Exercise 1

Compute the transverse space charge forces and the tune shifts for a cylindrical beam in a circular beam pipe, having the following longitudinal distributions: parabolic, sinusoidal modulation, gaussian
parabolic $\quad \lambda(z)=\frac{3 N e}{2 l_{o}}\left[1-\left(\frac{2 z}{l_{o}}\right)^{2}\right]$
sinusoidal modulation $\quad \lambda(z)=\lambda_{o}+\Delta \lambda \cos \left(k_{z} z\right) ; k_{z}=2 \pi / \lambda_{w}$

Gaussian

$$
\lambda(z)=\frac{N e}{\sqrt{2 \pi} \sigma_{z}} \exp \left(-\frac{z^{2}}{2 \sigma_{z}^{2}}\right)
$$

Exercise 2

Compute the transverse space charge forces and the tune shifts for a cylindrical beam in a circular beam pipe, having a bi-gaussian longitudinal and transverse distribution.

$$
\begin{aligned}
& \text { bi-gaussian } \\
& \lambda(z)=\frac{N e}{\sqrt{2 \pi} \sigma_{z}} \exp \left(-\frac{z^{2}}{2 \sigma_{z}^{2}}\right) \\
& \rho(r, z)=\frac{\lambda(z)}{2 \pi \sigma_{r}^{2}} \exp \left(\frac{-r^{2}}{2 \sigma_{r}^{2}}\right)
\end{aligned}
$$

Exercise 3

Compute the longitudinal space charge force of a transverse uniform cylindrical beam in a circular perfectly conducting beam pipe

$$
E_{z}(r, z)=-\frac{1}{\gamma^{2}} \frac{\partial}{\partial z} \int_{r}^{b} E_{r}(r, z) d r \longrightarrow F_{z}(r, z)=-\frac{e}{\gamma^{2}} \frac{\partial}{\partial z} \int_{r}^{b} E_{r}\left(r^{\prime}, z\right) d r^{\prime}
$$

Exercise 4

Compute the longitudinal space charge forces for a cylindrical beam in a circular beam pipe, having the following longitudinal distributions: parabolic, sinusoidal modulation, Gaussian
parabolic

$$
\lambda(z)=\frac{3 N e}{2 l_{o}}\left[1-\left(\frac{2 z}{l_{o}}\right)^{2}\right]
$$

sinusoidal modulation $\quad \lambda(z)=\lambda_{o}+\Delta \lambda \cos \left(k_{z} z\right) ; k_{z}=2 \pi / l_{w}$

Gaussian

$$
\lambda(z)=\frac{N e}{\sqrt{2 \pi} \sigma_{z}} \exp \left(-\frac{z^{2}}{2 \sigma_{z}^{2}}\right)
$$

$$
F_{z}(r, z)=-\frac{e}{\gamma^{2}} \frac{\partial}{\partial z} \int_{r}^{b} E_{r}\left(r^{\prime}, z\right) d r^{\prime} \quad F_{z}(r, z)=-\frac{e}{4 \pi \varepsilon_{0} \gamma^{2}}\left(1-\frac{r^{2}}{a^{2}}+2 \ln \frac{b}{a}\right) \frac{\partial \lambda(z)}{\partial z}
$$

Exercise 5

Compute the incoherent betatron tune shift of a uniform proton beam inside two parallel plates

Wake fields exercises

Calculate the amplitude of the resonator wake field given $R_{s}=1 \mathrm{k} \Omega$, $\omega_{r}=5 \mathrm{GHz}, Q=10^{4}$

Calculate the ratio $Z\left(\omega_{r}\right) / Z\left(2 \omega_{r}\right)$ for $Q=1,10^{3}, 10^{5}$

Show that the impedance of an RLC parallel circuit is that of the resonator one and relate R, L and C to Q, R_{s} and ω_{r}

BBU exercise

Consider a beam in a linac at 1 GeV without acceleration. Obtain the growth of the oscillation amplitude after 3 km if:
$\mathrm{N}=5 \mathrm{e} 10, w_{\perp}(-1 \mathrm{~mm})=63 \mathrm{~V} /(\mathrm{pC} \mathrm{m}), \mathrm{L}_{\mathrm{w}}=3.5 \mathrm{~cm}, \mathrm{k}_{\mathrm{y}}=0.061 / \mathrm{m}$

BBU exercise (2)

Consider the same beam of the previous exercise being now accelerated from 1 GeV with a gradient $\mathrm{g}=16.7 \mathrm{MeV} / \mathrm{m}$. Obtain the growth of the oscillation amplitude
$E_{f}=E_{0}+g L_{L} \approx g L_{L}=50 \mathrm{GeV}$

$$
\left(\frac{\Delta \hat{y}_{2}}{\hat{y}_{2}}\right)_{\max }=\frac{c N e w_{\perp}(z) L_{L}}{4 \omega_{y}\left(E_{f} / e\right) L_{w}} \ln \frac{E_{f}}{E_{0}}=?
$$

Exercise: Haissinski equation with pure inductive impedance

Given the wake field in case of a pure inductive impedance, determine the longitudinal distribution

$$
w_{\|}(z)=-c^{2} L \delta^{\prime}(z) \quad \Psi(z)=?
$$

Exercise: microwave instability

Calculate the threshold average current for the microwave instability with a bunch having the following parameters:

$$
\begin{aligned}
& \mid \mathrm{Z}_{\|} / \mathrm{nl}=.5 \Omega, \quad \sigma_{\mathrm{z}}=1 \mathrm{~cm}, \quad \sigma_{\varepsilon}=10^{-3}, \quad \alpha_{\mathrm{c}}=0.027, \\
& \mathrm{E}_{0}=510 \mathrm{MeV}, \quad \mathrm{~L}_{0}=97.69 \mathrm{~m}
\end{aligned}
$$

