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Scope of the lectures 

Overview of electro-magnetic technology as used in particle accelerators 
considering normal-conducting, iron-dominated electro-magnets 
(generally restricted to direct current situations) 

Main goal is to: 
• Create a fundmental understanding in accelerator magnet technology  
• Provide a guide book with practical instructions how to start with the 

design of a standard accelerator magnet 
• Focus on applied and practical design aspects using ‘real’ examples 
• Introduce finite element codes for practical magnet design 

Not covered: 
– permanent magnet technology 
– super-conducting technology (see special lecture by M. Wilson) 
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Content 

Lecture 1:  
Basic concepts and magnet types (15’) 
What do I need to know before starting ? (15’) 

Lecture 2:  
Basic analytical design (90’) 

Lecture 3:  
Numerical design (60’) 

Lecture 4 (practical work @ CERN):  
Manufacturing technologies, materials, 
QA tests and measurements (120’) 
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Lecture 1a 
‘Basic concepts and magnet types’ 
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Basic concepts and magnet types 
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Overview on common magnet types and typical applications: 

Dipoles 

Quadrupoles  

Sextupoles 

Octupoles 

Skew magnets 

Combined function 

Special magnets 



 

 

Dipoles 

• Purpose: bend or steer the particle beam 
 
 
 
 
 

• Pole = surface with constant scalar potential 
• Equation for normal (non-skew) ideal (infinite) poles: y=  ± r   

(r = half gap height) 
• Magnetic flux density: Bx = 0; By= b1 = const. 
• System follows right hand convention 
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Dipoles 



Quadrupoles 

• Purpose: focusing the beam (horizontally focused beam is vertically 
defocused) 

 
 
 
 

 
 
 
 

• Equation for normal (non-skew) ideal (infinite) poles: 2xy= ± r2   
(r = aperture radius) 

• Magnetic flux density: Bx= b2y; By= b2x 

x-axis

By

S N

SN

Basic Magnet Design  
© Th. Zickler, CERN 

JUAS 2012 
Archamps, France, 20 February 2012 



Quadrupoles 



Sextupoles 

• Purpose: correct chromatic aberrations of ‘off-momentum’ particles 
 
 
 
 
 
 
 

• Equation for normal (non-skew) ideal (infinite) poles: 3x2y - y3 = ± r3  
(r = aperture radius) 

• Magnetic flux density: Bx= b3xy; By= b3(x2- y2)/3 
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Sextupoles 

 



• Purpose: ‘Landau’ damping  
 
 
 
 

 
 

 
 

 
• Equation for normal (non-skew) ideal poles: 4(x3y – xy3) = ± r4   

(r = aperture radius) 
• Magnetic flux density: Bx= b4(3x2y – y3)/6; By= b4(x3 - 3xy2)/6 

Octupoles 
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Octupoles 
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• Purpose: coupling horizontal and vertical betatron oscillations 
 
 
 
 

            Rotation by π/2n 
 

 
 
 

• Beam that has horizontal displacement (but no vertical) is deflected 
vertically 

• Beam that has vertical displacement (but no horizontal) is deflected 
horizontally 

Skew quadrupole 
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Combined function 

Functions generated by pole shape (sum a scalar potentials): 
Amplitudes cannot be varied independently 
Dipole and quadrupole: PS main magnet (PFW, Fo8…) 
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Functions generated by individual coils: 
Amplitudes can be varied independently 
 

Combined function 
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Quadrupole and corrector dipole 
(strong sextupole component in 
dipole field) 
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Solenoids 

• Weak focusing, non-linear elements 

• Main field component in z-direction, focusing by end fields 

• Often used in experiments or low-energy lines 
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Special magnets 

Septa 

Kicker magnets 

Bumper magnets 

Scanner magnets 

Multipole correctors 
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Summary 

Pole shape Field distribution  Pole equation Bx, By 

 
y=  ± r  

 
Bx= 0  

By= b1 = B0 = const. 

