

Pulsed Modulators

Concepts and trade-offs

David Nisbet CERN

- Modulator specification
 - Criteria and concepts
- Modulator design
 - Topology selection
 - Commercial v in-house
 - Prototyping
- Conclusion

RF Powering

The RF specification – starting point for modulator

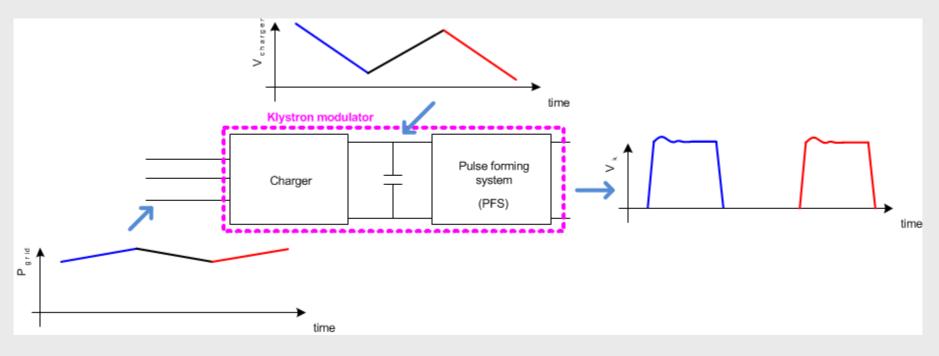
example from ESS requirements

	RFQ+DTL 352MHz	Spoke 352MHz	Elliptical 704MHz Iow-Beta	Elliptical 704MHz high-Beta
Max power/klystron	2.6MW	400kW	700kW	1100kW
Min power/klystron	1.2MW	130kW	65kW	700kW
Beam time	2.9ms			
Cavity fill+empty time	0.3ms + 0.3ms			
Repetition rate	14Hz			
Klystron efficiency	58%	<60%	<60%	60%
Phase precision	0.5°			
Nb of klystrons	4	28	64	120
Max energy of arc	20 J			
RN LIDDS212 14/12/11 - Modulators				

Why a pulsed modulator?

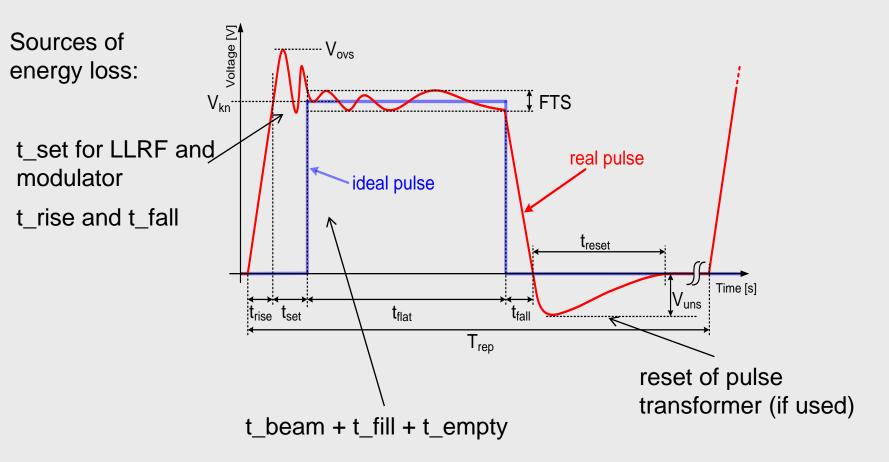
LEP 4MW CW Modulator: 250 m³ (4 MJ/s)

ESS 4.5MW Pulsed Modulator: ~35 m³ (>200kJ/s)

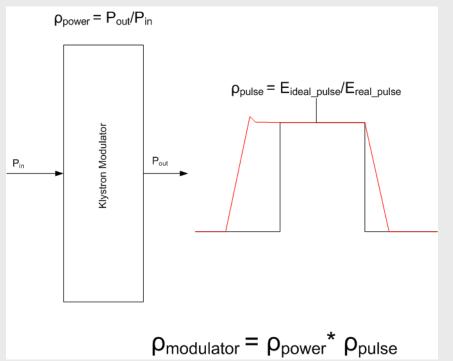

LINAC4 5MW Pulsed Modulator: 7 m³ (20kJ/s)

