0.8900 ; a3R_MQXCD_col  :=  0.8900 ; 

a4M_MQXCD_col  :=  0.0000 ; a4U_MQXCD_col  :=  0.6400 ; a4R_MQXCD_col  :=  0.6400 ; 

a5M_MQXCD_col  :=  0.0000 ; a5U_MQXCD_col  :=  0.4600 ; a5R_MQXCD_col  :=  0.4600 ; 

a6M_MQXCD_col  :=  0.0000 ; a6U_MQXCD_col  :=  1.2700 ; a6R_MQXCD_col  :=  0.3300 ; 

a7M_MQXCD_col  :=  0.0000 ; a7U_MQXCD_col  :=  0.2100 ; a7R_MQXCD_col  :=  0.2100 ; 

a8M_MQXCD_col  :=  0.0000 ; a8U_MQXCD_col  :=  0.1600 ; a8R_MQXCD_col  :=  0.1600 ; 

a9M_MQXCD_col  :=  0.0000 ; a9U_MQXCD_col  :=  0.0800 ; a9R_MQXCD_col  :=  0.0800 ; 

a10M_MQXCD_col :=  0.0000 ; a10U_MQXCD_col :=  0.1400 ; a10R_MQXCD_col :=  0.0600 ; 

a11M_MQXCD_col :=  0.0000 ; a11U_MQXCD_col :=  0.0300 ; a11R_MQXCD_col :=  0.0300 ; 

a12M_MQXCD_col :=  0.0000 ; a12U_MQXCD_col :=  0.0200 ; a12R_MQXCD_col :=  0.0200 ; 

a13M_MQXCD_col :=  0.0000 ; a13U_MQXCD_col :=  0.0100 ; a13R_MQXCD_col :=  0.0100 ; 

a14M_MQXCD_col :=  0.0000 ; a14U_MQXCD_col :=  0.0300 ; a14R_MQXCD_col :=  0.0100 ; 

a15M_MQXCD_col :=  0.0000 ; a15U_MQXCD_col :=  0.0000 ; a15R_MQXCD_col :=  0.0000 ; 

Example: HERA multipole coefficients of sc. dipole magnets 

general rule: multipole errors  
should be in the range  
of „some 10 -4“ 

systematic 
                        uncertainty 
                                                              random 

Example: LHC multipole coefficients of sc. triplet quadrupoles 

i.) power supply errors: 

remember from lecture N° 1: dipole error: 

Error in dipole strength: the gap 

Yoke production: laminations, made by stamping  
            out of steel sheet. 
            variations of gap „h“ by wear out  

                             of die or use of multiple dies   

Tolerance: 
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power supply stability: 

16 bit digital electronic for current control and stabilisation 

survey of power supply electronics: bit stability 

require 

normalised effect on the beam: 

The sum of all dipole magnets in a ring defines a curve that we call closed orbit. 
perfect situation  ↔ design orbit  

effect of single dipole magnet error: 

A dipole error will cause a distortion of the closed orbit, that will „run around“ the storage  
ring, being observable everywhere … but – if small enough – still will lead to a closed orbit !! 

Overall amplitude of a single particle trajectory: 

Assume one single diple error  
in a linac, 
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xco dipole kick 1/ρ*Δs 

periodicity condition still has to be fulfilled:  we still get (!) a closed orbit 

in any case: distorted orbit will be a betatron oscillation. 

a = orbit amplitude, φ = initial phase   

put starting conditions: 

boundary condition (1): periodic closed orbit 

boundary condition (2): at the place of the distortion, s = 0, ψ = 0 

Nota bene:  * orbit distortion is visible at any position „s“ in the ring, 
  … even if the dipole error is located at one single point „s1“. 

     * the β function describes the sensitivity of the beam to external fields 

                    * the β function acts as amplification factor for the orbit amplitude at  
                       the given observation point 

     * in any case we (clearly … ) will obtain a cosine-like orbit travelling around  
       the ring … but being closed !!! after one turn. 

