Introduction to Transverse Beam Optics

Bernhard Holzer
IV.) Errors in Field and Gradient

The „überhaupt nicht ideal world "

Dispersion:

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}-k\right)=\frac{\Delta p}{p} \cdot \frac{1}{\rho}
$$

general solution:
$x(s)=x_{h}(s)+x_{i}(s)$

$$
\left\{\begin{array}{l}
x_{h}^{\prime \prime}(s)+K(s) \cdot x_{h}(s)=0 \\
x_{i}^{\prime \prime}(s)+K(s) \cdot x_{i}(s)=\frac{1}{\rho} \cdot \frac{\Delta p}{p}
\end{array}\right.
$$

Normalise with respect to $\Delta p / p$:

$$
D(s)=\frac{x_{i}(s)}{\Delta p / p}
$$

Dispersion function $D(s)$

* is that special orbit, an ideal particle would have for $\Delta p / p=1$
* the orbit of any particle is the sum of the well known x_{β} and the dispersion
* as $D(s)$ is just another orbit it will be subject to the focusing properties of the lattice

Dispersion
Example: homogeneous dipole field

it for $\Delta p / p>0$
$D(s) \cdot \frac{\Delta p}{p}$

$$
\left.\begin{array}{l}
x(s)=x_{\beta}(s)+D(s) \cdot \frac{\Delta p}{p} \\
x(s)=C(s) \cdot x_{0}+S(s) \cdot x_{0}^{\prime}+D(s) \cdot \frac{\Delta p}{p}
\end{array}\right\} \quad\binom{x}{x^{\prime}}_{s}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{x}{x^{\prime}}_{0}+\frac{\Delta p}{p}\binom{D}{D^{\prime}}
$$

Example: Drift

$M_{\text {Drift } t}=\left(\begin{array}{ll}1 & l \\ 0 & 1\end{array}\right)$
$M_{\text {Drif }^{\prime}}=\left(\begin{array}{lll}1 & l & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

$$
D(s)=S(s) \underbrace{\int_{s 0}^{s 1} \frac{1}{\rho} C(\tilde{s}) d \tilde{s}-C(s)}_{=0} \underbrace{\int_{s 0}^{s 1} \frac{1}{\rho} S(\tilde{s}) d \tilde{s}}_{=0}
$$

Example: Dispersion in a Sector Dipole Magnet

Remember: Matrix of a
magnetic element

$$
M_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|K|} l) & \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} l) \\
-\sqrt{|K|} \sin (\sqrt{|K|}) & \cos (\sqrt{|K|} l)
\end{array}\right)
$$

in general: $K=k-\frac{1}{\rho^{2}}$
... but in a dipole, as $k=0$...

$$
M_{f o c}=\left(\begin{array}{ll}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
\cos \frac{l}{\rho} & \rho \sin \frac{l}{\rho} \\
-\frac{1}{\rho} \sin \frac{l}{\rho} & \cos \frac{l}{\rho}
\end{array}\right)
$$

calculate the „D" elements for the marix a Sector Dipole Magnet

$$
\begin{aligned}
D(s) & =S(s) \int_{s 0}^{s 1} \frac{1}{\rho} C(\tilde{s}) d \tilde{s}-C(s) \int_{s 0}^{s 1} \frac{1}{\rho} S(\tilde{s}) d \tilde{s} \\
D(s) & =\left(\rho \sin \frac{l}{\rho}\right) * \frac{1}{\rho} *\left(\rho \sin \frac{l}{\rho}\right)-\cos \frac{l}{\rho} * \frac{1}{\rho} * \rho \cdot\left(-\cos \frac{l}{\rho}+1\right) * \rho \\
D(s) & =\rho \sin ^{2} \frac{l}{\rho}+\rho \cos \frac{l}{\rho} *\left(\cos \frac{l}{\rho}-1\right)
\end{aligned}
$$

$D(s)=\rho \cdot\left(1-\cos \frac{l}{\rho}\right), \quad D^{\prime}(s)=\sin \frac{l}{\rho} \quad$ Dispersion elements in a sector dipole magnet

$$
M_{\text {dipole }}=\left(\begin{array}{ccc}
\cos \frac{l}{\rho} & \rho \sin \frac{l}{\rho} & D \\
-\frac{1}{\rho} \sin \frac{l}{\rho} & \cos \frac{l}{\rho} & D^{\prime} \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p_{p}
\end{array}\right)_{s 2}=\left(\begin{array}{ccc}
\cos \frac{l}{\rho} & \rho \sin \frac{l}{\rho} & \rho *\left(1-\cos \frac{l}{\rho}\right) \\
-\frac{1}{\rho} \sin \frac{l}{\rho} & \cos \frac{l}{\rho} & \sin \frac{l}{\rho} \\
0 & 0 & 1
\end{array}\right) *\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{s 1}
$$

Nota bene: even an ideal particle with $x=x^{\prime}=0$ will start to oscillate if it passes a dipole magnet and has a momentum error $\Delta p / p$
A dispersion trajectory will obey the same focusing forces (i.e. will be transferred by the same matrices) as a normal betatron oscillation

Example: Dispersion, calculated by an optics code for a real machine

$$
x_{b}=D(s) * \frac{\Delta p}{p}
$$

* $D(s)$ is created by the dipole magnets
. and afterwards focused by the quadrupole fields

Mini Beta Section,
\rightarrow no dipoles !!!