Can be separated into three principle sections

- AC/DC 'Charger'
- Energy storage
- Pulse Forming system

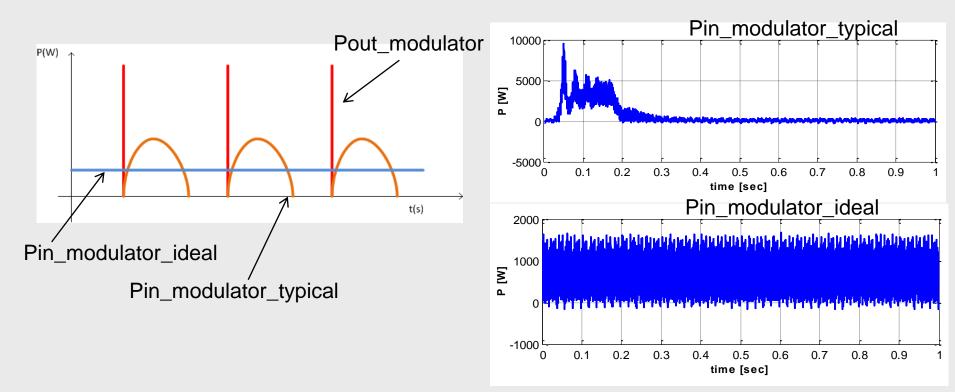


Uppsala 14/12/11 - Modulators



Pulse definition

Useful flat-top Energy	4.5MW*3.5ms = 15.8kJ
Rise time energy	4.5MW*300µs*1/3= 0.45kJ
Fall time energy*	4.5MW*300µs*1/3= 0.45kJ
Set-up time energy	4.5MW*300µs = 1.35kJ
Pulse efficiency	0.88
Pulse forming system efficiency	0.98
Charger efficiency	0.96
Power efficiency	0.94
Overall Modulator efficiency	80%


*Does not include pulse transformer magnetizing energy

- Modulator can optimize electrical systems
 - however greatest efficiency savings from RF pulse optimization (eg klystron efficiency, control overhead, setup time, etc)

Power from distribution network

- Modulator charging is usually completed before the output pulse generation.
 - This will induce power fluctuations on the power network, affecting distribution power quality.
- A large modulator installation should implement a constant power load consumption with good power quality.
- Strategies for startup and shutdown should also be considered to limit load transients

Reliability and availability

- For large installations, availability is an important criteria
 - Reliability typically specified as Mean Time Between Failure (MTBF)
 - Repair time defined as Mean Time To Repair (MTTR)
 - Availability as a function of reliability and time to repair:

$$Availability = \frac{MTBF}{MTBF + MTTR}\%$$

- Modular systems may have lower MTBF but higher availability due to redundant architectures that significantly reduce the MTTR. In many cases, repair can be scheduled for a future date.
- Repair time can be significant for high voltage systems unless considered at the design stage (oil, large components, etc).

- 1. Maximise charger efficiency and power quality
 - Objective: better than 95% efficiency with near unity power factor and low harmonics
- 2. Minimise rise, fall and settling time
 - Objective for 3.5ms pulse: less than 750us total for rise, fall and setup time
- 3. Maximise operational reliability and availability
 - Objective: design for 99.8% availability (1hour intervention every 14 days)
- 4. Design for good pulse-to-pulse voltage reproducibility
 - Objective: 100ppm (?) from pulse_{n-1} to pulse_n (RF feedback gives long term performance)
- 5. Consider integration issues (machine layout, maintenance, etc)

Modulator specification

Other important specifications to consider

- 1. Voltage ripple requirement will come from LLRF requirements
 - Requires to be specified in frequency and amplitude (typically 0.1%)
- 2. Parallel connection of klystrons
 - Verify sharing/balancing for several klystrons per modulator
 - However already done in SNS using LLRF
- 3. Operation over a wide power range required
 - Pmax ≥ 10x Pmin
 - Light loading may preclude some topologies (eg bouncer)
 - Connection of systems in parallel will resolve most issues

