n-DBI gravity

Flávio de Sousa Coelho¹ Supervisor: Carlos A. R. Herdeiro¹

¹Departamento de Física Universidade de Aveiro, Portugal

MAP-Fis PhD Research Conference Universidade do Minho, 20th January 2012

Outline

Introduction

- Motivation: scale invariance
- The Action
- 2 Cosmology
 - FRW Universe
 - Inflation and the Cosmological Constant Problem
- Properties and Black Hole Solutions
 - Properties of n-DBI gravity
 - Exact Solutions

4 Further Studies

Introduction

Cosmology Properties and Black Hole Solutions Further Studies Motivation: scale invariance The Action

Outline

Introduction

- Motivation: scale invariance
- The Action
- 2 Cosmology
 - FRW Universe
 - Inflation and the Cosmological Constant Problem
- Properties and Black Hole Solutions
 - Properties of n-DBI gravity
 - Exact Solutions
- 4 Further Studies
 - The degrees of freedom of n-DBI gravity

Motivation: scale invariance The Action

Scale Invariance and Inflation

- Observations suggest that the Universe is nearly scale invariant at early and late times, when it is believed to be approximately de Sitter space.
- At the present epoch, the accelerating expansion is thought to be driven by a nearly constant vacuum energy.
- To explain the inflation phase after the Big Bang, most current models involve a scalar field, the *inflaton*, which acts as the agent of the nearly exponential expansion of the Universe.
- However, the nature of such a field is far from clear from the Particle Physics point of view.

Introduction

Cosmology Properties and Black Hole Solutions Further Studies Motivation: scale invariance The Action

Outline

Introduction

- Motivation: scale invariance
- The Action

2 Cosmology

- FRW Universe
- Inflation and the Cosmological Constant Problem
- Properties and Black Hole Solutions
 - Properties of n-DBI gravity
 - Exact Solutions

4 Further Studies

Introduction Cosmology

Further Studies

Properties and Black Hole Solutions

Motivation: scale invariance The Action

A new model of Gravity

Action for n-DBI Gravity

$$S = -rac{3\lambda}{4\pi G_N^2}\int d^4x \sqrt{-g}\left\{\sqrt{1+rac{G_N}{6\lambda}\left({}^{(4)}\!R+\mathcal{K}
ight)}-q
ight\}\,,$$

- λ, q are dimensionless constants that set the scale of inflation and the cosmological constant.
- K = −2(K² + n^α∂_αK), where K is the extrinsic curvature of hypersurfaces orthogonal to n^α.

Introduction

Cosmology Properties and Black Hole Solutions Further Studies Motivation: scale invariance The Action

A new model of Gravity

This model:

- yields the Dirac-Born-Infeld type conformal scalar theory when the Universe is conformally flat.
- reduces to Einstein's gravity with the Gibbons-Hawking-York boundary term in weakly curved spacetimes.

Moreover,

- it breaks Lorentz invariance by introducing a preferred time-like vector field (albeit recovering it the weak curvature limit).
- resembles Hořava-Lifshitz gravity in the sense that we treat time as distinct from space.

FRW Universe Inflation and the Cosmological Constant Problem

Outline

Introduction

- Motivation: scale invariance
- The Action

2 Cosmology

FRW Universe

- Inflation and the Cosmological Constant Problem
- Properties and Black Hole Solutions
 - Properties of n-DBI gravity
 - Exact Solutions

4 Further Studies

FRW Universe Inflation and the Cosmological Constant Problem

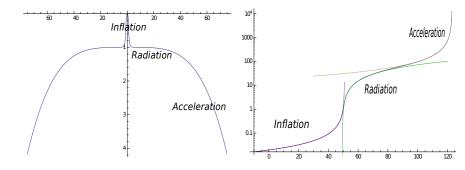
The conformally flat Universe

If we consider conformally flat universes, with metric

Friedmann-Robertson-Walker Ansatz

$$ds^2 = \ell_P^2 \phi(\tau, x)^2 (-d\tau^2 + dx^2),$$

we get a conformal scalar theory with equation of motion


Effective Potential for the Scalar Field

$$rac{1}{2}\dot{\phi}^2+V(\phi)=0,\ V(\phi)=-rac{1}{2}\lambda\phi^4\left[1-\left(q+rac{\epsilon}{\lambda\phi^4}
ight)^{-2}
ight].$$

• ℓ_P is the Planck lenght; ϵ is the radiation energy.

FRW Universe Inflation and the Cosmological Constant Problem

The conformally flat Universe

• The model naturally results in inflation at early times, followed by radiation- (and matter-) dominated epochs and subsequent acceleration at late times.

FRW Universe Inflation and the Cosmological Constant Problem

The Universe with a Perfect Fluid

Energy-Momentum Conservation

$$\dot{\rho} + 3H(\rho + p) = 0.$$

Friedmann Equation

$$H^{2} = \frac{\lambda}{G_{N}} \left[1 - \left(q + \frac{4\pi G_{N}^{2}}{3\lambda} \rho \right)^{-2} \right]$$

Raychaudhury Equation

$$\partial_t \left[H\left(q + \frac{4\pi G_N^2}{3\lambda} \rho \right) \right] = -4\pi G_N(\rho + p).$$

FRW Universe Inflation and the Cosmological Constant Problem

Outline

Introduction

• Motivation: scale invariance

- The Action
- 2 Cosmology
 - FRW Universe

• Inflation and the Cosmological Constant Problem

Properties and Black Hole Solutions
Properties of n-DBI gravity

Exact Solutions

4 Further Studies

Inflation and the Cosmological Constant Problem

- Taking the energy scale of inflation to be $E_{inf} = \sqrt{\lambda} \ell_P^{-1} \sim 10^{15}$ GeV,
- and the current CC $E_{\Lambda}=\sqrt{\lambda(1-q^{-2})}\ell_P^{-1}\sim 10^{-12}$ GeV,
- to generate such a large hierarchy, we need $\lambda \sim 10^{-8}$ and $q \sim 1 + 10^{-54}.$

However, at the level of the action the naive CC is

$$[\lambda(q-1)]^{1/4}\ell_P^{-1} \sim \text{TeV},$$

suggesting that SUSY breaking might be sufficient to solve this apparent fine-tuning problem.