Dispersion is visible

Critn	
\%	

HERA Standard Orbit
dedicated energy change of the stored beam
HERA Dispersion Orbit \rightarrow closed orbit is moved to a dispersions trajectory

$$
x_{b}=D(s) * \frac{\Delta p}{p}
$$

Attention: at the Interaction Points we require $D=D^{\prime}=0$

Periodic Dispersion:
,Sawtooth Effect" at LEP (CERN)
 cavities so much that they „overshoot" and
reach nearly the outer side of the vacuum chamber.
In the arc the electron beam loses so much energy in each octant that the particle are running more and more on a dispersion trajectory

19.) Momentum Compaction Factor:

The dispersion function relates the momentum error of a particle to the horizontal orbit coordinate.

inhomogeneous differential equation

$$
x^{\prime \prime}+K(s) * x=\frac{1}{\rho} \frac{\Delta p}{p}
$$

general solution

$$
x(s)=x_{\beta}(s)+D(s) \frac{\Delta p}{p}
$$

But it does much more:
it changes the length of the off - energy - orbit !!
particle with a displacement x to the design orbit
\rightarrow path length dl ...

$$
\begin{aligned}
& \frac{d l}{d s}=\frac{\rho+x}{\rho} \\
& \rightarrow d l=\left(1+\frac{x}{\rho(s)}\right) d s
\end{aligned}
$$

circumference of an off-energy closed orbit

$$
\begin{aligned}
& l_{\Delta E}=\oint d l=\oint\left(1+\frac{x_{\Delta E}}{\rho(s)}\right) d s \\
& \delta l=l_{\Delta E}-I_{0}=\frac{\Delta p}{p_{0}} \oint\left(\frac{D(s)}{\rho(s)}\right) d s
\end{aligned}
$$

$$
\frac{\delta \boldsymbol{l}}{\boldsymbol{L}_{0}}=\alpha_{p} \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}}
$$

$$
\rightarrow \quad \alpha_{p}=\frac{1}{L_{0}} \oint\left(\frac{D(s)}{\rho(s)}\right) d s
$$

For first estimates assume: $\quad \frac{1}{\rho}=$ const

$$
\int_{\text {dipoles }} \boldsymbol{D}(s) d s=\Sigma\left(l_{\text {dipoles }}\right)^{*}\langle\boldsymbol{D}\rangle_{\text {dipole }}
$$

$$
\alpha_{p}=\frac{1}{\boldsymbol{L}_{0}} \boldsymbol{I}_{\text {dipoles }}\langle\boldsymbol{D}\rangle \frac{1}{\rho}=\frac{1}{\boldsymbol{L}_{0}} 2 \pi \rho\langle\boldsymbol{D}\rangle \frac{1}{\rho} \quad \rightarrow \quad \alpha_{p} \approx \frac{2 \pi}{\boldsymbol{L}_{0}}\langle\boldsymbol{D}\rangle \approx \frac{\langle\boldsymbol{D}\rangle}{\boldsymbol{R}}
$$

Assume:

$v \approx c$

$$
\rightarrow \frac{\delta T}{T_{0}}=\frac{\delta l}{L_{0}}=\alpha_{p} \frac{\Delta p}{p_{0}} \quad \begin{aligned}
& \alpha_{p} \text { combines via the dispersion function } \\
& \text { the momentum spread with the longitudinal } \\
& \text { motion of the particle. }
\end{aligned}
$$

The lengthening of the orbit for off-momentum particles is given by the dispersion function and the bending radius.

remember:

$$
x_{\Delta E}(s)=D(s) \frac{\Delta p}{p_{0}}
$$

$$
\boldsymbol{p}_{0}
$$

20.) Errors in Field and Gradient

Reminder: Linear Beam Dynamics
The derivation of the equation of motion is based on the presumption that ... in our accerlator there are only linear magnetic fields

Multipole expansion of magnetic field:

$$
\begin{aligned}
& B_{\theta}(r, \theta)=B_{\text {main }} \sum_{n=1}^{\infty}\left(\frac{r}{r_{0}}\right)^{n-1}\left(b_{n} \cos (n \theta)+a_{n} \sin (n \theta)\right) \\
& B_{r}(r, \theta)=B_{\text {main }} \sum_{n=1}^{\infty}\left(\frac{r}{r_{0}}\right)^{n-1}\left(-a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right)
\end{aligned}
$$

Sources of field errors

i.) power supply errors:

$$
\text { dipole error: } \quad \text { remember from lecture } N^{\circ} 1 \text {. }
$$

$$
B=\frac{\mu_{0} n I}{(h)}
$$

Error in dipole strength: the gap
Yoke production: laminations, made by stamping out of steel sheet.
variations of gap „h" by wear out
of die or use of multiple dies