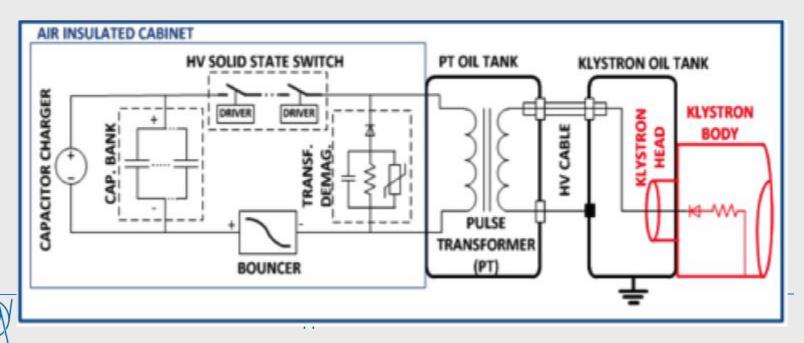
Modulator for RF Powering

The following parameters follow from RF specification...

example from ESS requirements

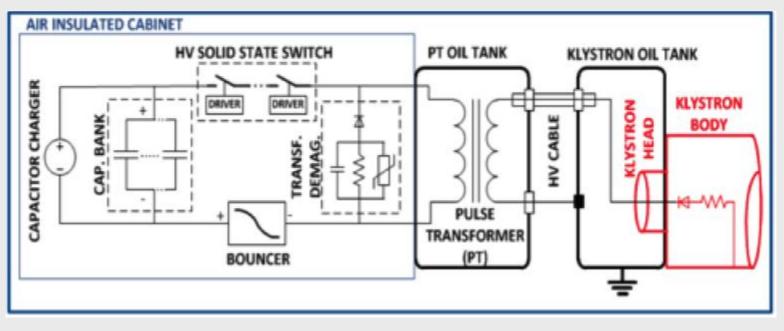
Max power/modulator	4.5MW
Min power/modulator	65kW ?
Nominal voltage	110 kV
Flat top (fill + beam time + empty)	3.5 ms
Rise/fall time	0.3 ms / 0.3ms?
Repetition rate	14Hz
Droop	1% ?
Voltage Ripple (magnitude and frequency)	0.1% above 10kHz ?
Nb of modulators	~110
Max energy delivered to arc	<10 J
MTBF	100 000 hrs ?
Availability	99.8 % ?

Modulator topology overview


5 topologies highlighted

- Topologies known to already operate with long pulse applications
- Future topologies thought to be well adapted to long pulse applications
- Assessment of some advantages and disadvantages of each topology
- Some topologies in the market are a mix of more than one concept
- I do not claim this list is exhaustive!

Bouncer and pulse transformer


- <u>Charger</u>: Classical resonant topology for charging the capacitor.
- Storage capacitor: The pulsed power is collected by an intermediate storage capacitor before being transmitted through the switch.
- Switch: High voltage, high current solid state switch.
- <u>Pulse transformer</u>: The pulse is generated at high current lower voltage at the primary side of the pulse transformer.
- <u>Voltage droop compensation</u>: Voltage compensator for the droop occurring in the storage capacitor during the pulse discharge.

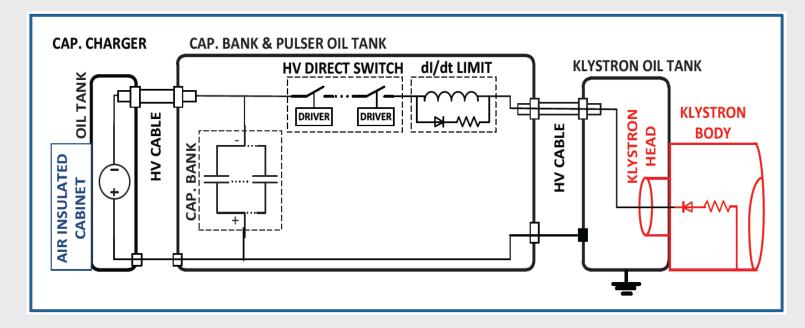
Bouncer and pulse transformer

- Used by:
 - Fermilab (Tevatron)
 - CERN (LINAC4)
 - Pulse transformer size scales with voltage and pulse width
 - Primary voltage and current is mainly determined by switch technology, capacitor volume, transformer design
 - Oil volume (transformer): ~800 litres