Properties of n-DBI gravity Exact Solutions

Outline

Introduction

- Motivation: scale invariance
- The Action
- 2 Cosmology
 - FRW Universe
 - Inflation and the Cosmological Constant Problem
- Properties and Black Hole Solutions
 Properties of n-DBI gravity
 - Froperties of II-DDI g
 - Exact Solutions

4 Further Studies

Properties of n-DBI gravity

The vector field n^{α}

- The introduction of the everywhere time-like vector field n^{α} vields equations which are at most second order in time, albeit higher order in spatial derivatives.
- This is a desirable property to avoid *ghosts* in the quantum theory.
- n^{α} defines a natural foliation of space-time by (constant time) hypersurfaces orthogonal to n^{α} .

ADM decomposition

$$ds^2 = -N^2 dt^2 + h_{ij}(dx^i + N^i dt)(dx^j + N^j dt), \qquad n = -N dt.$$

Properties of n-DBI gravity Exact Solutions

The gauge group of n-DBI gravity

The general diffeomorphism group of General Relativity is broken down into:

Foliation-Preserving Diffeomorphisms

$$t
ightarrow t + \xi^0(t), \qquad x^i
ightarrow x^i + \xi^i(t,x^j).$$

• Quantities such as the shear σ_{ij} and the expansion θ of a congruence of time-like curves with tangent n^{α} acquire an invariant geometric meaning:

$$\sigma_{ij} = K_{ij} - \frac{1}{3}Kh_{ij}, \qquad \theta = K.$$

Properties of n-DBI gravity Exact Solutions

Einstein's Gravity limit

Einstein's equations can be recovered by taking the limit

$$\lambda \to \infty, \qquad q \to 1,$$

with the product $\lambda(q-1)$ kept fixed.

• We get a CC term

$$\Lambda = \frac{6\lambda(q-1)}{G_N^2}.$$

• Full Lorentz invariance is restored.

Properties of n-DBI gravity Exact Solutions

Outline

Introduction

- Motivation: scale invariance
- The Action
- 2 Cosmology
 - FRW Universe
 - Inflation and the Cosmological Constant Problem
- Properties and Black Hole Solutions
 - Properties of n-DBI gravity
 - Exact Solutions

4 Further Studies

Properties of n-DBI gravity Exact Solutions

Solutions with constant ${\cal R}$

The study of solutions with constant $\mathcal{R}= {}^{^{(4)}}\!\!\mathcal{R}+\mathcal{K}$ establishes the following theorem

Theorem

Any solution of Einstein's gravity with cosmological constant plus matter, admitting a foliation with constant \mathcal{R} , is a solution of *n*-DBI gravity.

Corollary

Any Einstein space admitting a foliation with constant $R - N^{-1}\Delta N$ (hypersurface metric and Ricci scalar), is a solution of *n*-DBI gravity.

Properties of n-DBI gravity Exact Solutions

Black Hole Solutions

If we require spherical symmetry and include a Maxwell field, we get the RN-(A)dS black hole metric, albeit in an unusual set of coordinates. The cosmological constant is an integration constant

$$\Lambda_C = rac{3\lambda}{G_N^2}(2qC-1-C^2), \qquad C \equiv \sqrt{1+rac{G_N}{6\lambda}\mathcal{R}}.$$

Thus, asymptotically $(r \rightarrow \infty)$, we can get either de Sitter, Anti-de Sitter or Minkowski space, depending on the value of *C*.

The degrees of freedom of n-DBI gravity

Outline

Introduction

- Motivation: scale invariance
- The Action
- 2 Cosmology
 - FRW Universe
 - Inflation and the Cosmological Constant Problem
- B Properties and Black Hole Solutions
 - Properties of n-DBI gravity
 - Exact Solutions

4 Further Studies

What are the degrees of freedom of n-DBI gravity?

- The breaking of Lorentz invariance down to the subgroup of FPD's apparently introduces an extra (scalar) degree of freedom, in addition to the two graviton polarizations of General Relativity.
- What is the dynamics of the scalar graviton? Are there any pathologies (like in Hořava-Lifshitz gravity)?
- Is there any time-dependent, spherically-symmetric, vacuum solution? (prohibited by Birkhoff's theorem in GR)

For Further Reading

For Further Reading

Nerdeiro, S. Hirano, "Scale invariance and a gravitational 📎 model with non-eternal inflation," [arXiv:1109.1468 [hep-th]].

- 嗪 C. Herdeiro, S. Hirano, Y. Sato, "n-DBI gravity," Phys. Rev. D 84 124048 (2011).
- F. Coelho, C. Herdeiro, S. Hirano, Y. Sato, Work In Progress.