Tolerance:

$$
\left.\begin{array}{l}
h=5 \mathrm{~cm} \\
\Delta h=25 \mu \mathrm{~m}
\end{array}\right\} \quad \frac{\Delta B}{B}=\left|\frac{\Delta h}{h}\right|=\frac{25 \mu \mathrm{~m}}{5 \mathrm{~cm}}=5 * 10^{-4}
$$

Sources of field errors

power supply stability:

16 bit digital electronic for current control and stabilisation

21) Dipole Magnet errors: closed orbit distortion

The sum of all dipole magnets in a ring defines a curve that we call closed orbit. perfect situation \leftrightarrow design orbit

$$
\begin{array}{ll}
\text { normalised effect on the beam: } & \int \frac{B d l}{B \rho}=\frac{L_{0}}{\rho}=\alpha=2 \pi \\
\text { effect of single dipole magnet error: } & \int \frac{(B d s)}{B \rho}=\int \frac{1}{\rho} d s
\end{array}
$$

A dipole error will cause a distortion of the closed orbit, that will „run around" the storage ring, being observable everywhere ... but - if small enough - still will lead to a closed orbit !!

Assume one single diple error in a linac,

$$
\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s}=\boldsymbol{M}_{\text {lattice }} *\binom{0}{\Delta \boldsymbol{x}^{\prime}}_{s 0}
$$

Overall amplitude of a single particle trajectory: $\quad x=x_{c o}(s)+x_{\beta}(s)+x_{D}(s)$

Calculation of Orbit Distortion in a circular machine:

periodicity condition still has to be fulfilled: we still get (!) a closed orbit
in any case: distorted orbit will be a betatron oscillation.

$$
x_{d}(s)=a \sqrt{\beta(s)} * \cos (\psi(s)-\varphi) \quad a=\text { orbit amplitude, } \varphi=\text { initial phase }
$$

put starting conditions: $\quad s=0, \psi(s)=0$
boundary condition (1): $\quad x_{d}(s+L)=x_{d}(s) \quad$ periodic closed orbit
boundary condition (2): $\quad x_{d}^{\prime}(s+L)+\frac{\Delta s}{\rho}=x_{d}^{\prime}(s) \quad$ at the place of the distortion, $s=0, \psi=0$

$$
\boldsymbol{x}_{c o}(\boldsymbol{s})=\frac{\sqrt{\beta(s)} * \int \frac{1}{\rho_{s 1}} \sqrt{\beta_{s 1}} * \cos \left(\left|\psi_{s 1}-\psi_{s}\right|-\pi \boldsymbol{Q}\right) d \boldsymbol{s}}{2 \sin \pi \boldsymbol{Q}}
$$

Nota bene: * orbit distortion is visible at any position „s" in the ring,
... even if the dipole error is located at one single point „s1".

* the $\boldsymbol{\beta}$ function describes the sensitivity of the beam to external fields
* the β function acts as amplification factor for the orbit amplitude at the given observation point
* in any case we (clearly ...) will obtain a cosine-like orbit travelling around the ring ... but being closed !!! after one turn.
* there is a resonance denominator

$$
\frac{\sqrt{\beta(s)} * \int \frac{1}{\rho_{s 1}} \sqrt{\beta_{s 1}} * \cos \left(\left|\psi_{s 1}-\psi_{s}\right|-\pi Q\right) d s}{2 \sin \pi O}
$$

PETRA III Light Source:
closed orbit error after ffset of 0.3 mm in 2 quadrupole magnets
Example: „bad orbit", i.e. closed orbit that contains large oscillation amplitudes
\rightarrow eats up available magnet aperture

$$
x(s)=x_{\beta}(s)+x_{D}(s)+x_{c o}(s)
$$

\rightarrow particle trajectories pass nonlinear field regions \rightarrow detector components suffer from beam halo particles \& light

22.) Finally: Resonances

closed orbit distortion:

$$
x_{c o}(s)=\frac{\sqrt{\beta(s)} * \int \frac{1}{\rho_{s 1}} \sqrt{\beta_{s 1}} * \cos \left(\psi_{s 1}-\psi_{s} \mid-\pi Q\right) d s}{2 \sin \pi Q}
$$

remember from lecture 1: $\mu=$ phase advance per revolution
$\begin{aligned} & \text { in general measured and expressed in } \\ & \text { units of } 2 \pi \ldots \text { and called „Tune" } Q\end{aligned} \quad Q=\frac{\mu}{2 \pi}$
... and it depends on the focusing strength of the lattice cells.