Bouncer and pulse transformer

Advantages

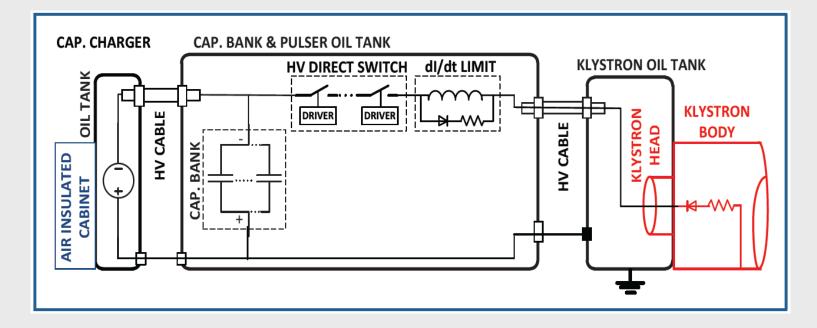
- The power circuit is simple and reliable.
- All electronic active devices are at medium voltage level
- No voltage ripple on the flat-top


Disadvantages

- Large pulse transformer and LC resonant bouncer volume for long pulses
- Limited sources for pulse transformer
- Slow rise and fall times
- Reverse voltage on the klystron to demagnetize the pulse transformer limits the duty cycle

Direct switch

- <u>Charger</u>: Very high voltage capacitor charger.
- <u>Storage capacitor</u>: Capacitors rated for the full voltage. Very high energy storage.
- Switch: Full rated voltage slid-state switch.
- <u>Voltage droop compensation</u>: None. The droop is determined by the capacitor bank size.



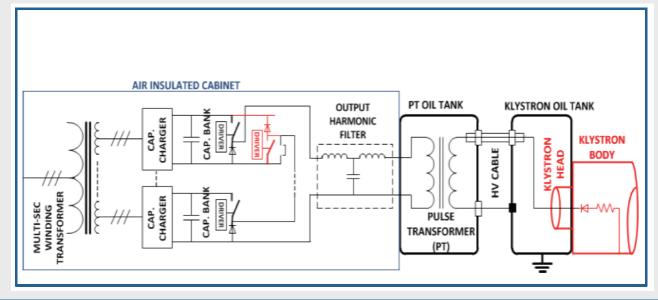
Direct switch

- Other accelerator users
 - RAL
 - APS
- Modulator oil volume: ~2000 litres

Direct Switch

Advantages

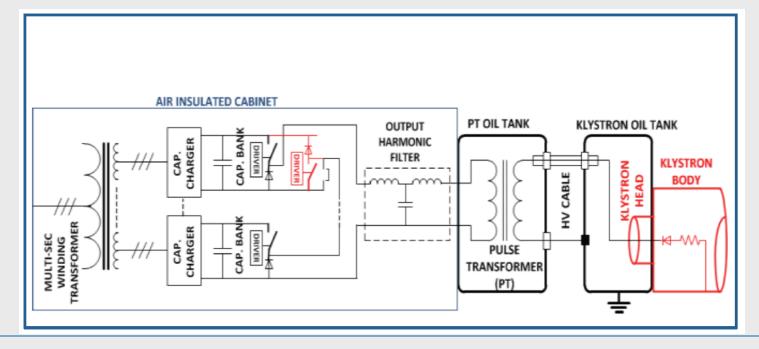
- Fast rise/fall times
- Large range of pulse lengths and pulse repetition rate
- No reverse voltage (no pulse transformer)
- Relatively compact due to most parts being in oil
- No voltage ripple on flat top


Disadvantages

- All components immersed in oil, problematic for operation
- Reliability in arc is entirely dependent on switch
- 100kV IGBT switch assembly required (not widely available)

Interleaved DC/DC

- <u>Charger</u>: Distributed across many smaller modules. Connected to multisecondary winding interface transformer (also possible to have multiple primaries)
- <u>Storage capacitor</u>: Smaller ~1kV rated capacitors distributed across many modules.
- Switch: Standard solid-state switch.
- <u>Voltage droop compensation</u>: Can operate without compensation, or by using a pulse-modulation technique to obtain desired output characteristics.



