

Additional RF system issues: Amplifier linearization Reference Phase distribution Master Clock

Anders J Johansson Lund University

Low Level RF (LLRF)

Linearization of power amplifiers

- Linearization of PA common in mobile communications
- Makes it possible to use efficient amplifiers and still fulfill transmitt spectrum masks.

Why linearization in mobile communications

- Increased demands due to:
 - Complex modulation schemes
 - Muliple channels per amplifier
 - Running at compression/class C for efficiency

List of linearization techniques

- Power backoff
- Predistortion
- Adaptive predistortion
- Feedforward Linearization
- Envelope elimination and restoration (EER)
- LINC (LInear amplification with Nonlinear Components)
- Cartesian feedback

List by Joel L. Dawson

Power backoff

Predistortion

Linearization High Power Amplifiers, Allen Katz, Linearizing Technologies

Adaptive predistortion

Feedforward Linearization

VM.CA

Power Amplifier Linearization Techniques, an Overview, Joel L. Dawson

Envelope elimination and restoration

RF and Microwave Power Amplifier and Transmitter Technologies — Part 3, F. H. Raab et. Al.

Envelope tracking

RF and Microwave Power Amplifier and Transmitter Technologies — Part 3, F. H. Raab et. Al.

LINC

0

RF and Microwave Power Amplifier and Transmitter Technologies — Part 3, F. H. Raab et. Al.

Indirect Feedback

Linearization High Power Amplifiers, Allen Katz, Linearizing Technologies

LINCartesian Feedback

Power Amplifier Linearization Techniques, an Overview, Joel L. Dawson

LLRF with linearization

Development of Linearization for ESS

- Investigate the different options from the viewpoint of ESS
 - Klystrons / IOTs
 - Narrow bandwidth
 - Huge power
 - Overhead from FPGA/DSP minimal
- Needs accurate non-linear models of amplifiers!

Time and Synchronization

- ESS needs:
 - A common clock to timestamp events
 - Stable generation and distribution of pulse events
 - Stable reference phase for RF

Phase reference

- Crystal oscillators
 - Very low phase noise
 - Big drift
 - Cheap
- Atomic clocks (cesium /rubidium)
 - Low drift
 - Large phase noise
 - Costly
- Maser
 - Very Low drift
 - Expensive

Stability and phase noise

- Two main measures of oscillators and clocks
 - Allen variance or stability
 - Slow variations
 - "Allan variance is defined as one half of the time average of the squares of the differences between successive readings of the frequency deviation sampled over the sampling period"

 $\sigma_{\rm v}^{2}(\tau) = \frac{1}{2} \langle (\Delta y)^{2} \rangle$

 $L\left(f\right) = S_{\phi}/2$

- Phase noise
 - Fast variations

Phase noise dBc/Hz vs. Offset frequency in Hz

avm.c.

Stability Allan stability versus integration time (seconds)

OCXO: Oven Controlled Crystal Oscillators

- Stabilize a crystal oscillator by putting it inside a temperature controlled oven (which in turn may be inside an temperature controlled oven etc.)
- May still be tuned by voltage and/or temperature
- Typically 10 MHz.

PLL: Phase Locked Loop

 How to use a stable low frequency oscillator to control a high frequnecy source.

Master clock schematic (tentative)

Reference phase distribution

- The reference phase needs to be distributed to all LLRF stations
- Taken from the master clock
- Linear or star topology
- Example: linear distribution

Reference phase distribution

Conclusions

- Investigate possibility of running the power amplifiers (klystrons) close(r) to saturation.
- Design a master clock
- Design a phase distribution network