Tune: number of oscillations per turn

$$
\begin{aligned}
& 31.292 \\
& 32.297
\end{aligned}
$$

Relevant for beam stability:
non integer part

HERA revolution frequency: 47.3 kHz $0.292 * 47.3 \mathrm{kHz}=13.81 \mathrm{kHz}$
permanent tune measurement ...and control in both planes

$\boldsymbol{x}_{c o}(\boldsymbol{s})=\frac{\sqrt{\beta(\boldsymbol{s})} * \int \frac{1}{\rho_{s 1}} \sqrt{\beta_{s 1}} * \cos \left(\psi_{s 1}-\psi_{s}-\pi \boldsymbol{Q}\right) d \boldsymbol{s}}{2 \sin \pi \boldsymbol{Q}} \quad \boldsymbol{Q}=1 \rightarrow 2 \sin \frac{\mu}{2}=2 \sin \pi=0$
Integer tunes lead to a resonant increase of the closed orbit amplitude in presence of the smallest dipole field error.

Qualitatively spoken:

Tune \& Resonances

The particles - oscillating under the influence of the external magnetic fields - can be excited in case of resonant tunes to infinite high amplitudes.
\rightarrow particle loss within a short number of turns.
\rightarrow avoid large magnet errors
\rightarrow avoid forbidden tune values in both planes
$\boldsymbol{m} * \boldsymbol{Q}_{X}+\boldsymbol{n} * \boldsymbol{Q}_{Y}=\boldsymbol{p} \quad$ n,m, $p=$ integer numbers

Quadrupole Error in the Lattice

optic perturbation described by thin lens quadrupole

$$
\boldsymbol{M}(\boldsymbol{s})=\left(\begin{array}{cc}
\cos \psi_{\text {turn }}+\alpha_{s} \sin \psi_{\text {turn }} & \beta_{s} \sin \psi_{\text {turn }} \\
-\gamma_{s} \sin \psi_{s} & \cos \psi_{\text {turn }}-\alpha_{s} \sin \psi_{\text {turn }}
\end{array}\right)
$$

$$
\begin{aligned}
& \boldsymbol{M}_{\text {dist }}=\left(\quad \cos \psi_{0}+\alpha \sin \psi_{0}\right. \\
& \beta \sin \psi_{0} \\
& \text { rule for getting the tune }
\end{aligned}
$$

Quadrupole Error in the Lattice
optic perturbation described by thin lens quadrupole

$\boldsymbol{M}_{\text {dist }}=\left(\begin{array}{r}\cos \psi_{0}+\alpha \sin \psi_{0} \\ \Delta \boldsymbol{k} \boldsymbol{d} \boldsymbol{s}\left(\cos \psi_{0}+\alpha \sin \psi_{0}\right)-\end{array}\right.$
$\beta \sin \psi_{0}$
rule for getting the tune

$$
\text { Trace }(\boldsymbol{M})=2 \cos \psi=2 \cos \psi_{0}+\Delta \boldsymbol{k} \boldsymbol{d} \boldsymbol{s} \beta \sin \psi_{0}
$$

Quadrupole error \rightarrow Tune Shift

$$
\psi=\psi_{0}+\Delta \psi \quad \longrightarrow \quad \cos \left(\psi_{0}+\Delta \psi\right)=\cos \psi_{0}+\frac{\Delta \boldsymbol{k} \boldsymbol{d} \boldsymbol{s} \beta \sin \psi_{0}}{2}
$$

remember the old fashioned trigonometric stuff and assume that the error is small !!!

$$
\cos \psi_{0} \underbrace{\cos \Delta \psi}_{\approx 1}-\sin \psi_{0} \underbrace{\sin \Delta \psi}_{\approx \Delta \psi}=\cos \psi_{0}+\frac{\boldsymbol{k} \boldsymbol{d} \boldsymbol{s} \beta \sin \psi_{0}}{2}
$$

$$
\Delta \psi=\frac{\boldsymbol{k} \boldsymbol{d} \boldsymbol{s} \beta}{2}
$$

and referring to Q instead of ψ.

$$
\psi=2 \pi Q
$$

the tune shift is proportional to the β-function at the quadrupole
!! field quality, power supply tolerances etc are much tighter at places where β is large

$$
\Delta Q=\int_{s 0}^{s 0+l} \frac{\Delta k(s) \beta(s) d s}{4 \pi}
$$

I!! mini beta quads: $\beta \approx 1900 \mathrm{~m}$ arc quads: $\beta \approx 80 \mathrm{~m}$
!!!! β is a measure for the sensitivity of the beam

Example: deliberate change of quadrupole strength in a synchrotron:

$$
\Delta Q \approx \int_{s 0}^{s 0+l} \frac{\Delta K(s) \beta(s)}{4 \pi} d s \approx \frac{\Delta K(s) * l_{q u a d} * \bar{\beta}}{4 \pi}
$$

tune spectrum.
.. for heaven's sake:
why do we get three peaks ????