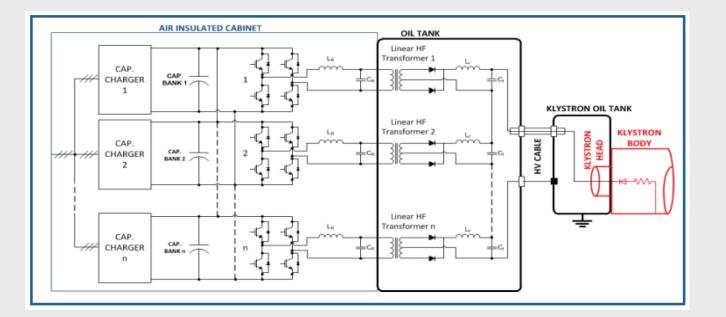
Interleaved DC/DC

- Used by
 - DESY (XFEL)
- Oil volume (transformer): ~800 litres

Interleaved DC/DC

Advantages

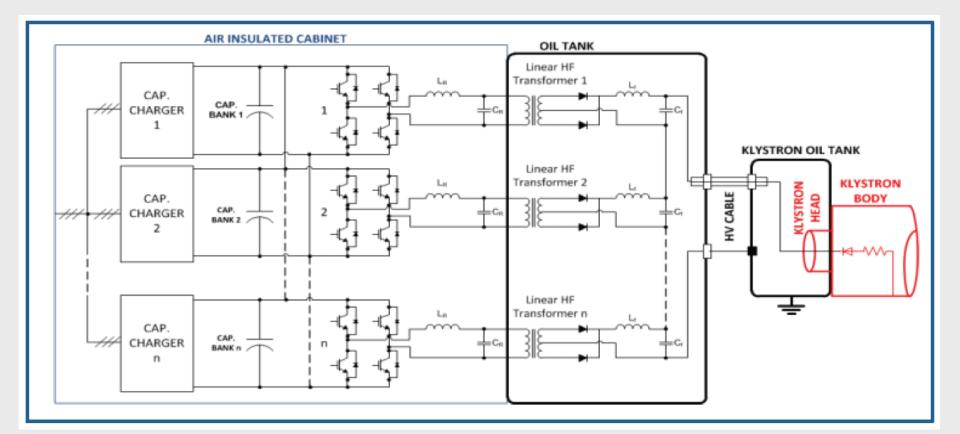
- Active demagnetization of the pulse transformer possible
- Intrinsic active droop compensation
- Active klystron arc extinction possible
- All electronics at medium voltage


Disadvantages

- HF ripple in flat-top
- Thermal cycling of semiconductors in hard switching
- Two special transformers (input and output)
- Large pulse transformer for long pulses
- Limited sources for pulse transformer

Multiple Resonant DC/AC/DC

- <u>Charger</u>: Distributed across many smaller modules.
- Storage capacitor: Smaller capacitors distributed across many modules.
- Switch: Standard solid-state switch.
- Voltage droop compensation: Flat-top control is inherent in topology



Multiple Resonant DC/AC/DC

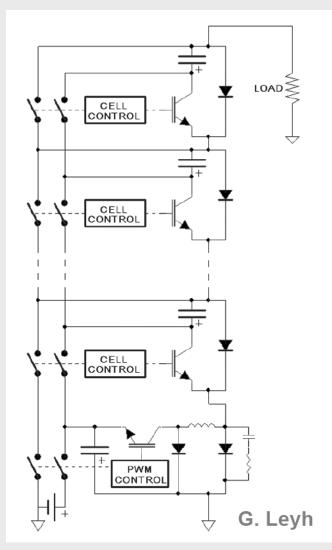
- Used by
 - SNS
- Oil volume (transformer): not yet known

Multiple Resonant DC/AC/DC

Advantages

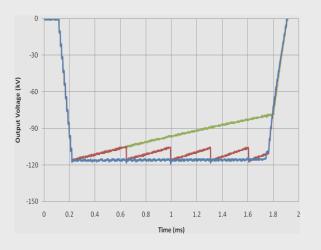
- All electronics at medium voltage
- Standard semiconductor switches
- No demagnetization required
- Intrinsic active droop compensation
- In klystron arc the resonant circuits become de-tuned
- Modular