 
2xy= ± r2  

 
Bx= b2y 
By= b2x 

 

3x2y - y3 = ± r3  Bx= b3xy 
By= b3(x2- y2)/2 

 
4(x3y – xy3) = ± r4 

 
Bx= b4(3x2y – y3)/6 
By= b4(x3 - 3xy2)/6 
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Basic design and engineering of normal-
conducting, iron-dominated electro-magnets 

Lecture 1b 
‘What do I need to know before starting?’  
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What do I need to know before 
 starting the design?  

 
Goals in magnet design 

Magnet life cycle 
Input parameters 

General requirements 
Performance requirements 

Physical requirements 
Interfaces 

Environmental aspects 
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Goals in magnet design 

The goal is to produce a product just good enough to perform reliably with 
a sufficient safety factor at the lowest cost and on time.  

• Good enough:  
– Obvious parameters clearly specified, but tolerance difficult to define 
– Tight tolerances lead to increased costs 

• Reliability:  
– Get MTBF and MTTR reasonably low 
– Reliability is usually unknown for new design 
– Requires experience  to search for a compromise between extreme caution and 

extreme risk (expert review) 
• Safety factor: 

– Allows operating a device under more demanding condition as initially 
foreseen 

– To be negotiated between the project engineer and the management 
– Avoid inserting safety factors a multiple levels (costs!) 
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Magnet life cycle 

Input

Design & calculations

Specification & 
drawings

Series production

Tests

Prototyping

Magnetic 
Measurements

Installation & 
comissioning

De-installation

Operation

Storage, destruction, 
disposal
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Define requirements 
and boundaries

Analytic design

Basic numeric design

Mechanical design

Cost estimation

Electrical design

Advanced numeric 
design

Field optimization

Examine integration



Input parameters 

A magnet is not a stand-alone device! 

Magnet 

Beam 
Optics 

Power 

Cooling 

Vacuum 
Integration 

Transport 

Survey 

Management 

Safety 
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General requirements 
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• Dipole: bending, steering, extraction 
• Quadrupole, sextupole, octupole 
• Combined function, solenoid, special magnet 

Magnet type and 
purpose 

• Storage ring, synchrotron light source, collider 
• Accelerator 
• Beam transport lines 

Installation 

• Installed units 
• Spare units (~10 %) Quantity 



Performance requirements 
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• Type of beam, energy range and deflection 
angle (k-value) 

• Integrated field (gradient) 
• Local field (gradient) and magnetic length 

Beam parameters 

• Physical aperture  
• ‘Good field region’ Aperture 



Performance requirements 
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•Continuous  
•Pulse-to-pulse modulation (ppm) 
•Fast pulsed 
•Ramp rate (T/s) 

Operation mode 
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Performance requirements 
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• Homogeneity (uniformity) 
• Maximum allowed multipole errors 
• Stability & reproducibility 
• Settling time (time constant) 
• Allowed residual field 

Field quality 
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Physical requirements 
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• Available space 
• Transport limitations 
• Weight limitations 

Geometric 
boundaries 

• Crane 
• Connections (electrical, hydraulic) 
• Alignment targets 

Accessibility 



Interfaces 

Basic Magnet Design  
© Th. Zickler, CERN 

JUAS 2012 
Archamps, France, 20 February 2012 

• Max. current (peak, RMS) 
• Max. voltage 
• Pulsed/dc 

Power converter 

• Max. flow rate and pressure drop 
• Water quality (aluminium/copper circuit) 
• Inlet temperature 
• Available cooling power 

Cooling 

• Size and material of vacuum chamber 
• Space for pumping ports, bake out  
• Captive vacuum chamber 

Vacuum 

Equipment linked to the magnet is defining the boundaries and 
constraints 

 
 



Other aspects, which can have an influence on the magnet design 
 

 

Environmental aspects 
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• Risk of condensation 
• Heat dissipation into the tunnel 

Environment 
temperature 

• High radiation levels require radiation hard 
materials 

• Special design to allow fast repair/ replacement 
Ionizing radiation 

• Magnetic fringe fields disturbing other 
equipment (beam diagnostics) 

• Surrounding equipment perturbing field quality 

Electro-magnetic 
compatibility 

• Electrical safety 
• Interlocks Safety 



Summary 

1. Collect all necessary 
information 

2. Understand the requirements, 
constraints and interfaces 

3. Summarize them in a 
functional specification 
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