Quadrupole error \rightarrow Beta Beat

24.) Chromaticity:

A Quadrupole Error for $\Delta p / p \neq 0$
Influence of external fields on the beam: prop. to magn. field \& prop. zu 1/p
dipole magnet $\quad \alpha=\frac{\int B d l}{p / e}$

$x_{D}(s)=D(s) \frac{\Delta p}{p}$
focusing lens

Chromaticity: Q^{\prime}

$$
k=\frac{g}{p / e} \quad p=p_{0}+\Delta p
$$

in case of a momentum spread:

$$
\begin{aligned}
\boldsymbol{k}=\frac{\boldsymbol{e} \boldsymbol{g}}{\boldsymbol{p}_{0}+\Delta \boldsymbol{p}} & \approx \frac{\boldsymbol{e}}{\boldsymbol{p}_{0}}\left(1-\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}}\right) \boldsymbol{g}=\boldsymbol{k}_{0}+\Delta \boldsymbol{k} \\
\Delta k & =-\frac{\Delta p}{p_{0}} k_{0}
\end{aligned}
$$

... which acts like a quadrupole error in the machine and leads to a tune spread:

$$
\Delta Q=-\frac{1}{4 \pi} \frac{\Delta \boldsymbol{p}}{p_{0}} \boldsymbol{k}_{0} \beta(s) d s
$$

definition of chromaticity:

$$
\Delta Q=Q^{\prime} \frac{\Delta p}{p} ; \quad Q^{\prime}=-\frac{1}{4 \pi} \oint k(s) \beta(s) d s
$$

Where is the Problem?

... what is wrong about Chromaticity:

Problem: chromaticity is generated by the lattice itself !!
Q^{\prime} is a number indicating the size of the tune spot in the working diagram,
Q^{\prime} is always created if the beam is focussed
\rightarrow it is determined by the focusing strength k of all quadrupoles

$$
Q^{\prime}=-\frac{1}{4 \pi} \oint k(s) \beta(s) d s
$$

$k=$ quadrupole strength

$\beta=$ betafunction indicates the beam size ... and even more the sensitivity of the beam to external fields

Example: LHC

$$
\begin{aligned}
& Q^{\prime}=250 \\
& \Delta p / p=+/-0.2 * 10^{-3} \\
& \Delta Q=0.256 \ldots 0.36
\end{aligned}
$$

\rightarrow Some particles get very close to resonances and are lost
in other words: the tune is not a point it is a pancake

Tune and Resonances

$$
m * Q_{x}+n * Q_{y}+l * Q_{s}=\text { integer }
$$

Correction of Q':

Need: additional quadrupole strength for each momentum deviation $\Delta p / p$
1.) sort the particles acording to their momentum $\quad x_{D}(s)=D(s) \frac{\Delta p}{p}$

.. using the dispersion function

2.) apply a magnetic field that rises quadratically with x (sextupole field)

$$
\left.\begin{array}{l}
B_{x}=\tilde{g} x z \\
B_{z}=\frac{1}{2} \tilde{g}\left(x^{2}-z^{2}\right)
\end{array}\right\} \quad \frac{\partial B_{x}}{\partial z}=\frac{\partial B_{z}}{\partial x}=\tilde{g} x \quad \begin{aligned}
& \text { linear rising } \\
& \text { "gradient": }
\end{aligned}
$$

Correction of Q':

Sextupole Magnets:

k_{1} normalised quadrupole strength
k_{2} normalised sextupole strength

$$
k_{1}(\operatorname{sext})=\frac{\tilde{g} x}{p / e}=k_{2}^{* x}
$$

$$
k_{1}(\operatorname{sex} t)=k_{2} * D * \frac{\Delta p}{p}
$$

corrected chromaticity
considering a single cell:

$$
\boldsymbol{Q}_{x}^{\prime}=\frac{-1}{4 \pi} * \oint k_{1}(s) \beta(s) d s+\frac{1}{4 \pi} \sum_{F \text { sext }} \boldsymbol{k}_{2}^{F} l_{\text {sext }} D_{x}^{F} \beta_{x}^{F}-\frac{1}{4 \pi} \sum_{D \text { sext }} k_{2}^{D} l_{s e x t} D_{x}^{D} \beta_{x}^{D}
$$

Correction of Q^{\prime} :

Sextupole Magnets:

k_{1} normalised quadrupole strength
k_{2} normalised sextupole strength
$\boldsymbol{k}_{1}(\operatorname{sext})=\frac{\widetilde{\boldsymbol{g}} \boldsymbol{x}}{\boldsymbol{p} / \boldsymbol{e}}=\boldsymbol{k}_{2}{ }^{*} \boldsymbol{x}$
$k_{1}(\operatorname{sext})=k_{2} * D * \frac{\Delta p}{p}$

more in detail: we have to correct the chromaticity in the two planes ...
... and in each plane the sextu[pole fields will contribute with different signs to the Q^{*}
$Q_{\text {cell }-x}^{\prime}=-\frac{1}{4 \pi}\left\{k_{q f} \hat{\beta}_{x} l_{q f}-k_{q d} \breve{\beta}_{x} l_{q d}\right\}+\frac{1}{4 \pi} \sum_{F \text { sext }} k_{2}^{F} l_{\text {sext }} D_{x}^{F} \beta_{x}^{F}-\frac{1}{4 \pi} \sum_{D \text { sext }} k_{2}^{D} l_{\text {sext }} D_{x}^{D} \beta_{x}^{D}$
$Q_{\text {cell_y }}^{\prime}=-\frac{1}{4 \pi}\left\{-k_{q f} \breve{\beta}_{y} l_{q f}+k_{q d} \hat{\beta}_{y} l_{q d}\right\}+\frac{1}{4 \pi} \sum_{F \text { sext }} k_{2}^{F} l_{\text {sext }} D_{x}^{F} \beta_{x}^{F}-\frac{1}{4 \pi} \sum_{D \text { sext }} k_{2}^{D} l_{\text {sext }} D_{x}^{D} \beta_{x}^{D}$

