

Search for New Physics in the tt+MET Final State

Ford Garberson
On Behalf of the ATLAS Collaboration

Introduction

- Today will discuss ATLAS's main recent heavy object search
 - A search for new physics in ttbar+MET final state
 - arXiv:1109.4725 (accepted at PRL)
- Many new physics scenarios can produce final states of top's plus missing transverse energy:
 - From SUSY: 2 x stop production
 - 3rd Generation leptonquarks
 - Little Higgs models with T-parity
 - Extra dimensions with KK-parity
 - Others: models of new strong dynamics, etc

Models Continued

- Common features of these models:
 - Expect production of pairs of heavy quarks which decay to tops and a invisible neutral particle
 - Squark => top + gravitino or neutralino in SUSY
 - top plus tau lepton in leptoquarks models
 - Generally search for TT => tAtA where A is invisible
 - A is a dark matter candidate in many models
- Perform inclusive search for new physics in any model
 - Report limits as cross-section x branching ratio for general applicability to different models
 - Main variations between models: spin of particles
 - Spin strongly affects production cross sections, but not dynamics of decay products

Past Work

- CDF One-lepton channel (4.8 fb⁻¹)
 - Phys. Rev. Lett. 106, 191801 (2011)
 - Fit the reconstructed W-transverse mass
- CDF Zero-lepton channel (5.7 fb⁻¹):
 - Phys. Rev. Lett. 107, 191803 (2011)
 - Fit missing transverse energy significance

Fit Results in the 0-lepton Channel at CDF

New Physics Samples are for a dark-matter model with fermion T's and scalar A's

Analysis at ATLAS

- ATLAS analysis with 1 fb⁻¹:
- Analysis in single-lepton channel. Basic selection:
 - Accept events from single-electron or single-muon trigger stream
 - One isolated lepton:
 - Muon with pT > 20 GeV, $|\eta|$ < 2.5
 - Or electron with pT > 25 GeV, $|\eta|$ < 2.4
 - Both selections are in fully-efficient trigger region
 - Four or more jets reconstructed with pT > 25 GeV, $|\eta|$ < 2.5
 - No b-tagging dominant background will be ttbar!
- Perform a straightforward cut-and-count analysis
 - Cuts chosen based upon blinded optimization study given estimated systematics

General Strategy

- ttbar and W+jets are dominant backgrounds
 - ttbar simulated with MC@NLO Monte Carlo
 - W+jets simulated with Alpgen Monte Carlo
 - Samples have lots of real MET, will populate MET tail
- Main handle: reconstruct transverse W-mass between lepton and MET
 - W+jets and single-lepton ttbar: peak near real W-mass, very few events above ~120 GeV
- Cut hard on both MET and transverse W-mass

Dominant Background: 2-lepton

- 2-jet non-b-tagged control-region illustration:
 - Events with 1-lepton live under W-mass peak
 - ttbar mostly 2-lepton events
- These events drive unphysical, large Wmass just like signal
 - In signal region with no b-tag veto, this is the dominant background

Veto Second Lepton

- Make a very tight cut on double-lepton background
 - If any second isolated electron or muon is reconstructed with pT15 GeV remove event
- Main case this misses: dilepton events with a tau
 - Also veto events with a second isolated track with pT > 12 GeV: removes most single-prong taus
- Calibration of this veto: measure efficiency in control regions:
 - 2 or 3 jets, no *b*-tag
 - 4-jet, under W-mass peak
 - 2 or 3 jets, high MET: enriches sample in real dilepton events
 - Largest discrepancy between data and simulation in these bins: 10%. Take as systematic uncertainty.

1-Lepton Background

- Calibrate in control region:
 - 1, 2, 3, or >=4 jets, no btags
 - Very little signal survives
 - Normalize simulation under W-mass peak
 - -5 +/- 3 % Correction
 - Will correct simulation in signal region according to tail
- Control region depletes ttbar
 - But ok because singlelepton ttbar and W+jets have ~identical transverse mass distributions

Corrections from Control-Region

- In all four control regions observe that high-MTW tail is underestimated
 - Simulate tail in signal region, correct 1-lepton contribution by +15% +/- 10% (uncertainty from spread in control regions)

Multijet Background

- All Multijet backgrounds taken from data
- Fake electrons from multijets:
 - Two different models of fake electrons with inverted selection criteria
 - Fit to MET distribution in high-isolation region
 - 100% normalization uncertainty from worst-case control-region studies
 - Cross-checks between different anti-electron models consistent
- Fake muons from multijets:
 - Found to be negligible from matrix-method estimation
 - Low stats conclusion, but cross-checked in (a) lower-jet multiplicity bins and (b) with looser MET cuts and a projection to signal region using anti-electron shapes
 - All results consistent with 0

Systematic Uncertainties

- Dilepton ttbar + other small backgrounds (diboson, singletop): Largest uncertainties from
 - Top cross-section, jet energy scale, dilepton veto efficiency
 - Total: 23%
- Single-lepton backgrounds:
 - MTW calibration is dominant uncertainty. MTW peak normalization also significant.
 - Total: 11%
- Signal uncertainties:
 - Theory cross-section, I/FSR, jet energy uncertainties dominate
 - Total: 15%

Resulting Distributions

- Final distributions shown
 - Cuts chosen to right of the black lines
 - No statistically significant excess observed

Source	Number of events
Dilepton $t\overline{t}$	62 ± 15
Single-lepton $t\overline{t}/W$ +jets	33.1 ± 3.8
Multi-jet	1.2 ± 1.2
Single top	3.5 ± 0.8
Z+jets	0.9 ± 0.3
Dibosons	0.9 ± 0.2
Total	101 ± 16
Data	105

Setting Limits

- Limits set using frequentist confidence intervals
 - Systematics
 assumed
 gaussian with
 proper Signal and
 Background
 correlations

95% Exclusion limits for ATLAS and CDF

Note that at diagonal mT = mA + mt line analysis becomes *very* tough because signal is ~degenerate with standard model ttbar

Future Work

- Heavy scalar models have ~6 times smaller cross-section
 - Examples: stop quarks, leptoquarks, etc
 - Acceptances same as fermionic models so crosssection limits same within uncertainties
 - But improved stats/analysis needed to exclude them
- Eventually small backgrounds such as tt+Z will become important

Cannot yet exclude scalar quark models in this analysis

Conclusion

- Have shown overview of ATLAS tt+MET analysis
 - Current best limits on dark-matter tt+MET model
 - Update of analysis will be needed to push limits and set first limits for scalar particles
- Other analysis channels will also be pursued to maximize sensitivity