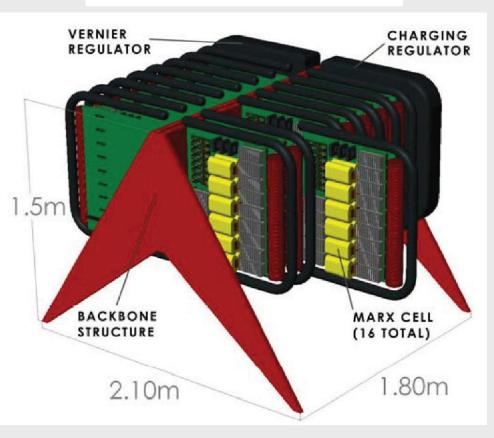
Disadvantages


- High frequency transformer design difficult
- Reactive power in H-bridges (some over-rating required)
- Relies on IGBT soft switching but this is complex
- Ripple on flat-top to check if it meets reproducibility requirement

Solid State Marx

- Developed for ILC project
- Several years of development already completed
- <u>Charger</u>: Normally main charger for all systems.
- <u>Storage capacitor</u>: Capacitors distributed across many modules.
- <u>Switch</u>: Standard solid-state switch in each module.
- <u>Voltage droop compensation</u>: Flat-top control using switch-mode stage – creates a low amplitude 'sawtooth' waveform





Solid State Marx

- Used by
 - SLAC (advanced prototype only)
- Oil volume: none

120 kV, 140A, 1.6 ms, 5 Hz

Uppsala 14/12/11 - Modulators

Solid State Marx

Advantages

- No oil or pulse transformer
- Standard semiconductor switches
- Intrinsic active droop compensation
- Low arc energy due to fast turn-off
- Modular and fault tolerant solution
- Development almost complete
- Potential to license design from SLAC?

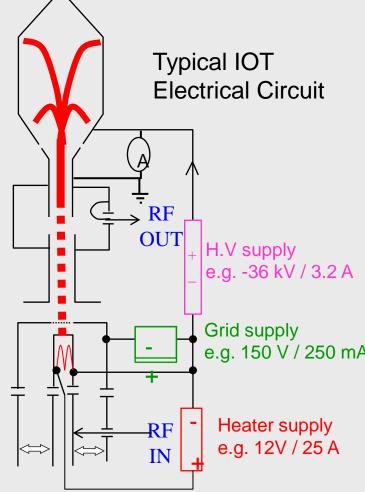
Disadvantages

- Fairly complex
- Electronics are at high voltage (EMC issues)
- A lot of silicon (cost?)
- To be validated for (even) longer pulses

Cost Comparison

See some cost scaling rules presented previously

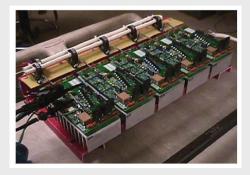
Topology	Comment
Bouncer	Conventional technology; Pulse transformer;
Direct Switch	Simplest solution; Proprietary technology;
Interleaved DC/DC	Modular; Conventional semiconductors; Special transformers;
Resonant DC/AC/DC	Modular; Conventional semiconductors; Special transformer;
Marx	Modular; Conventional semiconductors;


The cost of each solution should align for industrial production quantities

- Resonant topology has additional R&D costs compared to other solutions
- Modular systems may benefit additionally from increased quantities

'Spoke' Modulators

- Tetrodes and IOTs are being considered for the lower power spoke cavities, potentially several powered from the same modulator
- Modulators for these generally use DC electrical power
 - The power source is essentially the front half of a pulsed modulator (without pulse forming system)
 - IOT's now widely used in TV signal transmission
 - Associated CW technology well proven
- IOT's and tetrodes typically operate between 10kV and 50kV
 - Should be straightforward to find technical solution for powering of tetrodes/IOTs
 - However important to ensure reliability and availability (and hence modularity) is considered as part of the technical solution



P Sanchez, ALBA

Modulator R&D

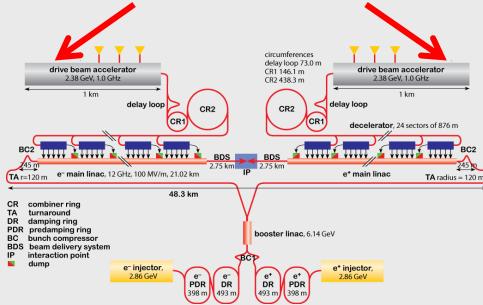
As with any project, several phases to consider