Resume':

quadrupole error: tune shift $\quad \Delta Q \approx \int_{s 0}^{s o+l} \frac{\Delta k(s) \beta(s)}{4 \pi} d s \approx \frac{\Delta k(s)^{*} l_{\text {quad }}}{4 \pi}$
beta beat

$$
\Delta \beta\left(s_{0}\right)=\frac{\beta_{0}}{2 \sin 2 \pi Q} \int_{s 1}^{s 1+l} \beta\left(s_{1}\right) \Delta k \cos \left(2\left(\psi_{s 1}-\psi_{s 0}\right)-2 \pi Q\right) d s
$$

chromaticity $\quad \Delta Q=Q^{*} * \frac{\Delta p}{p}$
$Q^{\prime}=-\frac{1}{4 \pi} \oint k(s) \beta(s) d s$
in a FoDo $\quad Q_{\text {cell }}^{\prime}=-\frac{1}{\pi} \tan \frac{\mu}{2}$
corrected chromaticty

$$
\boldsymbol{Q}_{x}^{\prime}=\frac{-1}{4 \pi} * \oint \boldsymbol{k}_{1}(s) \beta(s) d \boldsymbol{s}+\frac{1}{4 \pi} \sum_{F \text { sext }} \boldsymbol{k}_{2}^{F} \boldsymbol{l}_{\text {sext }} \boldsymbol{D}_{x}^{F} \beta_{x}^{F}-\frac{1}{4 \pi} \sum_{D \text { sext }} \boldsymbol{k}_{2}^{D} \boldsymbol{l}_{\text {sext }} \boldsymbol{D}_{x}^{D} \beta_{x}^{D}
$$

Appendix: Closed Orbit Distortion

Calculation of Orbit Distortion in a circular machine:

periodicity condition still has to be fulfilled: we still get (!) a closed orbit
in any case: distorted orbit will be a betatron oscillation.
$\boldsymbol{x}_{d}(s)=\boldsymbol{a} \sqrt{\beta(s)} * \cos (\psi(s)-\varphi) \quad \boldsymbol{a}=$ orbit amplitude, $\varphi=$ initial phase
put starting conditions: $\quad \boldsymbol{s}=0, \psi(\boldsymbol{s})=0$
boundary condition (1): $\quad x_{d}(s+L)=x_{d}(s) \quad$ periodic closed orbit
$a \sqrt{\beta(s+L)} * \cos (\psi(s)+2 \pi Q-\varphi)=a \sqrt{\beta(s)} * \cos (\psi(s)-\varphi)$ $\cos (2 \pi Q-\varphi)=\cos (-\varphi)=\cos (\varphi)$ $\varphi=\pi \boldsymbol{Q}$

```
Calculation of Orbit Distortion:
angle \(x^{\prime}: \quad x_{d}(\boldsymbol{s})=\boldsymbol{a} \sqrt{\beta(\boldsymbol{s})} * \cos (\psi(\boldsymbol{s})-\varphi)\)
    \(\boldsymbol{x}_{d}^{\prime}(\boldsymbol{s})=-\boldsymbol{a} \sqrt{\beta} * \sin (\psi(\boldsymbol{s})-\varphi)^{*} \psi^{\prime}(\boldsymbol{s})+\frac{\beta^{\prime}}{2 \sqrt{\beta}} \boldsymbol{a}^{*} \cos (\psi(\boldsymbol{s})-\varphi)\)
remember: \(\psi^{\prime}(s)=\frac{1}{\beta}\)
    \(\boldsymbol{x}_{d}^{\prime}(\boldsymbol{s})=\frac{-\boldsymbol{a}}{\sqrt{\beta}} \sin (\psi(\boldsymbol{s})-\varphi)+\frac{\beta^{\prime}}{2 \sqrt{\beta}} \boldsymbol{a} * \cos (\psi(\boldsymbol{s})-\varphi)\)
boundary condition (2): \(\quad x_{d}^{\prime}(s+L)+\frac{\Delta s}{\rho}=x_{d}^{\prime}(s) \quad\) at the place of the distortion, \(s=0, \psi=0\)
    \(\frac{-\boldsymbol{a}}{\sqrt{\beta(\boldsymbol{s}+\boldsymbol{L})}} \sin (2 \pi \boldsymbol{Q}-\varphi)+\frac{\beta^{\prime}(\boldsymbol{s}+\boldsymbol{L})}{2 \sqrt{\beta(\boldsymbol{s}+\boldsymbol{L})}} \boldsymbol{a} * \cos (2 \pi \boldsymbol{Q}-\varphi)+\frac{\Delta \boldsymbol{s}}{\rho}=\)
    \(=\frac{-\boldsymbol{a}}{\sqrt{\beta(s)}} \sin (-\varphi)+\frac{\beta^{\prime}(\boldsymbol{s})}{2 \sqrt{\beta(s)}} a^{*} \cos (-\varphi)\)
```

