Joint Universities Accelerator School JUAS 2012 Archamps, France, 20 February 2012

Basic design and engineering of normalconducting, iron-dominated electro-magnets

'Introduction'

Th. Zickler, CERN

Scope of the lectures

Overview of electro-magnetic technology as used in particle accelerators considering *normal-conducting, iron-dominated* electro-magnets (generally restricted to direct current situations)

Main goal is to:

- Create a fundmental understanding in accelerator magnet technology
- Provide a guide book with practical instructions how to start with the design of a standard accelerator magnet
- Focus on applied and practical design aspects using 'real' examples
- Introduce finite element codes for practical magnet design

Not covered:

- permanent magnet technology
- super-conducting technology (see special lecture by M. Wilson)

Content

Lecture 1:

Basic concepts and magnet types (15') What do I need to know before starting? (15') Lecture 2: Basic analytical design (90') Lecture 3: Numerical design (60') Lecture 4 (practical work @ CERN): Manufacturing technologies, materials, QA tests and measurements (120')

Joint Universities Accelerator School JUAS 2012 Archamps, France, 20 February 2012

Basic design and engineering of normalconducting, iron-dominated electro-magnets

Lecture 1a 'Basic concepts and magnet types'

Th. Zickler, CERN

Overview on common magnet types and typical applications:

Dipoles

Quadrupoles

Sextupoles

Octupoles

Skew magnets

Combined function

Special magnets

JUAS 2012 Archamps, France, 20 February 2012

Dipoles

• Purpose: bend or steer the particle beam

- Pole = surface with constant scalar potential
- Equation for normal (non-skew) ideal (infinite) poles: y= ± r (r = half gap height)
- Magnetic flux density: $B_x = 0$; $B_y = b_1 = const$.
- System follows right hand convention

JUAS 2012 Archamps, France, 20 February 2012

Dipoles

1.25

Component: BMOD 0.0

2.5

Quadrupoles

Purpose: focusing the beam (horizontally focused beam is vertically defocused)

- Equation for normal (non-skew) ideal (infinite) poles: 2xy= ± r² (r = aperture radius)
- Magnetic flux density: $B_x = b_2y$; $B_y = b_2x$

Quadrupoles

Sextupoles

• Purpose: correct chromatic aberrations of 'off-momentum' particles

- Equation for normal (non-skew) ideal (infinite) poles: $3x^2y y^3 = \pm r^3$ (r = aperture radius)
- Magnetic flux density: $B_x = b_3 xy$; $B_y = b_3 (x^2 y^2)/3$

Sextupoles

Octupoles

Purpose: 'Landau' damping

- Equation for normal (non-skew) ideal poles: 4(x³y xy³) = ± r⁴ (r = aperture radius)
- Magnetic flux density: $B_x = b_4(3x^2y y^3)/6$; $B_y = b_4(x^3 3xy^2)/6$

Octupoles

JUAS 2012 Archamps, France, 20 February 2012

Skew quadrupole

• Purpose: coupling horizontal and vertical betatron oscillations

Rotation by $\pi/2n$

- Beam that has horizontal displacement (but no vertical) is deflected vertically
- Beam that has vertical displacement (but no horizontal) is deflected horizontally

JUAS 2012 Archamps, France, 20 February 2012

Combined function

Functions generated by pole shape (sum a scalar potentials): Amplitudes cannot be varied independently Dipole and quadrupole: PS main magnet (PFW, Fo8...)

Combined function

Functions generated by individual coils:

Amplitudes can be varied independently

Quadrupole and corrector dipole (strong sextupole component in dipole field)

Solenoids

- Weak focusing, non-linear elements
- Main field component in z-direction, focusing by end fields
- Often used in experiments or low-energy lines

JUAS 2012 Archamps, France, 20 February 2012

Special magnets

Septa
Kicker magnets
Bumper magnets
Scanner magnets
Multipole correctors

JUAS 2012 Archamps, France, 20 February 2012

Summary

Pole shape	Field distribution	Pole equation	Β _x , Β _y
		y= ± r	$B_x = 0$ $B_y = b_1 = B_0 = const.$
	V	$2xy=\pm r^2$	$B_x = b_2 y$ $B_y = b_2 x$
		$3x^2y - y^3 = \pm r^3$	$B_x = b_3 xy$ $B_y = b_3 (x^2 - y^2)/2$
	N 	$4(x^3y - xy^3) = \pm r^4$	$B_x = b_4(3x^2y - y^3)/6$ $B_y = b_4(x^3 - 3xy^2)/6$

JUAS 2012 Archamps, France, 20 February 2012

Joint Universities Accelerator School JUAS 2012 Archamps, France, 20 February 2012

Basic design and engineering of normalconducting, iron-dominated electro-magnets

Lecture 1b 'What do I need to know before starting?'

Th. Zickler, CERN

What do I need to know before starting the design?

Goals in magnet design Magnet life cycle Input parameters General requirements Performance requirements Physical requirements Interfaces Environmental aspects

Goals in magnet design

The goal is to produce a product just good enough to perform reliably with a sufficient safety factor at the lowest cost and on time.

- Good enough:
 - Obvious parameters clearly specified, but tolerance difficult to define
 - Tight tolerances lead to increased costs
- Reliability:
 - Get MTBF and MTTR reasonably low
 - Reliability is usually unknown for new design
 - Requires experience to search for a compromise between extreme caution and extreme risk (expert review)
- Safety factor:
 - Allows operating a device under more demanding condition as initially foreseen
 - To be negotiated between the project engineer and the management
 - Avoid inserting safety factors a multiple levels (costs!)

Magnet life cycle

JUAS 2012 Archamps, France, 20 February 2012

Input parameters

A magnet is not a stand-alone device!

JUAS 2012 Archamps, France, 20 February 2012

General requirements

Magnet type and purpose	 Dipole: bending, steering, extraction Quadrupole, sextupole, octupole Combined function, solenoid, special magnet
Installation	 Storage ring, synchrotron light source, collider Accelerator Beam transport lines
$ \longrightarrow $	
Quantity	 Installed units Spare units (~10 %)

Performance requirements

Beam parameters	 Type of beam, energy range and deflection angle (k-value) Integrated field (gradient) Local field (gradient) and magnetic length
Aperture	 Physical aperture 'Good field region'

Performance requirements

Operation mode

- Continuous
- Pulse-to-pulse modulation (ppm)
- Fast pulsed
- Ramp rate (T/s)

Performance requirements

Field quality

- Homogeneity (uniformity)
- Maximum allowed multipole errors
- Stability & reproducibility
- Settling time (time constant)
- Allowed residual field

JUAS 2012 Archamps, France, 20 February 2012

Physical requirements

Interfaces

Equipment linked to the magnet is defining the boundaries and constraints

Power converter	 Max. current (peak, RMS) Max. voltage Pulsed/dc
	Max. flow rate and pressure drop
Cooling	 Water quality (aluminium/copper circuit) Inlet temperature
	Available cooling power
Vacuum	• Size and material of vacuum chamber
	Space for pumping ports, bake out
	Captive vacuum cnamber

Environmental aspects

Other aspects, which can have an influence on the magnet design

Environment temperature	Risk of condensationHeat dissipation into the tunnel
Ionizing radiation	 High radiation levels require radiation hard materials Special design to allow fast repair/ replacement
Electro-magnetic compatibility	 Magnetic fringe fields disturbing other equipment (beam diagnostics) Surrounding equipment perturbing field quality
Safety	Electrical safetyInterlocks

Summary

1. Collect all necessary information 2. Understand the requirements, constraints and interfaces 3. Summarize them in a functional specification