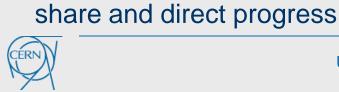
- Ensure you get what you want!
 - Project management is a critical aspect to develop appropriate specifications and make prudent compromises where necessary
- Develop specific technologies (eg transformers, inverters, etc)
 - Requires knowledge of HV, electromagnetics, semiconductors,...
 - Domain for experts: designers, teams and companies
- Validate full scale prototype
 - Requires general knowledge of complete RF system
 - Develop system level electronics and software
 - Initial modulator testing on a passive High Voltage load
 - Subsequent testing on a klystron (without cavity)
 - · Final validation in compete mock-up

In-house v commercial development

- In-house development allows facility to confidently maintain and operate equipment for the long term
 - Enables personnel to be highly knowledgeable of technology in operation
 - Requires investment in people and test facilities
- Commercial development is protective of intellectual property and prefers 'black box' approach
 - Can be problematic for long term operation of specialized equipment
 - However ability to optimize design and cost for production facilities
- LHC R&D and production model
 - Impose topology (you need to know which one...)
 - Allow companies to develop specific (optimized) solutions
 - Competitive tender on validated prototypes
 - All design data made available to buyer to allow long term support

Modulator and RF optimization


- Further activity is encouraged to fully identify the complete RF system
 - At the design stage, the transfer function for the RF High Power system should also include a model of the klystron and modulator
 - Allows certain specifications to be refined and optimized
 - Typically attention is given to the RF resonant frequency
 - However the modulator and other components will generate perturbation (if any) in a lower frequency band
 - Some activity is starting at CERN and SLAC to identify LINAC4 and CLIC type klystron structures
 - Every RF system is likely to be different



CERN CLIC Modulator Development

- Challenging project with stringent specs for modulators
 - Some issues common to other accelerator projects
- R&D will be conducted in several centers, coordinated by CERN
- Intend to evaluate at least 2 different topologies as part of TDR phase

circumferences delay loop 73.0 m drive beam accelerator drive beam accelerator CR1 146.1 m 2.38 GeV, 1.0 GHz 2.38 GeV, 1.0 GHz CR2 438.3 m 1 km 1 km delay loop delay loop CR2 CR2 decelerator, 24 sectors of 876 m BDS BDS 2.75 km 2.75 km e† main linac main linac, 12 GHz, 100 MV/m, 21.02 km 48.3 km combiner rinc turnaround damping ring predamping ring booster linac, 6.14 GeV bunch compressor beam delivery system interaction point e- injector e⁺ injector, 2.86 GeV ee⁺ DR e* 2.86 GeV PDR DR PDR 398 m 493 n 493 m

2-3 years of R&D at

assembly level

component and sub-

2-3 years to construct and

test full scale prototypes

Regular workshops with

collaboration participants to

~1600 klystron Modulators required here

Modulator development efforts

- The following labs have made, or are making, progress on modulator technology
 - SLAC (ILC)
 - CERN (CLIC)
 - DESY (XFEL)
 - Los Alamos (SNS)
- While each project has specific requirements, there are many common technical challenges
- The many large linear collider studies ongoing today would benefit from a coordinated approach to the modulator development
- The ESS requirements for long pulse modulators is larger than all previous projects combined
 - Opportunity to interact with international modulator community
 - Needs an ESS representative/team to follow progress

Conclusion

- The ESS modulator requirements represents a greater financial investment than the power systems for the entire LHC!
 - The LHC powering was a 10year project from conception to installation
 - Due to good concept and design, excellent availability of power systems
- Experience from other large installations, such as SNS, identify the modulator as one of the key reliability/availability drivers
- Development time for new systems is significant
 - Both SNS and ILC developments for long pulse modulators have taken >5yrs
- The modulators are a significant cost driver in long pulse LINACS
 - It is in the interest of large LINAC projects to have a dedicated modulator team
- The proposed strategy for initial construction with a conservative modulator design seems sensible
 - For subsequent phase, recommend considering 2 (or more) alternative topologies

THANKYOU