periodicity: $\beta(\boldsymbol{s})=\beta(\boldsymbol{s}+\boldsymbol{L}), \quad \varphi=\pi \boldsymbol{Q}$

$$
\begin{aligned}
& \frac{-a}{\sqrt{\beta}} \sin (\pi Q)+\frac{\beta^{\prime}}{2 \sqrt{\beta}} a^{*} \cos (\pi Q)+\frac{\Delta s}{\rho}=\frac{-a}{\sqrt{\beta}} \sin (-\pi Q)+\frac{\beta^{\prime}}{2 \sqrt{\beta}} a^{*} \cos (-\pi Q) \\
& \text { remember: } \Delta \sin (-x)=-\sin (x), \quad \cos (-x)=\cos (x) \\
& \begin{array}{r}
\frac{-a}{\sqrt{\beta}} \sin (\pi Q)+\frac{\beta^{\prime}}{2 \sqrt{\beta}} a^{*} \cos (\pi Q)+\frac{\Delta s}{\rho}=\frac{\boldsymbol{a}}{\sqrt{\beta}} \sin (\pi Q)+\frac{\beta^{\prime}}{2 \sqrt{\beta}} a^{*} \cos (\pi Q) \\
\frac{\Delta s}{\rho}=\frac{2 a}{\sqrt{\beta}} \sin (\pi Q) \quad \longrightarrow \quad a=\frac{\Delta s / \rho \sqrt{\beta}}{2 \sin (\pi Q)}
\end{array}
\end{aligned}
$$

put into orbit equation:

$$
\begin{array}{l|l}
\text { to orbit equation: } \\
\qquad x_{d}(s)=a \sqrt{\beta(s)} * \cos (\psi(s)-\pi Q)=\frac{\delta_{1} * \sqrt{\beta(s) \beta_{1}}}{2 \sin (\pi Q)} * \cos (\psi(s)-\pi Q) & \begin{array}{l}
\text { where } \delta=\Delta s / \rho^{\prime} \\
\text { denotes the orbit kick }
\end{array}
\end{array}
$$

PETRA III Light Source:
closed orbit error after offset of 0.3 mm in 2 quadrupole magnets
calculation in full detail - i.e. for arbitrary initial phase $\psi(s 1)$ - yields

$$
\boldsymbol{x}_{c o}(s)=\frac{\sqrt{\beta(s)} * \int \frac{1}{\rho_{s 1}} \sqrt{\beta_{s 1}} * \cos \left(\left|\psi_{s 1}-\psi_{s}\right|-\pi Q\right) d s}{2 \sin \pi \boldsymbol{Q}}
$$

Nota bene:

* orbit distortion os visible at any position "s" in the ring ... even if the dipole error is located at one single point " s_{1} "
* the beta function describes the sensitivity of the beam to external fields
* the beta function acts as amplifcation factor for the orbit amplitude at the given observation point
* in any case ... we clearly will obtain a cosine-like orbit travelling around the ring ... but being closed !!! after one turn
* there is a resonance denominator

Appendix: Quadrupole Errors and Beta Function

a quadrupole error will not only influence the oscillation frequency ... „tune" ... but also the amplitude ... „beta function"
$M_{\text {turn }}=B^{*} A$

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

$$
B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

$$
\text { distorted matrix } \quad M_{\text {dist }}=\left(\begin{array}{ll}
m_{11}^{*} & m_{12}^{*} \\
m_{21}^{*} & m_{22}^{*}
\end{array}\right)=B\left(\begin{array}{cc}
1 & 0 \\
-\Delta k d s & 1
\end{array}\right) A
$$

$$
\begin{gathered}
M_{\text {dist }}=B\left(\begin{array}{cc}
a_{11} & a_{12} \\
-\Delta k d s a_{11}+a_{12} & -\Delta k d s a_{12}+a_{22}
\end{array}\right) \\
M_{\text {dist }}=\left(\begin{array}{ll}
\sim & b_{11} a_{12}+b_{12}\left(-\Delta k d s a_{12}+a_{22}\right) \\
\sim & \sim
\end{array}\right)
\end{gathered}
$$

the beta function is usually obtained via the matrix element „m12", which is in Twiss form for the undistorted case

$$
m_{12}=\beta_{0} \sin 2 \pi Q
$$

and including the error:

$$
m_{12}^{*}=\underbrace{b_{11} a_{12}+b_{12} a_{22}}_{m_{12}=\beta_{0} \sin 2 \pi Q}-b_{12} a_{12} \Delta k d s
$$

(1) $m_{12}^{*}=\beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s$

As M^{*} is still a matrix for one complete turn we still can express the element m_{12} in twiss form:
(2) $m_{12}^{*}=\left(\beta_{0}+d \beta\right) * \sin 2 \pi(Q+d Q)$