     * there is a resonance denominator  

PETRA III Light Source: 

closed orbit error after  
offset of 0.3mm in 2 quadrupole  
magnets 
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Example: „bad orbit“, i.e. closed orbit that contains large oscillation amplitudes 

 eats up available magnet aperture  

 particle trajectories pass nonlinear field regions  
 detector components suffer from beam halo particles & light 

x


-10 mm


+10 mm


H1 drift chamber during  
a good run … or a „bad“ one 

Orbit distortions in a periodic lattice 

field error of a dipole/distorted quadrupole  

the particle will follow a new closed trajectory, the distorted orbit: 

* the orbit amplitude will be large if the β function at the location of the kick is large 
                     indicates the sensitivity of the beam  here orbit correctors should be  
                     placed in the lattice 

* the orbit amplitude will be large at places where in the lattice β(s)  
   is large  here beam position monitors should be installed 

● ● 

o 

● 
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closed orbit distortion: 

remember from lecture 1: µ = phase advance per revolution 
                                           in general measured and expressed in  
                                           units of 2π … and called „Tune“ Q  

         … and it depends on the focusing strength of the lattice cells.  

Tune: number of oscillations per turn 

            31.292 
 32.297 

Relevant for beam stability:  
non integer part 

HERA revolution frequency:  47.3 kHz 

permanent tune measurement …and control  
in both planes  

Assume: Tune = integer 

Integer tunes lead to a resonant increase of the closed orbit amplitude in presence of the  
smallest dipole field error. 

Qualitatively spoken: 
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n,m,p = integer numbers 

The particles – oscillating under the influence of the external magnetic fields – can be excited in  
case of resonant tunes to infinite high amplitudes. 
 particle loss within a short number of turns. 

 avoid large magnet errors 
 avoid forbidden tune values in both planes 

Solution of equation of motion 

go back to Lecture I, page 1 

        single particle trajectory  

Definition: phase advance  
of the particle oscillation  
per revolution in units of 2π  
is called  tune 
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Quadrupole Error in the Lattice 

        optic perturbation described by thin lens quadrupole 

rule for getting the tune 

z 
ρ 

s 
● x 

Quadrupole Error in the Lattice 

        optic perturbation described by thin lens quadrupole 

rule for getting the tune 

ideal storage ring quad error 

z 
ρ 

s 
● x 
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remember the old fashioned trigonometric stuff and assume that the error is small !!!  

and referring to Q instead of ψ:     !     the tune shift is proportional to the β-function  
        at the quadrupole 

  !!    field quality, power supply tolerances etc are  
        much tighter at places where β is large 

  !!!    mini beta quads: β ≈ 1900 m  
        arc quads: β ≈ 80 m  

  !!!!    β is a measure for the sensitivity of the beam 

Example: deliberate change of quadrupole strength in a synchrotron: 

tune spectrum ...  

tune shift as a function of a gadient change 

... for heaven's sake:  
             why do we get three peaks ???? 
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Example  GA  quadrupole:  
                burned quadrupole coil 

Clearly there is another problem:  
 a focussing error at any location in the machine  
  ... will shift the tune  
  ... and distort the optics   
  ... at any place in the ring  

orbit is not affected to  
first order ! 
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Influence of external fields on the beam:  prop. to magn. field & prop. zu 1/p  

   

dipole magnet 

focusing lens 

particle having ...   
          to high energy 
          to low energy 
          ideal energy 

definition of chromaticity: 

in case of a  momentum spread: 

… which acts like a quadrupole error in the machine and leads to a tune spread: 
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Where is the Problem ? 
Problem: chromaticity is generated by the lattice itself !! 

Q' is a number indicating the size of the tune spot in the working diagram,  
Q' is always created if the beam is focussed  
    it is determined by the focusing strength k of all quadrupoles 

k = quadrupole strength 
β = betafunction indicates the beam size … and even more the sensitivity of   
      the beam to external fields 

Example: LHC 

                     Q' = 250  
      Δ p/p = +/- 0.2 *10-3 

        Δ Q = 0.256 … 0.36 

 Some particles get very close to  
    resonances and are lost  

    in other words: the tune is not a point 
                          it is a pancake 

… what is wrong about Chromaticity: 
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Tune signal for a nearly  
uncompensated cromaticity 
( Q' ≈ 20 )  

Ideal situation: cromaticity well corrected, 
( Q' ≈ 1 ) 

