Exercise 1

Compute the transverse space charge forces and the tune shifts for a cylindrical beam in a circular beam pipe, having the following longitudinal distributions: parabolic, sinusoidal modulation, gaussian

$$parabolic \qquad \lambda(z) = \frac{3Ne}{2l_o} \left[1 - \left(\frac{2z}{l_o}\right)^2 \right]$$

sinusoidal modulation $\lambda(z) = \lambda_o + \Delta\lambda \cos(k_z z)$; $k_z = 2\pi/\lambda_w$
Gaussian $\lambda(z) = \frac{Ne}{\sqrt{2\pi}\sigma_z} \exp\left(-\frac{z^2}{2\sigma_z^2}\right)$

Exercise 2

Compute the transverse space charge forces and the tune shifts for a cylindrical beam in a circular beam pipe, having a bi-gaussian longitudinal and transverse distribution.

Exercise 3 Compute the longitudinal space charge force of a transverse uniform cylindrical beam in a circular perfectly conducting beam pipe

$$E_{z}(r,z) = -\frac{1}{\gamma^{2}} \frac{\partial}{\partial z} \int_{r}^{b} E_{r}(r,z) dr \implies F_{z}(r,z) = -\frac{e}{\gamma^{2}} \frac{\partial}{\partial z} \int_{r}^{b} E_{r}(r',z) dr'$$

Exercise 4

Compute the longitudinal space charge forces for a cylindrical beam in a circular beam pipe, having the following longitudinal distributions: parabolic, sinusoidal modulation, Gaussian

$$parabolic \qquad \lambda(z) = \frac{3Ne}{2l_o} \left[1 - \left(\frac{2z}{l_o}\right)^2 \right]$$

sinusoidal modulation $\lambda(z) = \lambda_o + \Delta\lambda \cos(k_z z)$; $k_z = 2\pi/l_w$
Gaussian $\lambda(z) = \frac{Ne}{\sqrt{2\pi\sigma_z}} \exp\left(-\frac{z^2}{2\sigma_z^2}\right)$

$$F_{z}(r,z) = -\frac{e}{\gamma^{2}}\frac{\partial}{\partial z}\int_{r}^{b}E_{r}(r',z)dr' \qquad F_{z}(r,z) = -\frac{e}{4\pi\varepsilon_{0}\gamma^{2}}(1-\frac{r^{2}}{a^{2}}+2\ln\frac{b}{a})\frac{\partial\lambda(z)}{\partial z}$$

Exercise 5 *Compute the incoherent betatron tune shift of a uniform proton beam inside two parallel plates*

Wake fields exercises

Calculate the amplitude of the resonator wake field given $R_s = 1 \ k\Omega$, $\omega_r = 5 \ GHz$, $Q = 10^4$

Calculate the ratio $Z(\omega_r) / Z(2\omega_r)$ for $Q = 1, 10^3, 10^5$

Show that the impedance of an RLC parallel circuit is that of the resonator one and relate R, L and C to Q, R_s and ω_r

BBU exercise

Consider a beam in a linac at 1 GeV without acceleration. Obtain the growth of the oscillation amplitude after 3 km if:

N = 5e10, $w_{\perp}(-1 \text{ mm}) = 63 \text{ V/(pC m)}, L_w = 3.5 \text{ cm}, k_y = 0.06 \text{ 1/m}$

BBU exercise (2)

Consider the same beam of the previous exercise being now accelerated from 1 GeV with a gradient g = 16.7 MeV/m. Obtain the growth of the oscillation amplitude

 $E_f = E_0 + gL_L \approx gL_L = 50 \text{ GeV}$

$$\left(\frac{\Delta \hat{y}_2}{\hat{y}_2}\right)_{\max} = \frac{cNew_{\perp}(z)L_L}{4\omega_y(E_f/e)L_w}\ln\frac{E_f}{E_0} = ?$$

Exercise: Haissinski equation with pure inductive impedance

Given the wake field in case of a pure inductive impedance, determine the longitudinal distribution

$$w_{\parallel}(z) = -c^2 L \delta'(z) \longrightarrow \Psi(z) = ?$$

Exercise: microwave instability

Calculate the threshold average current for the microwave instability with a bunch having the following parameters:

 $|Z_{\parallel} / n| = .5 \Omega$, $\sigma_z = 1 \text{ cm}$, $\sigma_{\varepsilon} = 10^{-3}$, $\alpha_c = 0.027$, $E_0 = 510 \text{ MeV}$, $L_0 = 97.69 \text{ m}$