Equalising (1) and (2) and assuming a small error

$\beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s=\left(\beta_{0}+d \beta\right) * \sin 2 \pi(Q+d Q)$
$\beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s=\left(\beta_{0}+d \beta\right) * \sin 2 \pi Q \cos 2 \pi d Q+\cos 2 \pi Q \sin 2 \pi d Q$

$$
\approx 1
$$

$\approx 2 \pi d Q$
$\beta_{0} \sin 2 \pi Q-a_{12} b_{12} \Delta k d s=\beta_{0} \sin 2 \pi Q+\beta_{0} 2 \pi d Q \cos 2 \pi Q+d \beta_{0} \sin 2 \pi Q+d \beta_{0} 2 \pi d Q \cos 2 \pi Q$ ignoring second order term

$$
-a_{12} b_{12} \Delta k d s=\beta_{0} 2 \pi d Q \cos 2 \pi Q+d \beta_{0} \sin 2 \pi Q
$$

remember: tune shift dQ due to quadrupole error: $d Q=\frac{\Delta k \beta_{1} d s}{4 \pi}$ (index „1" refers to location of the error)

$$
-a_{12} b_{12} \Delta k d s=\frac{\beta_{0} \Delta k \beta_{1} d s}{2} \cos 2 \pi Q+d \beta_{0} \sin 2 \pi Q
$$

solve for $d \beta$

$$
d \beta_{0}=\frac{-1}{2 \sin 2 \pi Q}\left\{2 a_{12} b_{12}+\beta_{0} \beta_{1} \cos 2 \pi Q\right\} \Delta k d s
$$

express the matrix elements a_{12}, b_{12} in Twiss form

$$
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\
\frac{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta s}}\left(\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right)
\end{array}\right)
$$

$$
\begin{aligned}
& d \beta_{0}=\frac{-1}{2 \sin 2 \pi Q}\left\{2 a_{12} b_{12}+\beta_{0} \beta_{1} \cos 2 \pi Q\right\} \Delta k d s \\
& a_{12}=\sqrt{\beta_{0} \beta_{1}} \sin \Delta \psi_{0 \rightarrow 1} \\
& b_{12}=\sqrt{\beta_{0} \beta_{1}} \sin \left(2 \pi Q-\Delta \psi_{0 \rightarrow 1}\right) \\
& \boldsymbol{d} \boldsymbol{\beta}_{0}=\frac{-\beta_{0} \beta_{1}}{2 \sin 2 \pi \boldsymbol{Q}}\{\underbrace{\left\{2 \sin \Delta \psi_{01} \sin \left(2 \pi \boldsymbol{Q}-\Delta \psi_{01}\right)+\cos 2 \pi \boldsymbol{Q}\right.}_{\text {... after some TLC transformations } . . .=\cos \left(2 \Delta \psi_{01}-2 \pi Q\right)}\} \Delta \boldsymbol{k} \boldsymbol{d} \boldsymbol{s} \\
& \Delta \beta\left(s_{0}\right)=\frac{-\beta_{0}}{2 \sin 2 \pi Q} \int_{s 1}^{s i+1} \beta\left(s_{1}\right) \Delta k \cos \left(2\left(\psi_{s 1}-\psi_{s 0}\right)-2 \pi Q\right) d s \\
& \text { Nota bene: }
\end{aligned}
$$


```
Appendix: Dispersion
Solution of the inhomogenious equation of motion
Ansatz: \(\quad D(s)=S(s) \int_{s 0}^{s 1} \frac{1}{\rho} C(\tilde{s}) d \tilde{s}-C(s) \int_{s 0}^{s 1} \frac{1}{\rho} S(\tilde{s}) d s\)
    \(D^{\prime}(s)=S^{\prime} * \int \frac{1}{\rho} C d t+S \frac{1}{\rho} C-C^{\prime} * \int \frac{1}{\rho} S d t-C / \rho S\)
    \(D^{\prime}(s)=S^{\prime} * \int \frac{C}{\rho} d t-C^{\prime *} \int \frac{S}{\rho} d t\)
    \(D^{\prime \prime}(s)=S^{\prime \prime} * \int \frac{C}{\rho} d \widetilde{s}+S^{\prime} \frac{C}{\rho}-C^{\prime \prime} * \int \frac{S}{\rho} d \widetilde{s}-C^{\prime} \frac{S}{\rho}\)
        \(=S^{\prime \prime *} \int \frac{C}{\rho} d \widetilde{s}-C^{\prime \prime *} \int \frac{S}{\rho} d \widetilde{s}+\frac{1}{\rho} \underbrace{\left(C S^{\prime}-S C^{\prime}\right.}_{=\operatorname{det} M=1})\)
        \(\begin{aligned} & \text { remember: for Cs) and } S(s) \text { to be independent } \\ & \begin{array}{l}\text { solutions the Wronski determinant } \\ \text { has to meet the condition }\end{array}\end{aligned} \quad W=\left|\begin{array}{cc}C & S \\ C^{\prime} & S^{\prime}\end{array}\right| \neq 0\)
```