Tune and Resonances 

m*Qx+n*Qy+l*Qs = integer 

Qx =1.0 Qx =1.3 

Qy =1.0 

Qy =1.3 

Qx =1.5 

Qy =1.5 HERA e Tune diagram up to 3rd order 

… and  up to 7th order 

Homework for the operateurs:  
find a nice place for the tune  
where against all probability  
the beam will survive 
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 Need: additional quadrupole strength for each momentum deviation Δp/p 

1.) sort the particles acording to their momentum 

… using the dispersion function 

2.) apply a magnetic field that rises quadratically with x (sextupole field)  

linear rising  
„gradient“:  

N 

Sextupole Magnets:  

S 

S N 

corrected chromaticity 

k1 normalised quadrupole strength  

k2 normalised sextupole  strength  

considering a single cell:  
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N 

Sextupole Magnets:  

S 

S N 

more in detail: we have to correct the  chromaticity in the two planes ...  
... and in each plane the sextu[pole fields will contribute with different signs to the Q‘  

k1 normalised quadrupole strength  

k2 normalised sextupole  strength  

  

€ 

Q'cell _ x = −
1

4π
kqf ˆ β x lqf − kqd

 
β x lqd{ } +

1
4π F sext
∑ k2

F lsext Dx
Fβx

F −
1

4π D sext
∑ k2

Dlsext Dx
Dβx

D

  

€ 

Q'cell _ y = −
1

4π
− kqf
 
β ylqf + kqd ˆ β ylqd{ } +

1
4π F sext
∑ k2

F lsext Dx
Fβx

F −
1

4π D sext
∑ k2

Dlsext Dx
Dβx

D

quadrupole error:  tune shift  

beta beat  

chromaticity  

in a FoDo 

corrected chromaticty  
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x co
 dipole kick 1/ρ*Δs


periodicity condition still has to be fulfilled:  we still get (!) a closed orbit 

in any case: distorted orbit will be a betatron oscillation. 

a = orbit amplitude, φ = initial phase   

put starting conditions: 

boundary condition (1): periodic closed orbit 
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angle x´: 

remember:


boundary condition (2): at the place of the distortion, s = 0, ψ = 0 

periodicity:


remember:


put into orbit equation: 
where 
denotes the orbit kick 

PETRA III Light Source: 

closed orbit error after  
offset of 0.3mm in 2 quadrupole  
magnets 
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calculation in full detail - i.e. for arbitrary initial phase ψ(s1) - yields


Nota bene: 
 * orbit distortion os visible at any position ”s”  in the ring 
  ... even if the dipole error is located at one single point “s1” 

 * the beta function describes the sensitivity of the beam to external fields 

 * the beta function acts as amplifcation factor for the orbit amplitude at   
  the given observation point 

 * in any case ... we clearly will obtain a cosine-like orbit travelling around  
  the ring ... but being closed !!! after one turn.  

 * there is a resonance denominator  

a quadrupole error will not only influence the oscillation frequency … „tune“  
 … but also the amplitude … „beta function“ 

ρ 

s0 
● 

s1 

● 

distorted matrix 

A 

B 
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the beta function is usually obtained via the matrix element „m12“, which is in Twiss form  
for the undistorted case 

and including the error:  

As M* is still a matrix for one complete turn we still can express the element m12 in twiss form: 

Equalising (1) and (2) and assuming a small error 

≈  1                              ≈2πdQ  

ignoring second order terms 

remember: tune shift dQ due to quadrupole error: 
(index „1“ refers to location of the error) 

solve for dβ 

express the matrix elements a12, b12 in Twiss form 
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… after some TLC transformations …  

          Nota bene:  !  the beta beat is proportional to the strength of the error Δk 

  !! and to the β function at the place of the error , 

   !!! and to the β function at the observation point,  
            (… remember orbit distortion !!!) 

   
  !!!! there is a resonance denominator 

ideal i.e. unperturbed beam  
optics for luminosity operation 

perturbed bam optics due to broken  
quadrupole winding 
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Ansatz: 

= det M = 1 

remember: for Cs) and S(s) to be independent 
                  solutions the Wronski determinant  
                  has to meet the condition 

remember: S & C are solutions of the homog. equation of motion: 

=D(s) 

… or  

qed  

and as it is independent  
of the variable „s“  

we get for the initital  
conditions that we had chosen  …  


