

Long lived particles Implications of LHC results for TeV-scale physics (WG3)

Michael Sigamani

on behalf of the CMS collaboration

INFN Sezione di Roma "La Sapienza"

8th – 9th December 2011 (CERN, Geneva, Switzerland)

Introduction

Exotic long lived particles predicted by extensions of SM

- eg. Hidden Valley, GUTs, Gauge mediated SUSY, BSM Higgs
- In general search for heavy, stable particles which decay away from interaction point
- Present model independent results using data-driven bkg estimation

• September meeting [link] covered:

- Heavy stable charged particles, HSCPs (1.1 fb⁻¹) [PAS link]
- \circ Stopped heavy stable charged particles (886 pb⁻¹) [PAS link]
- Displaced Leptons (1.1 fb^{-1}) [PAS link]

• NEW: Displaced photons (2.1 fb⁻¹) [PAS link]

HSCPs

- HSCPs appear in various extensions of the SM
- Signal MC: Pair produced gluino (g̃), scalar top (t̃) into R-hadrons (gg̃, gqq̄, g̃qqq, t̃q, t̃qq̄), GMSB stau
- Signature: Particles with large p_T and low β → large Time-Of-Flight (1/β) and high energy loss (dE/dx)
- Bkg: Instr. noise with high dE/dx, overlapping tracks etc...

HSCPs

/17

Stopped HSCP

- HSCP may come to rest and decay later
 Signif. for particles with β < 0.4 (compliments HSCP search)
- Signal MC: Pair produced \tilde{g} and \tilde{t} hadronizing to R-hadrons
- **Signature:** Asynchronous HCAL activity (±1 BX from *pp* collision)
- **Bkg:** Cosmics rays, beam-halo muons, instr. noise
- Est. bkg using data-driven methods (see constant rate since 2010)

Stopped HSCP

Gluino limits

No significant excess observed Limits as func. of mass on plateau of lifetime excl. (10µs–1000s) Lower limits set: $m_{\tilde{g}} > 601 \text{ GeV/c}^2$ and $m_{\tilde{t}} > 337 \text{ GeV/c}^2$

sigamani@cern.ch

/17

Stopped HSCP

Stop Limits

No significant excess observed Limits as func. of mass on plateau of lifetime excl. (10 μ s–1000s) Lower limits set: $m_{\tilde{g}} > 601 \text{ GeV/c}^2$ and $m_{\tilde{t}} > 337 \text{ GeV/c}^2$

Long lived particles

17

Displaced leptons

- Search for neutral LL particles decaying into leptons
- Signal MC: $H^0 \rightarrow 2X, X \rightarrow \ell^+ \ell^-$
- Signature: One or two displaced vertices from oppositely charged leptons
- Bkg: QCD, $t\overline{t}$, $Z/\gamma \rightarrow \ell^+ \ell^-$
- Eff. for single isol. particles $d_0 < 40$ cm
- Look for peak in inv. mass spec. of X
- Bkg. estimated with fit to decay length signif.

CMS Preliminary √s=7 TeV MC

Displaced leptons

- Search for neutral LL particles decaying into leptons
- Signal MC: $H^0 \rightarrow 2X, X \rightarrow \ell^+ \ell^-$
- Signature: One or two displaced vertices from oppositely charged leptons (use iterative tracking)
- **Bkg:** QCD, $t\bar{t}$, $Z/\gamma \rightarrow \ell^+ \ell^-$
- Eff. for single isol. particles d₀ < 40 cm
- Look for peak in inv. mass spec. of X
- Background estimated with data-driven fit to decay length signif.

CMS Preliminary √s=7 TeV L=1.1 fb⁻¹

Displaced leptons

Limits

INFR UNDERST

- Search for long-lived neutral particles decaying into photons
- Signal MC: GMSB scenario $(\widetilde{\chi}_1^0 \to \widetilde{G}\gamma)$ with Gravitino (\widetilde{G}) as LSP and Neutralino $(\widetilde{\chi}_1^0)$ as NLSP
- Difficult to assign vertex to displaced photon
 Use converted photons
- Transverse impact parameter (*d_{XY}*) as discriminating variable

Analysis

Selection	Events in MC	2 103
Total	45057	
Di-γ trigger	39988	
Di- $\gamma E_T > 45$ GeV and $E_T > 30$ GeV	37398	CMS Preliminary, 2.1 fb ⁻¹
Barrel $\gamma E_T > 45$ GeV with photon ID	27766	Z 10 Optimize cut to maximize
Jets $p_T > 80$ GeV and $p_T > 50$ GeV	26229	
Conversion selection	1602	
$E_T^{miss} > 30 \text{ GeV}$	1542	
$d_{XY} > 0.6 \mathrm{cm}$	711	0 0.5 1 1.5 2 2.5 Photon d _{vv} [cm]

- Select γ conversions \rightarrow Able to reconstruct γ direction
- Select di-photons events (counting exp.) \rightarrow Use transverse IP (d_{XY}) to distinguish signal from SM bkg
- Expect 8 events of signal (after normalizing to lumi) → Observe 1

Background estimation

- Use low ∉_T as control region for bkg estimation

- Lower ∉_T compared to other SUSY/EXO analyses using photons (eg. ∉_T > 100 GeV)
- Compare d_{XY} distributions for $E_T < 20$ GeV and $E_T > 30$ GeV
- Normalize bkg estimate to signal data using number of conversions

Uncertainties

The overall uncertainty is 25% with the largest contribution from the conversion reconstruction efficiency

Systematics	Uncertainty (%)
Conversion reconstruction efficiency	20.6
Photon d_{XY} resolution	< 0.5
Integrated luminosity	4.5
Jet/E_T^{miss} energy scale	< 0.5
Pile-up study	2.5
Photon Data/MC scale	2.6
Photon ID	0.5
Total	25

Table: Summary of experimental uncertainties

Results

No significant excess observed Set limits as a function of lifetime of long-lived particle Sensitivity of analysis is 2 cm $< c\tau_{\chi^0} < 25$ cm

- At short lifetimes: Difficult to optimize sig/bkg eff. near PV
- At long lifetimes: Low conversion reconstruction eff.

Summary

- We search for long lived particles using a wide range of techniques
 - Highly ionising tracks
 - Slow muon tracks (high TOF)
 - Decays from stopped particles
 - Displaced vertices
 - Photon conversions

No discoveries as of yet → Only limits

- Competitive world limits for stable \tilde{g} , \tilde{t} , GMSB (and pair-produced) stau
- $\circ~$ Competitive world limits for displaced ℓ in mass range presented
- New results on LL particles using displaced photons
- For all publicly available results from CMS see [here]

Thank You

sigamani@cern.ch

Long lived particles